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Abstract
Grover quantum algorithm is an unstructured search algorithm that can run on a
quantum computer with the complexity of O

√
N, and is one of the typical algorithms

of quantum computing. Recently, it has served as a routine for pattern-matching
tasks. However, the original Grover search algorithm is probabilistic, which is not
negligible for problems involving determinism. Besides that, efficient data loading is
also a key challenge for the practical applications of the Grover algorithm. Here in this
work, we propose a modified pattern-matching scheme with Long’s quantum search
algorithm, in which the quantum circuit structure search algorithm requires fewer
multi-qubit quantum gates, and can obtain the desired results deterministically. Then,
the comparison of the performance of our scheme and the previous algorithms is
presented through numerical simulations, indicating our algorithm is feasible with
current quantum technologies which is friendly to noisy intermediate-scale quantum
(NISQ) devices.

Keywords: Quantum computation; Parametric quantum circuit; Image pattern
matching

1 Introduction
Pattern matching [1, 2] is one of the most fundamental and important tasks in computer
science, involving the search for the desired data (schema) in a database or dataset (text).
The task models a variety of complex problems in fields ranging from text processing
to image processing. There have been several qualified classical algorithms for solving
pattern-matching problems [3, 4], however, the query complexity of the traditional ap-
proaches exhibits a linear relationship with the size N of the database. This limitation
hinders their ability to effectively handle the challenges posed by the growing scale of data.

Over the past decades, there has been a significant surge in interest in quantum compu-
tation, both within academic research and the industry [5–12]. Meanwhile, several recent
contributions have explored the potential of leveraging quantum computing and algo-
rithms [13–15] to enhance classical algorithms and machine learning [16–21]. Notably,
the Grover search algorithm (GSA) is designed for searching an unsorted database with
N entries in O(

√
N) time, which is famous for being polynomial faster than the classi-

cal linear search. GSA is designed to identify the data that resembles the desired one in
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the database, which essentially belongs to the category of pattern-matching problems. Re-
cently, for example, much effort has been put into the development of a quantum version
of the pattern-matching scheme based on GSA [22–27]. But these methods are not prac-
tically feasible and major breakthrough is still required to be accomplished. To name a
few, Ref. [25] involves a quantum random access memory [28], which is hard to realize.
The query complexity of the algorithm [23] in the case of 2-dimensional data and the
schemes [27] are both linearly depending on the database size. Ref. [26] proposed two
oracle construction methods for quantum pattern matching, method 1 will be discussed
in the next paragraph, and the construction in method 2 requires prior knowledge of the
answer, which is challenging. In Ref. [29], it is highlighted that the primary obstacles of
directly applying GSA are the high computational resources consumed during the prepa-
ration of quantum states and the construction of the oracle with knowing the answer.
Subsequently, the authors devise a novel approach to overcome these challenges with the
constant-depth parameterized quantum circuit (PQC) [30] and inversion-test techniques.

However, there are still several open questions in this field. Firstly, the performance of
PQC with a specific ansatz will be greatly influenced by the number of quantum gates.
Therefore, it is not enough to select the ansatz type only for the special task, it is necessary
to formulate a customized architecture involving fewer quantum gates for the specific
work. Secondly, the original GSA is not deterministic. Specifically, with each operation of
the G operator (the oracle and diffusion operator Gd), the state vector undergoes rotation
by the angle β (here it is defined as sinβ = 1√

datasize
). So the optimal number of the iterations

is the nearest integer as kop = [(π/2 – β)/(2β)], indicating that the maximum probability
of obtaining the target state is approximately 1, rather than an exact 1. Almost all the
quantum pattern matching schemes based on GSA will face this situation [22, 24, 26].
This error will be non-negligible for problems concerned with certainty or with a relatively
small scale. Therefore, it is very important to design a scheme that can accomplish the task
with certainty while reducing the consumption of computing resources.

