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Abstract
In recent years, variational quantum algorithms such as the Quantum Approximation
Optimization Algorithm (QAOA) have gained popularity as they provide the hope of
using NISQ devices to tackle hard combinatorial optimization problems. It is, however,
known that at low depth, certain locality constraints of QAOA limit its performance.
To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA
(RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA
has been studied comparatively less than QAOA, and it is less understood, for
instance, for what family of instances it may fail to provide high-quality solutions.
However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is
expected that RQAOA does fail, raising the question of designing even better
quantum algorithms for combinatorial optimization. In this spirit, we identify and
analyze cases where (depth-1) RQAOA fails and, based on this, propose a
reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon
RQAOA. We show that the performance of RL-RQAOA improves over RQAOA:
RL-RQAOA is strictly better on these identified instances where RQAOA
underperforms and is similarly performing on instances where RQAOA is
near-optimal. Our work exemplifies the potentially beneficial synergy between
reinforcement learning and quantum (inspired) optimization in the design of new,
even better heuristics for complex problems.

Keywords: Quantum computing; Combinatorial optimization; Quantum
approximate optimization algorithm; Reinforcement learning

1 Introduction
As quantum computing is becoming practical [1–4], there has been a growing interest
in employing near-term quantum algorithms to help solve problems in quantum chem-
istry [5], quantum machine learning [6], and combinatorial optimization [7]. Any such
near-term algorithm must consider the primary restrictions of Noisy Intermediate Scal-
able Quantum (NISQ) devices; e.g., the number of qubits, decoherence etc. Variational
Quantum Algorithms (VQAs) such as the Quantum Approximation Optimization Algo-
rithm (QAOA) [7] were developed as a potential approach to achieve a quantum advantage
in practical applications keeping in mind these design restrictions.
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For a user-specified input depth l, QAOA consists of a quantum circuit with 2l varia-
tional parameters. In the limit of infinite depth, for optimal parameters, the solution of
QAOA converges to the optimum for a given combinatorial optimization problem [7].
However, a significant body of research has produced negative results [8–15] for QAOA
limited to logarithmic depth (in the number of qubits), exploiting the notion of locality
or symmetry in QAOA. This motivates the study of techniques that circumvent the re-
striction of locality or symmetry in QAOA, which exploit the information-processing ca-
pabilities of low-depth quantum circuits by employing classical non-local pre-and post-
processing steps.1

One such proposal is the recursive QAOA (RQAOA), a non-local variant of QAOA,
which uses shallow depth circuits of QAOA iteratively, and at every iteration, the size of
the problem (usually expressed in terms of a graph or a hypergraph) is reduced by one
(or more). The elimination procedure introduces non-local effects via the new connec-
tions between previously unconnected nodes, which counteracts the locality restrictions
of QAOA. The authors in [11, 16, 17] empirically show that depth-1 RQAOA always per-
forms better than depth-1 QAOA and is competitive to best known classical algorithms
based on rounding of a semidefinite programming relaxation for Ising and graph colouring
problems. However, given that these problems are NP-hard, there must also exist instances
that RQAOA fails to solve exactly, unless NP ⊆ BQP. Hence, to further push the bound-
aries of algorithms for combinatorial optimization on NISQ devices (and beyond), it is
helpful to determine when RQAOA fails, as this can aid in developing better variants of
RQAOA.

In this work, we study extensions of RQAOA, which perform better than RQAOA for the
Ising problem (or equivalently, the weighted Max-Cut problem, where the external field
is zero, refer to Sect. 2.2). We do this by identifying cases where RQAOA fails (i.e., find
small-scale instances with approximation ratio ≤ 0.95). Then, we analyze the reasons for
this failure and, based on these insights, we modify RQAOA. We employ reinforcement
learning (RL) to not only tweak RQAOA’s selection rule, but also train the parameters of
QAOA instead of using energy-optimal ones in a new algorithm that we call RL-RQAOA.
In particular, the proposed hybrid algorithm provides a suitable test-bed for assessing the
potential benefit of RL: we perform simulations of (depth-1) RQAOA, and RL-RQAOA on
an ensemble of randomly generated weighted d-regular graphs and show that RL-RQAOA
consistently outperforms its counterparts. In the proposed algorithm, the RL component
itself plays an integral role in finding the solution, so this raises the question of the actual
role of the QAOA circuit and thus potential quantum advantages. To show that the QAOA
circuits have a non-trivial contribution to the advantage, we compare RL-RQAOA to an
entirely classical RL agent (which, given exponential time, imitates a brute force algorithm)
and show that RL-RQAOA converges both faster and to better solutions than the simple
classical RL agents. We note that our approach to enhance RQAOA’s performance is not
limited to depth-1 and can be straightforwardly extended to higher depths.

We present our results as follows: Sect. 2 introduces QAOA, recursive QAOA (RQAOA),
and fundamental concepts behind policy gradient methods in RL. Section 3 presents re-
lated works. Section 4 describes the limitations of RQAOA, and we illustrate their validity

1The time complexity of these auxiliary steps should be polynomial in input size for the algorithm to remain practically
viable.
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Figure 1 Training QAOA-based policies for reinforcement learning. We consider an RL-enhanced recursive
QAOA (RL-RQAOA) scenario where a hybrid quantum-classical agent learns by interacting with an
environment which we represent as a search tree induced by the recursive framework of RQAOA. The agent
samples the next action a (corresponding to selecting an edge and its sign) from its policy πθ (a|s) and
receives feedback in the form of a reward r, where each state corresponds to a graph (the state space is
characterized by a search tree of weighted graphs, where each node of the tree corresponds to a graph). The
nodes at each level of the search tree correspond to the candidate states for an agent to perceive by taking
action. For our hybrid agents, the policy πθ of RL-RQAOA (see Def. 1) along with the gradient estimate
∇θ logπθ is evaluated on a CPU as we are in the regime where depth l = 1. However, the policy can also be
evaluated on a quantum processing unit (QPU) for higher depths, when classical simulations can only be
performed efficiently for graphs of small size. The training of the policy is performed by a classical algorithm
such as REINFORCE (see Alg. 1), which uses sample interactions and policy gradients to update parameters

Algorithm 1: REINFORCE algorithm for the policies of RL-RQAOA and RL-RONE
Input: The policy of RL-RQAOA (Def. 1) or RL-RONE (Def. 2)

1 Initialize the policy parameters θ .
2 while True do
3 Generate N episodes {(s0, a0, r1, . . . , sH–1, aH–1, rH )}i following πθ .
4 for episode i in batch do
5 Compute the returns Gi,t ← ∑H–t

t′=1 γ t′r(i)
t+t′ .

6 Compute the gradients ∇θ logπθ (a(i)
t |s(i)

t ).

7 Compute �θ = 1
N

∑N
i=1

∑H–1
t=0 ∇θ logπθ (a(i)

t |s(i)
t )Gi,t .