Here in this work, we present an algorithm that could find the marked states or the pat-
terns in the database that have a higher success probability of success, with relatively fewer
computation resources required in quantum circuits. The proposed algorithm is designed
based on the quantum circuit architecture search algorithm (QASA) [31] and the Long’s
algorithm [32]. The QASA is an algorithm that can effectively and automatically generate
a near-optimal quantum circuit structure for PQC executing certain tasks, with no addi-
tional auxiliary quantum computation resource needed. As for the latter, Long’s algorithm
is a phase-match quantum search algorithm, which achieves the target state search with
certainty or zero theoretical failure rate by substituting a smaller phase rotation (related
to database size N ) for the phase inversions. Therefore, in this study, we first employ the
QASA to acquire a more efficient, consuming fewer quantum gates, quantum circuit con-
figuration for quantum encoding of classical data, then we enhance the maximum success
probability of pattern matching task with the help of Long’s algorithm, effectively reducing
the number of algorithm repetitions required to obtain measurement results and further
reducing the consumption of quantum computing resources. And the query complexity
of our scheme is O(

√
N). It’s worth noting that in our algorithm the oracle construction

does not require prior knowledge of the answer, and the detailed discussion is in Sect. 2. A
schematic diagram of our algorithm is shown in Fig. 1. Meanwhile, we present a toy exam-
ple of image pattern matching and compare the performances of our scheme and the re-
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Figure 1 The schematic diagram of our scheme. Exploiting the operations U1 and U†
2 , the database and

target data T are encoded into |DB′〉 and |T ′〉, respectively. Then, the oracle marks the state that overlaps with
|T ′〉 by the multi-controlled-phase gate MCP and the NOT gate X . As for the diffusion operator, it rotates the
phase of |0〉⊗(nD+nX ) . Notably, the phase rotations in the oracle and the diffusion operator are equal to satisfy
the phase matching condition [33]. The oracle and diffusion operator together is referred to as G operator,
which efficiently amplifies the amplitudes of the state similar to |T ′〉. After applying G operator J times, the
index i∗ is acquired with high probability through measurement

lated scheme in [29] or based on the original GSA. The numerical simulation results show
that our scheme can achieve a successful probability of 95% while the other two schemes
can only achieve the probabilities of 46.2% and 71%, respectively, with a O(poly(n)) depth
of quantum circuits and O(n) multi-qubit gates in the circuit, which verifies the effective-
ness of our proposal. Additionally, since our algorithm has the capability to output states
similar to target state in different degrees with different probabilities, as detailed in Sect. 3,
we can complete the pattern matching with different precision by setting certain similar-
ity thresholds. This means that our algorithm can handle tasks involving exact pattern
matching as well as tasks involving approximate matching so that it has an exceptionally
wide range of applications.

2 The pattern matching scheme with improved quantum search algorithm
Consider a database DB containing N pieces of classical data Di (i = 0, . . . , N – 1) with the
length m, and another classical data T of length m. The aim of the task is to evaluate the
similarity between the data Di and T , so that the index i∗ of the most similar data Di∗ could
be obtained. Also, it is worth noting that these vectors are normalized by default below.

As we try to facilitate the computation based on the laws of quantum physics, so it’s
essential to encode the equivalent of m-dimensional classical data on the quantum hard-
ware. The aforementioned database can be encoded as the following superposition state:

|DB〉 = U1|0〉⊗(nD+nX)

=
1√
N

N–1∑

i=0

(m–1∑

j=0

Dij|j〉D

)
|i〉X , (1)

and the target data T could be expressed as:

|T〉 = U2|0〉⊗nD
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=
m–1∑

j=0

Tj|j〉D (2)

in which U1 and U2 are the unitary operators for state preparation in Eq. (1) and Eq. (2), re-
spectively. And nD and nX are encoding qubits severally for the data and the index. |j〉D and
|i〉X denote the orthogonal basis in the corresponding Hilbert space, Dij and Tj represent
the jth element of the normalized Di and T , respectively.

Generally, the construction of the oracle is a challenging task for various GSA schemes.
Here we employ the inversion-test technique in [29] by substituting the query of computa-
tional basis |0〉⊗nD for that of |T〉, which paves the way for the explicit creation of searching
engine operator. Therefore, the database state could be rewritten as:

|DB′〉 =
(
U†

2 ⊗ IS
)
U1︸ ︷︷ ︸

U

|0〉⊗(nD+nX )

= U|0〉⊗(nD+nX ) (3)

and the target state could be described as:

|T ′〉 = |0〉⊗nD (4)

It shows that the original task is equal to evaluate the similarity between |DB′〉 and |T ′〉,
then the index of the most similar state could be obtained. The oracle operation can be
constructed as shown in Fig. 1.

Another key ingredient of the scheme is the construction of the encoding operator U
which usually requires an exponential increase of the elementary gates with respect to
the scale of qubits. This may somehow hamper the advantage brought by the quantum
resources. To efficiently construct the operator that shows true quantum advantage over
their classical counterparts, we choose the method called approximate amplitude encod-
ing (AAE) [30] as an exploration to achieve this goal.

It provides a trained shallow PQC achieving an approximate data-loading process for
the problems requiring only approximate calculations. Generally, PQC consists of a se-
quence of fixed gates and tunable gate parameters [34] which can be represented by the
unitary operator U(θ ). Specifically, θ is chosen as the set of regulable parameters of the
quantum gates, which will be updated by the classical optimizer in order to output speci-
fied results. Notably, the configuration of gates plays a crucial role in the performance and
feasibility of the PQC. On the other hand, the hardware efficient ansatz [35] is often used
in quantum circuit design due to its advantages of implementability and high expressibil-
ity. Usually as shown in Fig. 2, the hardware efficient ansatz consists of multiple layers of
parameterized single qubit gates and multi-qubit gates which entangle the related qubits,
suitable for specific problems, for example, pattern-matching, which provides an efficient
way for constructing the encoding operator with more economical quantum resources.

In the first step, we efficiently reduce the amounts of quantum gates required by a quan-
tum pattern-matching algorithm based on QASA. Here QASA is a variational quantum
learning algorithm (VQA) [36, 37] that can be used automatically to design a near-optimal
ansatz U(A�, θ�) for a given task with the input x by minimizing the loss function through
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Figure 2 The universal circuit structure of HEA, which is composed of three qubits with three layers. For
simplicity, the parameter θ of the operation R(θ ) is omitted here and after. q2, q1 and q0 correspond to the
qubits from top to down

gradient descent method with the help of classical optimizer. The detailed process can be
described as follows:

(
A�, θ�

)
= arg min

A∈S,θ∈P
Loss(A, θ , x, εA) (5)

in which εA denotes the quantum noise, and P is the parameter space. Meanwhile, the
QASA can be divided into four main steps:

a. Construction of the ansatz pool S and parameterization of the ansatz in S via the
specified weight sharing strategy. Given a circuit of width W and depth D involving
K kinds of quantum gates, the corresponding ansatz pool with size O(KWD) contains
all possible circuit structures. The size of parameters to be optimized in P scales with
W and D, may be beyond the capacities of classical optimizers with relatively larger
W and D. Then, the weight sharing strategy [38] that refers to correlating parameters
among different groups of ansatzs is utilized in QASA so that the size of P could be
efficiently reduced.

b. Optimizing the trainable parameters for the sampled ansatzs. With the consideration
of the hardness of the VQA training [39], only part (fewer than O(poly(KWD))) of the
ansatzs are sampled for optimization. Additionally, to relieve the competition among
different ansatz in S, the parameters with size Og are exploited to initialize distinct
groups of circuit architectures. Concretely, at the zth step iteration, the algorithm
firstly uniformly samples an ansatz Az from S. Then, it chooses a group of
initialization parameters ps from P for Az according to the corresponding loss value.
Finally, the algorithm updates the trainable parameters with the loss function as the
pointer. We can conclude that the total number of iterations is Z.