8 Update θ ← θ + δ�θ .

by performing numerical simulations. In Sect. 5, we provide a sketch of the policies of RL-
RQAOA (quantum-classical) and RL-RONE (classical, introduced to characterize the role
of quantum aspects of the algorithm) and their learning algorithms. Section 6 presents
our computational results for the comparison between classical and hybrid algorithms
(RQAOA, RL-RQAOA, and RL-RONE) on an ensemble of Ising instances. Finally, we
conclude with a discussion in Sect. 7.
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2 Background
In this section, we first provide a brief overview of QAOA (Sect. 2.1) and its classical simu-
latability for the Ising problem (Sect. 2.2). Later, we introduce recursive QAOA (RQAOA)
(Sect. 2.3) upon which we base our proposal for RL-enhanced RQAOA and introductory
concepts behind policy gradient in RL (Sect. 2.4). These notions will give us tools to de-
velop policies based on the QAOA ansatz and their learning algorithms in the upcoming
sections.

2.1 Quantum approximate optimization algorithm
QAOA seeks to approximate the maximum of the binary cost function C : {0, 1}n → R

encoded into a Hamiltonian as Hn =
∑

x∈{0,1}n C(x)|x〉〈x|. Starting from an initial state
|s〉 = |+n〉 (uniform superposition state), QAOA alternates between two unitary evolution
operators Up(γ ) = exp(–iγ Hn) (phase operator) and Um(α) = exp(–iαHb) (mixer operator)
respectively, where Hb =

∑n
j=1 Xj. Hereafter, X, Y , Z are standard Pauli operators and Pj

is a Pauli operator acting on qubit j for P ∈ {X, Y , Z}. The phase and mixer operator are
typically applied a total of l times, generating the quantum state,

∣
∣�l(�α, �γ )

〉
=

l∏

k=1

exp(–iαkHb) exp(–iγkHn)|s〉, (1)

where the variational parameters {�α, �γ } ∈ [0, 2π ]2l and the integer l is called the QAOA
depth. The depth l controls the non-locality of the QAOA circuit. During the oper-
ation of QAOA, these parameters are tuned to optimize the expected value of Hn :=
〈�l(�α, �γ )|Hn|�l(�α, �γ )〉. The preparation of the state (1) is followed by a measurement in
the computational basis, which outputs a bitstring x corresponding to a candidate solu-
tion of the cost function C . The probability Pl(x) of obtaining a bitstring x ∈ {0, 1}n is given
by Born’s rule,

Pl(x) =
∣
∣
〈
x
∣
∣�l(�α, �γ )

〉∣
∣2. (2)

A candidate bitstring x∗ is called an r-approximation solution to a given instance, for
0 ≤ r ≤ 1 if,

C
(
x∗) ≥ r · max

x
C(x). (3)

An algorithm is said to achieve an approximation ratio of r for a cost function C if it
returns an r-approximation or better for every problem instance in the class (i.e., in the
worst case).

We say that depth-l QAOA achieves an approximation ratio of r for a problem instance
of a cost function C if there exists parameters {�α, �γ } such that

〈Hn〉l :=
〈
�l(�α, �γ )

∣
∣Hn

∣
∣�l(�α, �γ )

〉 ≥ r · max
x

C(x) (4)

We note that repeating a sequence of state preparations and measurements approxi-
mates the distribution of x given by (2) and that (4) is the mean of this distribution. The
candidate bitstring x∗ may then be selected to yield the maximum approximation ratio r.
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2.2 Classical simulatability of QAOA for the Ising problem
Next, we review the classical simulatability of a paradigmatic case of QAOA for the Ising
problem. This is a core building block for simulating both (depth-1) RQAOA and RL-
RQAOA. It enables their efficient classical simulation at depth-1 for arbitrary graphs.
Given a graph Gn = (V , E) with n vertices V = [n] (where [n] = {1, 2, . . . , n}) and edges
E ⊂ V × V , as well as an external field hu ∈ R and a coupling coefficient (edge weight)
Juv ∈ R associated with each vertex and edge respectively, then the Ising problem aims to
find a spin configuration s ∈ {–1, +1}n maximizing the cost Hamiltonian,2

Hn =
∑

u∈V

huZu +
∑

(u,v)∈E

JuvZuZv. (5)

The Ising problem without any external field is equivalent to the weighted Max-Cut
problem, where the goal is to find a bi-partition of vertices such that the total weight of
the edges between them is maximized. The expected value of each Pauli operator Zu and
ZuZv on depth-1 QAOA can be computed classically in O(n) time using analytical results
stated in Theorem 1 in Appendix A. Since the cost function has O(n2) many terms in the
worst case, computing the final expected value of (5) hence takes a total time in O(n3)
given the variational parameters.

2.3 Recursive QAOA
In this subsection, we outline the RQAOA algorithm of Bravyi et al. [11] for the Ising
problem as defined in (5) with no external fields (hu = 0, ∀u ∈ V ). This will serve as a base
for our proposal of RL-enhanced RQAOA. The RQAOA algorithm aims to approximate
the maximum expected value3 maxx 〈x|Hn|x〉, where x ∈ {0, 1}n. It consists of the following
steps. First, a standard depth-l QAOA is executed to find the quantum state |�∗

l (�α, �γ )〉
(with optimal variational parameters) as in (1) that maximizes the expectation value of Hn.
For each edge (u, v) ∈ E, the two-correlation Mu,v = 〈�∗

l (�α, �γ )|ZuZv|�∗
l (�α, �γ )〉 is computed.

A variable Zu with largest |Mu,v| is then eliminated (breaking ties arbitrarily) by imposing
the constraint

Zu = sign(Mu,v)Zv (6)

which yields a new Ising Hamiltonian Hn–1 with at most n – 1 variables. The resulting
Hamiltonian is processed iteratively, following the same steps. Finally, this iterative pro-
cess stops once the number of variables is below a predefined threshold nc. The remaining
Hamiltonian with nc variables can then be solved using a classical algorithm (e.g., brute
force method). The final solution can then be obtained iteratively by reconstructing elim-
inated variables using (6).

We note that the variable elimination scheme in RQAOA is analogous to rounding solu-
tions obtained by solving continuous relaxations of combinatorial optimization problems.
We refer the interested reader to [18, Sec. V.A.] for a detailed discussion on the connec-
tion between quantum optimization algorithms and classical approximation algorithms.

2The textbook Ising problem definition has a negative sign (–), and the goal is to minimize the Hamiltonian.
3The bitstring {0, 1}n is analogous to the spin configuration {–1,+1}n where 0 corresponds to –1 and +1 to 1. Hereafter, we
will use both of them interchangeably.
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Recall that the final expected value of Hn as in (5) can be computed in O(n3) time. Since
we can choose nc such that nc ≈ O(1), RQAOA runs for approximately n iterations, so that
the total running time is O(n4) (neglecting the running time needed to find the optimal
variational parameters).

2.4 Reinforcement learning primer
As our proposal to improve upon RQAOA is based on reinforcement learning, we intro-
duce basic concepts behind RL and the policy gradient method in this subsection.

In RL, the agent learns an optimal policy by interacting with its environment using a
trial-and-error approach [19]. Formally, RL can be modeled as a Markov Decision Pro-
cess (MDP) defined by the tuple (S ,A, p, R), where S and A represent the state and action
spaces (both can be continuous and discrete), the function p : S ×S ×A→ [0, 1] defines
the transition dynamics, and R : S × A → R describes the reward function of the envi-
ronment. An agent’s behaviour is governed by a stochastic policy πθ (a|s) : S ×A→ [0, 1],
for a ∈ A and s ∈ S . Highly expressive function approximators, such as deep neural net-
works (DNN), can be used to parametrize a policy πθ using tunable parameters θ ∈ R

d .
An agent’s interaction governed by a policy πθ (a|s) in the environment can be viewed as
sampling a trajectory τ ∼ PE(·) from the MDP, where

PE(τ ) = p0(s0)πθ (a0|s0)p(s1|s0, a0) · · ·
πθ (aH–1|sH–1)p(sH |sH–1, aH–1) (7)

is the probability of the trajectory τ of length H to occur, where p0 is a distribution of
initial state s0. An example of a trajectory is

τ = (s0, a0, s1, a1, . . . , sH–1, aH–1, sH ). (8)

An agent collects a sequence of rewards based on its interactions with the environment.
The metric that assesses an agent’s performance is called the value function Vπθ

and takes
the form of a discounted sum as follows,

Vπθ
(s0) = Eπθ ,PE

(H–1∑

t=0

γ trt

)

= Eπθ ,PE

(
R(τ )

)
, (9)

where s0 is an initial state of an agent’s trajectory τ within an environment, PE describes
the environment dynamics (i.e., in the form of an MDP)), and rt is the reward at time
step t during the interaction. Every trajectory has a horizon (length) H ∈N∪ {∞} and the
expected return involves a discounting factor γ ∈ [0, 1]. Most often one chooses γ < 1 to
avoid unwanted diverging value functions for a horizon H = ∞. Finally, the goal of an RL
algorithm is to learn an optimal policy π∗

θ such that the value function is maximized for
each state. One way of finding a good policy is through the policy gradient method, i.e.,
finding an optimal set of parameters θ which maximize the value function of the policy
(by evaluating its gradient). For the sake of brevity, we defer the explanation of the policy
gradient method to Appendix B.
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3 Related work
In the context of RL, two works [20, 21] developed optimizers based on policy gradi-
ent methods for VQA optimization, highlighting the robustness of RL-based techniques
against off-the-shelf optimizers in the presence of noise. As opposed to our work, both
these works use an external RL policy to choose the angles of QAOA in a one-step Markov
Decision Process (MDP) environment, and otherwise rely on the basic QAOA algorithm.
A series of works [22, 23] have also used RL-based optimization to generalize the approach
of QAOA for preparing the ground state of quantum many-body problems. In [22], an
agent uses an auto-regression mechanism to sample the gate unitaries in a one-step MDP
and employs an off-the-shelf optimizer to optimize angles to prepare a generalized QAOA
ansatz. The same set of authors then unify their previous works [20, 22] with both the use
of a generalized autoregressive architecture that incorporates the parameters of the con-
tinuous policy and an extended variant of Proximal Policy Optimization (PPO) applicable
to hybrid continuous-discrete policies [24]. We note that for all the works [20, 22–24], the
quantum circuit (QAOA-type ansatz) is a part of an environment. In our case, we focus on
employing reinforcement learning to enhance the performance of the RQAOA, inspired
by a recent work [25] on using quantum circuits to design RL policies. In contrast to the
approaches discussed above, we design an RL policy based on QAOA ansatz in a multi-
step MDP environment where the quantum circuit (QAOA ansatz) is not a part of the
environment. Other works have used Q-learning to formulate QAOA into an RL frame-
work to solve difficult combinatorial problems [26] and in the context of digital quantum
simulation [27].

In the context of employing non-local post-processing methods in quantum optimiza-
tion algorithms akin to classical iterated rounding, there have been a few proposals to
modify RQAOA. The main idea behind RQAOA is to use QAOA iteratively to compute
correlations and then, at every iteration, employ a rounding (variable elimination) proce-
dure to reduce the size of the problem by one. The variants of RQAOA proposed in the
literature primarily differ in how the correlations are computed and how the variables are
eliminated. For instance, in [11, 16], variable elimination scheme of RQAOA is determin-
istic and relies on correlations between qubits (qudits). On the other hand, the authors in
[18, Sec. V.A.] propose a modified RQAOA where the rounding procedure is stochastic
(controlled by a fixed hyper-parameter β), and a variable is eliminated based on individual
spin polarizations. In contrast, our proposal of RL-RQAOA trains analogous parameter(s)
�β via RL (See Appendix C) and uses correlations between qubits to perform variable elim-
ination.

Note added Several pre-prints on iterative/recursive quantum optimization algorithms
generalizing RQAOA have appeared since the submission of this work on arXiv. Paral-
lel works such as [28–30] widen the selection and variable elimination schemes within
the framework of recursive quantum optimization in application to constrained problems
such as Maximum Independent Set (MIS) and Max-2-SAT. Moreover, [28] show theoret-
ical justifications of why depth-1 QAOA might not be a suitable candidate for quantum
advantage and consequently urge the community to explore higher depth alternatives.

4 Limitations of RQAOA
This section highlights some algorithmic limitations of RQAOA by introducing an alter-
native perspective on it. Then, based on this perspective, we provide insights into when
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RQAOA might fail and why. It is obvious that (depth-1) RQAOA must fail on some in-
stances, since we assume BPP � NP,4 but these instances may be quite big a priori. By
“failure”, we mean that RQAOA can not find an optimal (exact) solution. Notably, even if
depth-l RQAOA fails to find exact solutions, it could still achieve an approximation ra-
tio better than the bound known from inapproximability theory. In this case, NP ⊆ BQP
still holds. For instance, if RQAOA fails to find an exact solution and still achieves an ap-
proximation ratio of 16/17 + ε or 0.8785 + ε, then NP ⊆ BQP follows from [31, 32] under
different complexity-theoretic assumptions, thus demonstrating quantum advantage. We
primarily focus on finding small-size instances since we need a data set of small instances
to be able to computationally efficiently compare the performance of (depth-1) RQAOA
and RL-RQAOA.

First, let us motivate the use of QAOA as a subroutine in RQAOA. In other words, why
would one optimize depth-l QAOA (i.e., find energy-optimal parameters for a Hamilto-
nian) and then use it in a completely different way (i.e., perform variable elimination by
computing two-correlation coefficients Mu,v). Intuitively, using QAOA in such a fashion
makes sense because as depth l → ∞, the output of QAOA converges to the quantum
state which is the uniform superposition over all optimal solutions, and hence, for each
pair (u, v) ∈ E, computing the coefficient Mu,v exactly predicts if the edge is correlated
(vertices with the same sign; i.e. lie in the same partition) or anti-correlated (vertices with
the different sign; i.e. lie in the different partition) in an optimal cut. The next piece of
intuition, which is not any kind of a formal argument, is that low-depth QAOA prepares a
superposition state where low-energy states are more likely to have high probability am-
plitudes. Then the RQAOA selects the edge which is most correlated or anti-correlated
in these low-energy states. Furthermore, assuming that an ensemble of reasonable solu-
tions often agree on which edges to keep and which ones to cut, RQAOA will select good
edges to cut or keep (from the Max-Cut perspective). However, we also expect RQAOA
to fail sometimes, for instance, when the intuition mentioned above is wrong, or it assigns
a wrong edge-correlation sign to an edge for other reasons. Hence, as RQAOA fails, this
raises the question of whether there are better angles to select an edge and its correct edge-
correlation sign at every iteration than those which coincide with energy-optimal angles
(see Fig. 2).