c. Ranking all the candidates’ ansatz. In the above process, QASA evaluates the
similarities between the ansatz output and the target distribution, providing a
ranking result. Then, the ansatz with the best performance is denoted as the A�.
Notably, the ansatz mentioned here is sampled uniformly from S, and the number of
samples taken, V , is a hyperparameter.

d. Retraining the searched near-optimal ansatz with fewer iterations.
Here we set the input data by using the vector T or DB, and the maximum mean discrep-

ancy (MMD) [40, 41] is used as the loss function. The input data is encoded onto quantum
states through AAE, which guarantees not only the absolute value but also the sign of the
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Figure 3 The binary images used in the simulation. We assign the value 1(0) to the white (black) pixel, which
can be encoded by state (|1〉)|0〉. Additionally, the position of each pixel (x, y) also can be represented by basis
encoding such as (0, 0) → |00〉. Lastly, the images in the database are numbered as 0, 1, . . . , 7 from the first
row and from left to right

classical data will be correctly loaded by conditions:

∣∣〈j
∣∣U(θ )

∣∣0
〉⊗nD

∣∣2 = T2
j (∀i),

∣∣〈j
∣∣H⊗nD U(θ )

∣∣0
〉⊗nD

∣∣2 =

(m–1∑

k=0

Tk
〈
j
∣∣H⊗nD

∣∣k
〉
)2

=
(
TH

j
)2 (∀i) (6)

for T and similar one for DB. Here H refers to the Hadamard gate. Thus, the near-optimal
ansatz and the corresponding parameters for encoding operator U could be acquired by:

(
A�

U1 , θ�
U1

)

= arg min
AU1 ∈SU1 ,θU1 ∈PU1

(MMD(AU1 , θU1 , DB, dout) + MMD(AU1 , θU1 , DBH , dH
out))

2
,

(
A�

U2 , θ�
U2

)

= arg min
AU2 ∈SU2 ,θU2 ∈PU2

(MMD(AU2 , θU2 , T , tout) + MMD(AU2 , θU2 , TH , tH
out))

2

(7)

in which, dout and tout are the real output of their corresponding ansatz respectively. And
the MMD is defined as:

MMD(a, b) =

∣∣∣∣∣

N–1∑

j=0

a(j)φ(j) –
N–1∑

j=0

b(j)φ(j)

∣∣∣∣∣

2

, (8)

in which φ(j) represents the mapping function, and the kernel φ(j)φ(k) should be charac-
teristic [42, 43] which ensures the two distributions are equivalent when MMD(a, b) = 0.
In the following, we will present more related details by using a toy example.

After loading the classical data onto the quantum state by U , the amplitude of the state
that has overlapped with |T ′〉 needs to be amplified, otherwise, the probability of obtaining
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the index i∗ will tend to be 0 as the size of the database increases. One competitive method
is to choose the GSA, which rotates the state vector by angle β via the two-phase inver-
sion operations. However, the process will not always finally achieve an alignment of the
state vector with the target state. In 2001, Long et al. [32] put forward the phase-matching
method in the search algorithm that makes the misalignment theoretically eliminated, and
the detailed phase-matching conditions could be expressed as:

ψ = 2 arcsin

(
sin( π

4k+6 )
sinβ

)
,

k ≤ kop, (9)

where ψ represents the updated rotation angle and the parameter k denotes the number
of iterations. With this modification, we can theoretically obtain the index i� with zero
failure rate. As the ψ correlates with the size of the database, we show the performance of
our proposal in Sect. 3 with a concrete database.

3 The performance of the algorithm
Here in this part, we implement the algorithm for the searching and pattern matching on
the quantum simulators. Firstly, we prepare a toy instance of image pattern matching as:
Given a database containing eight 2 × 2 binary gray images as shown in Fig. 3, the issue
is whether there is an all-black (or any other possible binary gray distribution) one in it.
For such a task, as N = 8 and m = 8, we can obtain nX = 3, nD = 3 (one for storing color
information and two for position), then, the original quantum state could be expressed as:

|DB〉 = U1(θ1)|0〉⊗6

=
1

2
√

2

7∑

i=0

( 7∑

j=0

Dij|j〉D

)
|i〉X ,

|T〉 = U2(θ2)|0〉⊗3

=
7∑

j=0

Tj|j〉D,

(10)

and the state could also be rewritten as:

|DB′〉 =
(
U†

2 ⊗ IS
)
U1︸ ︷︷ ︸

U

|0〉⊗6

= U|0〉⊗6,

|T ′〉 = |0〉⊗3. (11)