RQAOA can alternatively be visualized as performing a tree search to find the most
probable spin configuration close to the ground state of the Ising problem. In particular,
at the kth level of the tree, nodes correspond to graphs with n – k vertices, each having
different edge sets. Suppose that a node has n – k vertices with e edges, then it will have
e many children where each child corresponds to a graph with n – k – 1 vertices hav-
ing different edge sets following the edge contraction rules by imposing (6). The original
RQAOA proposal [11] is a randomized algorithm (in the sense that ties between maximal
two-correlation coefficients are broken uniformly at random) on this tree exploring only a
single path during one run and terminating at the (n – nc)th level. The decision of choosing
an appropriate branch is performed based on the largest magnitude of the absolute value
of two-correlation coefficients Mu,v computed via a depth-l QAOA using Hn-energy op-
timal parameters. While exploring level-by-level, RQAOA assigns the edge correlations
(–1 or +1) where a vertex is eliminated according to the constraint (6). We note that in the

4Here, we use the complexity-theoretic assumption of BPP� NP because depth-1 RQAOA can be simulated classically.



Patel et al. EPJ Quantum Technology            (2024) 11:6 Page 9 of 23

Figure 2 Illustration of a counterexample where the heuristic of using the energy-optimal QAOA angles in
RQAOA fails. Here, we show that for the weighted graph (9 vertices and 24 edges) depicted in (a), RQAOA
makes a mistake even in its strongest regime, so at the very first iteration (i.e., nc = 8). The two-correlation
coefficients for each edge (at energy-optimal angles) are shown in the form of a horizontal bar plot in (b),
where the edge (0, 2) has the maximal correlation coefficient. For the graph in (a), RQAOA with energy-optimal
angles assigns a wrong edge-correlation (sign) to this edge which is precisely highlighted by a bold star in (c)
and (d). Both (c) and (d) characterize the sets of good and bad QAOA angles where RQAOA makes a correct
and a wrong choice, respectively. This example is counter-intuitive: as the edge (0, 2) has the highest weight in
the graph, intuitively, the variables should be correlated (same sign) as to maximize the energy. However, this
leads to a sub-optimal solution which RQAOA achieves with energy-optimal angles. Yet, for different settings
of QAOA angles which do not maximize the overall energy, this edge will still have the largest magnitude of
correlation, but in this case, anti-correlation, which leads to the true optimum (see sub-figure (c))

case of ties between maximal two-correlation coefficients, independent runs of RQAOA
might not necessarily induce the same search tree.

This alternative perspective described above provides some insights regarding the limi-
tations of RQAOA: (i) when there are ties and branching occurs, it could be that only one
path within a set of induced search tree leads to a good approximate solution; and (ii) it
may be the case that even when there are no ties (i.e., one path and no branching), selecting
edges to contract according to the maximal correlation coefficient stemming from energy-
optimal parameters of QAOA is an incorrect choice to attain a good solution. A priori, it
is not obvious if any of the above mentioned two possibilities can occur under the choice
of energy-optimal angles. However, note that one of (i), (ii), or a combination of both must
happen; otherwise, RQAOA is an efficient polynomial-time algorithm for the Ising prob-
lem. Hence, in the case that RQAOA makes an incorrect choice, RQAOA lacks the ability
to explore the search tree to find better approximate solutions. Keeping these considera-
tions in mind, we will show later that both phenomena (i) and (ii) occur by performing an
empirical analysis of RQAOA. We now describe both the limitations mentioned above in
detail below.
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Figure 3 Number of ties per iteration of RQAOA (average over 200 runs) for (3, 8)-cage graph (30 vertices, 45
edges, edge weights ({–1,+1}). We chose nc = 8 in our simulations where RQAOA achieved a mean
approximation ratio of 0.955± 0.036 and the probability to reach the ground state was 33.5%. The y-axis
(Number of Ties) is log-scaled. The black crosses depict the mean values, with the error bar showing the 95%
confidence interval of 200 independent runs. The figure illustrates that one would invariably encounter a
constant fraction of ties between maximal two-correlations no matter whatever path is chosen in the search
tree, implying an exponential blow-up in the size of the search tree to be explored by RQAOA

(i) It may be the case that eliminating a variable by taking the argmax of the absolute
value of two-correlation coefficients is always a correct choice, but there can be
more than one choice at every iteration. Moreover, it is possible to construct
instances with a small number of optimal solutions, where for the majority of n – nc

iterations (corresponding to the level of the tree) there is at least one tie (here, m ties
corresponds to m + 1 pairs (u1, v1), . . . , (um+1, vm+1) with the same two-correlation
coefficient). In other words, the number of times RQAOA needs to traverse the
search tree in the worse case to reach the ground state (optimum) may be
exponentially large; i.e., every argmax tie break leads to a new branching of the
potential choices of RQAOA, and this happens at each level of the tree. We
showcase this phenomenon in our empirical analysis for one such family of
instances (see Fig. 3). One may imagine perturbing the edge weights to avoid ties
while preserving the ground states of the Hamiltonian, but no such perturbation is
generally known.

(ii) It may be the case that the path to reach the ground state requires the selection of a
pair (u, v) (and its correlation sign) for which the two-correlation coefficient is not
maximal according to QAOA at energy-optimal parameters (see Fig. 2). This
implies that RQAOA might be prematurely locking out on optimal solutions.

We provide examples of graphs to prove the validity of the observations above. In the
regime where there are ties between maximal correlation coefficients [(i)], we performed
200 independent RQAOA runs for the family of weighted (d, g)-cage graphs5 (3 ≤ d ≤ 7;
5 ≤ g ≤ 12; edge weights {–1, +1}) where ties are broken uniformly at random for the
n – nc iterations (levels of the tree). We work with these graphs because the subgraphs
that (depth-1) QAOA sees are regular trees (for most edges at every iteration of RQAOA,

5A (d,g)-cage graph (d ≥ 3, g≥ 5) is a d-regular graph of girth g (length of a shortest cycle contained in the graph) consisting
of the smallest number of vertices possible.
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QAOA will see a (d – 1)-ary tree, as cage graphs are d-regular graphs, which creates the
situation of ties between correlation coefficients). Here, by seeing we refer to the fact that
the output of depth-l QAOA for a qubit (vertex) only depends on the neighbourhood of
qubits that are within l distance to the given qubit [13]. For these graphs, we found that
in 86.4 ± 9.63% of the n – nc iterations, the variable to eliminate was chosen from the ties
between maximal correlation coefficients (see Fig. 3).

To investigate the scenario of [(ii)], we focus on a particular case where there are no
ties (or comparatively less ties) and find instances such that taking the maximal two-
correlation coefficient does not reach the optimum solution in the tree. For this, we per-
formed a random search over an ensemble of 10600 weighted random d-regular graphs
and found several small-size instances (#nodes ≤ 30) for which RQAOA did not attain the
optimum.

Using both the theoretical and numerical observations discussed above, we create a
dataset of graphs (containing both hard and random instances for RQAOA) for our later
analysis. In the next section, we develop our new algorithm (RL-RQAOA) and compare
its performance to RQAOA to assess the benefit of employing reinforcement learning in
the context of recursive quantum optimization specifically for hard instances. Finally, we
give the relevant details about the data set of the graph ensemble considered in Sect. 6.1.

5 Reinforcement learning enhanced RQAOA & classical brute force policy
Having introduced the background of policy gradient methods and the limitations of
RQAOA, we develop a QAOA-inspired policy which selects a branch in the search tree
(eliminate a variable) at every iteration of RL-RQAOA. Recall that, even though selecting
an edge to contract according to the maximal two-correlation coefficient is often a good
choice, it is not always an optimal one, and also often, there is no single best option, but
more (for instance, see Fig. 2). Our basic idea is to train an RL method to learn how to
select the edges to contract (along with its edge-correlation sign) correctly while using the
information generated by QAOA. Additionally, to investigate the power of the quantum
circuit within the quantum-classical arrangement of RL-RQAOA, we design a classical
analogue of RL-RQAOA called reinforcement-learning recursive ONE (RL-RONE) and
compare it with RL-RQAOA.

To overcome the limitations of RQAOA, one needs to carefully tweak (a) RQAOA’s vari-
able elimination subroutine and (b) the use of QAOA as a subroutine; i.e., instead of finding
energy-optimal parameters, we learn the parameters of QAOA. For (a), we apply the non-
linear activation function softmax �β (see Def. 1) on the absolute value of two-correlation
coefficients |Mu,v| measured on |�l(�α, �γ )〉. By doing this, the process of selecting a vari-
able to eliminate (and its sign) is represented by a smooth approximation of argmax that
is controlled by a vector of trainable inverse temperature parameters �β (one β per edge).
The parameters �β (initialized at low values) are then trained such that the probability of
selecting an edge (or a branch at every iteration) with the highest expected reward tends
to 1. In the case of (b), we train the variational angles of QAOA in the course of learning
rather than using the ones that give optimal energy. We do this because of the following
two reasons: (i) to avoid costly optimization;6 (ii) different angle choices can help the algo-
rithm sometimes to choose optimal paths in the search tree that are not possible otherwise

6We train the QAOA angles at depth-1 even though we can optimize them efficiently (see Appendix D). However, the
optimization becomes non-trivial with an increase in depth.
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(see Fig. 2). We note that the entire learning happens on one instance of the Ising prob-
lem. Even though it is conceivable to train the algorithm over an ensemble of instances by
introducing suitable generalization mechanisms such that �β are dependent on instances,
we solely focus on learning parameters of the policy of RL-RQAOA on one instance so
that it eventually performs better than RQAOA.

To provide further details on the effective Markov Decision Process (MDP) that the
above described policy will be exploring, note that the RQAOA method can be inter-
preted as a multi-step (also called a n-step) MDP environment (with a delayed reward
and a non-trainable policy), where at every iteration, a variable is eliminated based on the
information generated by QAOA. Let us now cast the learning problem of variable elim-
ination in the RL framework, inspired by recent work [25] on using quantum circuits to
design RL policies. For every step of the episode,7 our RL agent is required to choose one
action out of the discrete space equivalent to an edge set of the underlying graph; i.e., in
the worse case, selects one edge from

(n
2
)
, on which it imposes a constraint of the form (6).

Hence, the state space S consists of weighted graphs (which we could encounter during
an RQAOA run) and the action space A consists of edges (and ±1 edge-correlations to
impose on them). The actions are selected using a parameterized policy πθ (a|s) which is
based on the QAOA ansatz. Since, we use the expectation value of the Hamiltonian Hn of
the Ising problem as an objective function, the reward space isR = [0, maxx∈{0,1}n 〈x|Hn|x〉].

Next, we formally define the policy of RL-RQAOA and its learning algorithm, which is
a crucial part of RL-RQAOA.

Definition 1 (Policy of RL-RQAOA) Given a depth-l QAOA ansatz acting on n qubits,
defined by a Hamiltonian Hn (with an underlying graph Gn = (V , E)) and variational pa-
rameters {�α, �γ } ∈ [0, 2π ]2l , let Mu,v = 〈�l(�α, �γ )|ZuZv|�l(�α, �γ )〉 be the two-correlations that
it generates. We define the policy of RL-RQAOA as

πθ

(
a = (u, v)|s = Gn

)
=

exp(βu,v · |Mu,v|)
∑

(u,v)∈E exp(βu,v · |Mu,v|) (10)

where actions a correspond to edges (u, v) ∈ E(Gn), states s to graphs Gn and βu,v ∈ R

(exists for every possible edge) is an inverse temperature parameter. Here, θ = (�α, �γ , �β)
constitutes all trainable parameters, where �β ∈R

(n2–n)/2.

The reader is referred to Alg. 2 for the pseudo-code of RL-RQAOA (for one episode),
where the addition of RL components are highlighted in the shade of green. Furthermore,
we note that RL-RQAOA is a generalized version of RQAOA because the former is exactly
equivalent to the latter when the energy-optimal parameters {�α, �γ } are specified by QAOA
on Hn, and for all (u, v) ∈ E, βu,v ∈ �β , where βu,v = ∞.

Since the vector �β is edge specific and as we learn βu,v ∈ �β for {u, v} ∈ E separately for
every instance, we develop a fully classical RL algorithm, namely RL-RONE, to simply
learn βu,v for all edges directly in spite of where the two-correlation coefficients Mu,v are
generated from. It is natural to consider this because it might be the case that in the hy-
brid quantum-classical arrangement of RL-RQAOA, the classical part (learning of βu,v for
{u, v} ∈ E) is more powerful than the quantum part (computing two-correlations Mu,v for

7Here, one episode corresponds to one complete run of (RL)-RQAOA.
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Algorithm 2: RL-RQAOA (Gn = (V , E), Jn, nc) for one episode

{u, v} ∈ E from the QAOA ansatz at given variational angles {�α, �γ }). Hence, in order to
assess the contribution of the quantum circuit in RL-RQAOA, we define the policy of RL-
RONE such that for each edge, we fix the two-correlation Mu,v = 1; i.e., we do not use any
output from the quantum circuit. Although simply using Mu,v = 1 in Def. 1, the policy will
select an edge and always assign it to be correlated, rendering it to be less expressive. A so-
lution to this problem is to simultaneously learn the parameters β+1

u,v (correlated edge) and
β–1

u,v (anti-correlated edge) for each edge. Then the resulting RL-RONE algorithm is expres-
sive enough to reach the optimum solution. Moreover, it has trainable inverse temperature
parameters �β where | �β| = n2 – n for n the number of nodes of the graph Gn. The notion
of an action slightly differs from the RL-RQAOA policy as the action here corresponds to
selecting an edge along with its sign (+1 and –1 for correlated and anti-correlated edges,
respectively), while in RL-RQAOA, the two-correlation coefficient implicitly selects this
sign. We formally define the policy of RL-RONE below.

Definition 2 (Policy of RL-RONE) Given a Hamiltonian Hn (with an underlying graph
Gn = (V , E)), we define the policy of RL-RONE as

πθ

(
a =

(
(u, v), b

)|s = Gn
)

=
exp(βb

u,v)
∑

b∈{±1}
∑

(u,v)∈E exp(βb
u,v)

, (11)

where actions a correspond to edges (u, v) ∈ E(Gn) along with an edge correlation b ∈
{±1}, states s correspond to graphs Gn and β±1

u,v ∈ R (exists for every edge) are inverse
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temperature parameters. Here, θ = ( �β+1, �β–1) constitutes all trainable parameters, where
�β±1 ∈ R

(n2–n)/2.

The classical analogue RL-RONE can then be simulated by performing the following
modifications to Alg. 2: (i) modify the parameters θ of the policy of RL-RONE by θ =
( �β+1, �β–1), (ii) delete Lines4 and 5, (iii) update Line 6 by incorporating the policy of RL-
RONE and the constraint (6) in Line 7 is imposed by feeding the correlation sign of the
edge from the output (b ∈ {±1}) of the policy of RL-RONE.

We train both the policies of RL-RQAOA and RL-RONE using the Monte Carlo policy
gradient algorithm REINFORCE, as explained in Appendix B. Also, refer to Alg. 1 for the
pseudo-code. The horizon (length) of an episode is n – nc. The value function is defined
as Vπθ

(Hn) = Eπθ
[γ n–nc · 〈x|Hn|x〉], where γ ∈ [0, 1], Hn is the Hamiltonian defined on n

variables for a problem instance and x is a binary bitstring as defined in Line 14 of Alg. 2.
In this work, we only focus on simulations of depth-1 RQAOA and RL-RQAOA. In-

deed, the particular case of depth-1 quantum circuits and Ising Hamiltonian RQAOA can
be simulated efficiently classically; see Sect. 2.2 and Appendix A. However, classical simu-
latibility is not known for Ising cost functions at depth larger than 2 [17], and more general
cost Hamiltonians even at depth-1 (e.g., Max-k-XOR on arbitrary hypergraphs), leaving
room for both quantum and RL-enhanced quantum advantage.

6 Numerical advantage of RL-RQAOA over RQAOA and RL-RONE
In the previous section, we have introduced both our quantum (inspired) policy of RL-
RQAOA and an entirely classical policy of RL-RONE, and their design choices, and based
on these; we propose an RL-enhanced RQAOA and its classical analogue RL-RONE. Al-
though we gave justifications for these choices, it is natural to evaluate their influence
on the performance of RL-RQAOA and RL-RONE. In this section, we first describe how
we found hard instances for RQAOA and discuss their properties. We then describe the
results of our numerical simulations, where we consider both hard instances and ran-
dom instances to benchmark the performance of (depth-1) RQAOA, RL-RQAOA, and
RL-RONE. The reader is referred to Appendix C for implementation details for the above
algorithms.

6.1 Hard instances for RQAOA
Here, our focus is on finding small-size hard instances (with approximation ratio as a
metric) for the Ising problem where RQAOA fails. Note that, we assume it must fail to
solve exactly as if it does not, then NP ⊆ BQP as the Ising problem is NP-hard in gen-
eral. As we lack techniques to analyze the performance guarantees of RQAOA at arbi-
trary depth l apart from special cases like “ring of disagrees” at depth-1 [11], it is a non-
trivial task to find hard instances for RQAOA. In this spirit, we generate an ensemble
G[n, d, w] of weighted random d-regular instances with n vertices and edge weight dis-
tribution w : E → R. We then perform a random search over G[n, d, w] to find hard in-
stances. Concretely, we construct a graph ensemble G[n, d, w] as follows: for each tuple of
parameters (n, d, w) ∈ {14, 15, . . . , 30}×{3, 4, . . . , 29}×{Gaussian, bimodal}, we generate 25
graphs whenever possible8 yielding 10600 graphs in total, where Gaussian (N (0, 1)) and

8For generating d-regular graphs with n vertices, 1≤ d ≤ n – 1 and further if d is odd, n must be even.
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bimodal ({±1}) are edge weight distributions. Intuitively, the instances with bimodal edge
weights would have a huge level of degeneracy within the ground states, which is con-
firmed by our simulations. Moreover, for the instances with bimodal edge weights, where
ties between two-correlation coefficients were encountered, the final approximation ratio
was computed based on the best energy attained by running RQAOA for a maximum of
1400 independent runs. On the other hand, for the instances with Gaussian edge weights
N (0, 1), we found that all instances had unique ground states. Hence, we ran RQAOA only
once to get the best approximation ratio for instances with Gaussian edge weights.

We filter out 1027 (857 with bimodal weights and 170 with Gaussian weights) instances
for which RQAOA’s approximation ratio is less than 0.95. Note that RQAOA can only
be closer to optimal the larger nc is. In other words, it monotonically improves the qual-
ity of the solution with an increase in nc. Since we want to improve upon RQAOA in its
strongest regime, we choose nc = 8 (unless specified otherwise) for our numerical simu-
lations. However, interestingly for the 1027 hard instances found above, even with nc = 4,
we only found 26 instances (5 with bimodal weights and 21 with Gaussian weights) for
which the approximation ratio decreased (for the rest, the approximation ratio remained
the same). We chose nc = 4 for the previously mentioned experiment because, for some
instances, the edge weights cancelled out after an edge contraction subroutine, and as a
consequence, the intermediate graph ended up being an empty graph (a graph with zero
edge weights) for 1 ≤ nc < 4.

6.2 Benchmarking
6.2.1 RL-RQAOA vs RQAOA on cage graphs
In our first set of experiments, illustrated in Fig. 4, we compare the performance of
RL-RQAOA with RQAOA on random Ising instances derived from (d, g)-cage graphs
(3 ≤ d ≤ 7; 5 ≤ g ≤ 12; edge weights {–1, +1}). The aim of this experiment is twofold: first,
to show that RL-RQAOA does not perform much worse than RQAOA on instances where
the latter performs quite well; second, to test the advantage of RL-RQAOA over RQAOA
in terms of the probability of attaining the optimal solution when there are many ties be-
tween two-correlation coefficients Mu,v at every iteration. Notably, we already demon-
strated earlier (see Fig. 3) that for cage graphs, RQAOA has a constant number of ties
between maximal two-correlation coefficients for the majority of the n – nc iterations. For
assessing our hypotheses, we evaluate the average learning performance over 15 indepen-
dent RL-RQAOA runs over 1400 episodes. In order to fairly compare RL-RQAOA with
RQAOA, we run RQAOA independently for 1400 runs and choose the best solution from
the result these runs. Note that, this is a more powerful heuristic than the vanilla-RQAOA
(which outputs the first solution it finds) where the hyperparameter (the number of inde-
pendent runs) controls the solution quality. Both RL-RQAOA (vote variant) and RQAOA
fail to reach the optimum for (3, 12)-cage graph within the given budget (see Fig. 4). How-
ever, by evaluating the resulting learning curves of RL-RQAOA, both our hypotheses can
be confirmed for majority of the instances.

6.2.2 RQAOA vs RL-RQAOA on hard instances
For the next set of experiments, presented in Fig. 5, the flavour here is similar to the pre-
vious experiment but with the aim to show separation between RL-RQAOA and RQAOA
for hard instances found in Sect. 6.1. More specifically, we show that RL-RQAOA always
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Figure 4 Comparison of success probability in attaining ground state solutions of RL-RQAOA and RQAOA on
cage graphs. The x-axis depicts the properties of cage graph(s), for instance, d3-g6 denotes that the instance
is 3-regular with girth (length of the shortest cycle) being 6. The error-bars appear only for few instances
(specifically for d3-g9, d3-g10 and d5-g5) because of the existence of multiple graph instances with the same
properties (degree and girth). The evaluation of RL-RQAOA was done by evaluating the average learning
performance over 15 independent runs. While, for RQAOA, the best energy is taken when given a fixed
budget of 1400 runs. The probability for RL-RQAOA-max is computed by taking the maximum energy
attained by the agent over all 15 independent runs for a particular episode. One the other hand, the
probability for RL-RQAOA-vote (statistically more significant) is computed by aggregating the maximum
energy attained for a particular episode only if more than 50% of the runs agree. We chose nc = 8 for instances
with nodes ≤ 50 and nc = 10 otherwise. The parameters θ = (α,γ , �β ) of the RL-RQAOA policy were initialized

by setting �β = {25}(n2–n)/2 and the angles {α,γ } (at every iteration) to energy-optimal angles (i.e., by
following one run of RQAOA). All agents were trained using REINFORCE (Alg. 1)

Figure 5 Numerical evidence of the advantage of RL-RQAOA over RQAOA in terms of approximation ratio on
hard instances. The box plot is generated by taking the mean of the best approximation ratio over 15
independent runs of 1400 episodes for RL-RQAOA. The RL-RQAOA clearly outperforms RQAOA in terms of
approximation ratio for the instances considered (these are exactly the instances where RQAOA’s approx. ratio
≤ 0.95). We chose nc = 8 in our simulations and the parameters θ = (α,γ , �β ) of the RL-RQAOA policy were

initialized by setting �β = {25}(n2–n)/2 and the angles {α,γ } (at every iteration) were initialized randomly. All
agents were trained using REINFORCE (Alg. 1)
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Figure 6 Numerical evidence of relevance of the quantum circuit in RL-RQAOA and separation between
RL-RQAOA and RL-RONE. The above plot illustrates the separation between learning curves of RL-RQAOA and
RL-RONE agents averaged across 15 bimodal weighted random 3-regular graphs with 100 (left) and 200
(right) nodes each. We chose nc = 10 and nc = 18 for 100 and 200 nodes, respectively in our simulations and

the parameters θ = (α,γ , �β ) of the RL-RQAOA policy were initialized by setting �β = {25}(n2–n)/2 and the angles
{α,γ } (at every iteration) to energy-optimal angles (i.e., by following one run of RQAOA). All agents were
trained using REINFORCE (Alg. 1)

performs better than RQAOA on these instances in terms of the best approximation ra-
tio achieved. We do this by evaluating average learning performance over 15 independent
RL-RQAOA runs to assess this claim. Interestingly, RL-RQAOA outperformed RQAOA
even when the angles of the QAOA circuit were initialized randomly.

6.2.3 RL-RQAOA vs RL-RONE
However, the results in the previous two subsections do not indicate the importance of
the quantum part in the quantum-classical arrangement. To address this, we performed
a third set of experiments, presented in Fig. 6 where both algorithms were tested on ran-
dom 3-regular graphs of 100 and 200 nodes. By comparing the performance of RL-RONE
with RL-RQAOA, we can see a clear separation between learning curves of the agents of
these algorithms, highlighting the effectiveness of the quantum circuits in solving the Ising
problem.

7 Discussion
In this work, we analyzed the bottlenecks of a non-local variant of QAOA, namely re-
cursive QAOA (RQAOA), and based on this, propose a novel algorithm that uses rein-
forcement learning (RL) to enhance the performance of the RQAOA (RL-RQAOA). In
the process of analyzing the bottlenecks of RQAOA for the Ising problem, we find small-
size hard Ising instances from a graph ensemble of random weighted d-regular graphs. To
avoid missing out on better optimal solutions at every iteration, we cast the variable elimi-
nation problem within the RQAOA as a reinforcement learning framework; we introduce
a quantum (inspired) policy of RL-RQAOA, which controls the task of switching between
exploitative or exploratory behaviour of RL-RQAOA. We demonstrate via numerical sim-
ulations that formulating RQAOA into the RL framework boosts the performance and
performs as well as RQAOA on random instances and beats RQAOA on all hard instances
we have identified. Finally, we note that all the numerical simulations for RQAOA (depth-
1) and the proposed hybrid algorithm RL-RQAOA (depth-1) were performed classically,
and no quantum advantage is to be expected unless we simulate both of them at higher
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depths. An interesting follow-up to this work would be to assess the performance of both
RQAOA and RL-RQAOA at higher depths on an actual quantum processing unit (QPU)
in both noise and noise-free regimes.

Appendix A: Theorem on classical simulability of Ising problem for depth-1
QAOA

Theorem 1 ( [11, 33]) Given an Ising cost Hamiltonian Hn =
∑

u∈V huZu +
∑

(u,v)∈E JuvZuZv.
Define s(x) := sin(x) and c(x) := cos(x). Then for a fixed pair of qubits 1 ≤ u ≤ v ≤ n,

〈Zu〉1 = s(2α)s(2hu)
∏

k �=u

c(2Juk), (12)

〈ZuZv〉1 = HA + HB, (13)

where,

HA =
(
s(4α)/2

)
s(2Juv)

[

c(2hu)
∏

k �=u,v

c(2Juk)

+ c(2hv)
∏

k �=u,v

c(2Jvk)
]

and

HB =
(
s2(2α)/2

)
[

c
(
2(hu + hv)

) ∏

k �=u,v

c
(
2(Juk + Jvk)

)

– c
(
2(hu – hv)

) ∏

k �=u,v

c
(
2(Juk – Jvk)

)
]

.

Here, w.l.o.g we assume that the underlying graph is a complete graph Kn and γ = 1 since
it can be absorbed into the definition of adjacency matrix A9 of the graph.

Appendix B: Policy gradient method
This appendix provides a more detailed description of the policy gradient method used to
find an optimal policy that simultaneously optimizes variational parameters QAOA and
selects a decision variable to eliminate within the RL-RQAOA.

The crux of policy gradient methods lies in (i) a parameterized policy πθ , which drives
an agent’s action in an environment, and (ii) value function Vπθ

that evaluates long-term
performance associated with a policy πθ . Policy gradient methods employ a simple op-
timization approach; i.e., they start with an initial policy πθ and update the parameters
of the policy iteratively by using a gradient ascent algorithm such that the value function
Vπθ

(s0) associated with it is maximized. This approach can be efficiently applied if one can
either evaluate the value function of the policy or at least its gradient ∇θ Vπθ

. In the case
of policy gradient methods, the gradient of the value function ∇θ Vπθ

can be evaluated

9Note that, due to external fields hu , the adjacent matrix A will typically also have non-zero elements along its diagonal.
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analytically using Monte Carlo rollouts within an environment. We formally state this in
Theorem 2.

Policy gradient Theorem In practice, the value function can be estimated via a Monte
Carlo approach: (i) collect N samples of episodes τ of interactions governed by policy
πθ within an environment; (ii) compute expected return R(τ ) of each episode as in (9);
and (iii) average out the results. Then the Monte Carlo estimate of value function can be
written as

Ṽπθ
(s) =

1
N

N∑

i=1

H–1∑

t=0

γ tri,t . (14)

Theorem 2 (Policy Gradient Theorem [34]) Given an environment defined by its dynamics
PE and a parameterized policy πθ , the gradient of the value function as defined in (9), w.r.t.
θ , is given by

∇θ Vπθ
(s0) = Eπθ ,PE

[H–1∑

t=0

∇θ logπθ (at|st)Vπθ
(st)

]

= Eπθ ,PE

[H–1∑

t=0

∇θπθ (at|st)
πθ (at|st)

Vπθ
(st)

]

.

(15)

This theorem enables the estimation of the gradient of the value function analytically,
whose evaluation in the context of sample complexity scales only logarithmic in the pa-
rameters θ of the policy [35].

Moreover, one can estimate the value function terms Vπθ
(st) in (15) by collecting rewards

from the Monte Carlo rollouts (as defined in (14)). This learning algorithm is called the
Monte Carlo Policy Gradient algorithm, otherwise known as REINFORCE [19, 36]. In the
literature, there exist other sophisticated approaches, such as the actor-critic method [37],
where the value function is estimated using an additional approximator such as a deep
neural network (DNN).

Appendix C: Implementation details of algorithms
This appendix provides specifications for simulating RQAOA, RL-RQAOA, RL-RONE,
and Gurobi optimizer.

RQAOA The authors in [38] prove that finding optimal parameters in QAOA is an NP-
hard problem even with logarithmically many qubits at depth 1. We also often found that
the landscape had many extrema and saddle points detrimental to gradient-based meth-
ods in QAOA and RQAOA. Hence, we use a brute force search to optimize the variational
parameters to alleviate this problem. To perform the brute force search for depth-1 QAOA
efficiently, we show in Appendix D that for any fixed value γ ∈R, one can compute α ∈R

maximizing the energy over (α,γ ) by solving a system of equations as defined in (21).
We thus chose 2000 equidistant grid points10 γ1, . . . ,γ2000 in the interval [0, 2π ] for γ . Af-
ter finding the grid point γk that maximizes the energy, we performed another refined

10This means that we have a precision of 10–3 . One could in principle aim for higher precision by making a finer grid, but
our observations from numerical simulations showed that grid size N = 2000 was sufficient.
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local optimization with an off-the-shelf optimizer COBYLA in the interval [γk–1,γk+1].
Finally, we note that the optimal angles of QAOA for random graphs in G[n, d, w] concen-
trate, which is in line with several theoretical as well as empirical results in the literature
[14, 39–43]. Throughout, we choose nc = 8 otherwise specified explicitly.

RL-RQAOA Here, we discuss some design choices for RL-RQAOA as it is not entirely
clear which one of them has a positive influence on the learning performance of the policy
of RL-RQAOA. Firstly, there can be three choices to define �β that all recover the RQAOA
policy for large �β :

(i) (β – all) �β = {β}(n–nc), i.e., only one parameter among all edges for every iteration of
RL-RQAOA;

(ii) (β – one – all) �β = {βu,v}(n2–n)/2, ∀(u, v) ∈ E, i.e., for each edge the RL agent learns
the value of βu,v accounting to a total of

(n
2
)
β ’s; and

(iii) (β – all – all) �β = {βu,v}(n–nc)(n2–n)/2, i.e., similar to (ii) but for every iteration of
RL-RQAOA, the βu,v are learnt separately.

Secondly, one can initialize the variational angles {α,γ } randomly, with extremum
points or with optimal QAOA angles at every iteration, and then train an agent to
learn the angles. However, in our simulations, we always warm start the RL agent with
optimal QAOA angles to better capture the power of the quantum circuits. We call
this model a WS – RL – RQAOAα,γ ,β where the subscript highlights the parameters for
which an agent is trained. Following the above nomenclature, WS – RL – RQAOAα,γ ,β and
WS – RL – RQAOAβ are different models of RL-RQAOA where both of them have been
warm started using QAOA angles but only differ in their learning procedures; i.e., an agent
for the former trains for optimizing both the variational angles and �β , and the latter only
optimizes �β with fixed optimal QAOA angles.

Empirically, we found that an agent with the configuration of WS – RL – RQAOAα,γ ,β

with β – one – all configuration is enough to beat RQAOA (in fact, often solve optimally)
within 1400 episodes (pre-defined) at least for all the graphs with less than 30 vertices.
Hence, we use the choice of �β as (β – one – all) in the rest of the manuscript unless spec-
ified explicitly.

Finally, we mention the hyper-parameters with which we performed our simulations.
We train an agent to choose both the set of variational angles and inverse-temperature
constants using the policy gradient method. We set the discounted factor γ = 0.99,
(β – one – all) �β = {25}(n2–n)/2 and use ADAM [44] as an optimizer with learning rates
{lrangles, lrbetas = 0.001, 0.5}. During our hyper-parameter sweep, we noticed that higher
values of trainable parameters �β hampered the learning performance of the RL agents,
and this is likely due to their inability to explore the environment. This suggests that for
�β → ∞, RL-RQAOA mimics the behaviour of RQAOA. In other words, RL-RQAOA is
indeed a generalized variant of RQAOA.

RL-RONE We simulated RL-RONE with the same set of hyperparameters and configu-
ration as in RL-RQAOA. The only difference is that there are no angles to be learned as
the two correlations Mu,v = 1 for all {u, v} ∈ E by design.

EXACT The exact solutions were computed using the state-of-the-art commercial
solver Gurobi 9.0 with variable MIPGap = 0 because otherwise the optimization would
end prematurely and return a sub-optimal solution.
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Appendix D: Variational optimization of depth-1 QAOA
Given a graph Gn = (V , E) with |V | = n vertices,

Hb =
∑

u∈V

Xu and Hn =
∑

(u,v)∈E

Ju,vZuZv. (16)

Now, we want to compute maximum expected energy 〈Hn〉1 := 〈�1(α,γ )|Hn|�1(α,γ )〉 at
optimum values of (α,γ ).

Consider an edge (u, v) ∈ E. We only focus on the contribution of mixer Hamiltonian
Hb, that is, using Pauli operator commutation rules, we expand the inner conjugation
U†

m(α)ZuZvUm(α) = exp(2iα(Xu + Xv))ZuZv. Then using X2 = I this becomes,

[
cos(2α)Zu + sin(2α)Yu

][
cos(2α)Zv + sin(2α)Yv

]

= cos2(2α)ZuZv + cos(2α) sin(2α)[ZuYv + YuZv]

+ sin2(2α)YuYv

=
1 + cos(4α)

2
ZuZv +

sin(4α)
2

[ZuYv + YuZv]

+
1 – cos(4α)

2
YuYv. (17)

By linearity of expectation, we can write the expectation as,

〈Hn〉1 = p cos(4α) + q sin(4α) + r, (18)

where p, q, r are real coefficients which are unknown complicated functions of γ . We can
compute these aforementioned coefficients from the following system of equations.

〈Hn〉1,α= π
8 ,γ =γ = q + r,

〈Hn〉1,α= –π
8 ,γ =γ = –q + r,

〈Hn〉1,α=0,γ =γ = p + r.

(19)

After the values of p, q, r are known, we can then compute 〈Hn〉1 over all α by employing
elementary trigonometry,

max
α

〈Hn〉1 = r +
√

p2 + q2, (20)

where optimal α can be computed by solving

tan(4α) = q/p,

p cos(4α) ≥ 0,

q sin(4α) ≥ 0.

(21)
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