Notably, the data here are basis encoded so that the target data T is loaded onto:

|T〉 =
1
2
(|000〉 + |001〉 + |010〉 + |011〉)

=
1
2
(|0〉 + |1〉 + |2〉 + |3〉), (12)
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which corresponds to T = [0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0]�.
Before proceeding, it is also worth to find the near-optimal ansatz of U2(θ2) for Eq. (12),

which was accomplished using PennyLane [44]. Pennylane is an open-source software li-
brary for quantum machine learning (QML), developed by Xanadu Quantum Technolo-
gies. The detailed process is outlined below:

i. Firstly, the width of the circuit is defined as W = 3. Considering that all the
amplitude of |T〉 are real numbers, U2(θ2) only involves the controlled-not (CNOT)
gates and the parameterized Ry gates Ry(θ i

2) = exp(–iθ i
2Y /2) [45], where Y is the

Pauli-Y operator and θ i
2 denotes the ith element of the parameter θ2, which means

Q = 2. Meanwhile, the depth of the circuit can also be set as three. Then, the possible
structures of the circuit could be represented as a list. For example,
[Ry, Ry, Ry, True, True] can be used to describe the ansatz
(CNOT1,2 ⊗ CNOT0,1)(⊗2

i=0Ry(θ i
2)) that corresponding to one layer of U2(θ2).

ii. After the preparation of the ansatz pool, we begin to optimize the trainable
parameters. Here the involving hyper-parameters are chosen with: the learning rate
η = 0.05, the total number of iterations Z = 300. In the following, the number of the
candidate parameter groups Og is 20 to reduce the impact of initialization as much
as possible, with the consideration of the scale of trainable parameters for U2(θ2) is
small. We take the target output of U2(θ2), that is,
T = [0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0]� , and TH = [0.5, 0, 0, 0, 0.5, 0, 0, 0] as training
data. The parameter optimization process is as follows: in each iteration, calculate
the loss for the ansatz sampled under different initial parameters and choose a group
of initialization parameters that minimize the loss. Once the initialization
parameters are selected, the algorithm utilizes the gradient descent method to
update the trainable parameters, with the loss function as the guide. The optimizer
Adam in the PennyLane platform completes gradient calculations based on the
parameter-shift rule [46].

iii. In this step, we sample V = 500 ansatzs and rank their performances based on the
precision of their outputs. The results indicate that the structure shown in Fig. 4,
with fewer CNOT gates used than that in Fig. 2, is the circuit with relatively higher
output accuracy for all-black image (data – 0). We also present the searched ansatz
for other pictures in DB as shown in Fig. 4.

So far, we have identified a relatively optimal structure for U2(θ2). Similarly, one can find
a relatively optimal structure for U1(θ1) in a similar manner, which will not be elaborated
here. Notably, the U1(θ1) circuit used in the experiments of this paper is an unoptimized
HEA ansatz. Using these two circuits, we complete the quantum state encoding process
for classical data.

Subsequently, we initiate the similar calculation between target data T and the element
in the database based on the Long’s algorithm, with the specific process as outlined below.
The states that overlap with | T ′〉 are first marked by the oracle operation with a phase ro-
tation angle 0.677π , which is calculated according to Long’s algorithm, and then their am-
plitudes are amplified by the diffusion operator with the same phase rotation angle. These
two phase rotation operations are realized by two Multi-controlled Phase gate (MCP) as
shown in Fig. 1. Given the scale of the database is 8, the above process only requires one
iteration. Note that the above steps are performed using Qiskit [47], which is an open-
source quantum computing framework developed by IBM.
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Figure 4 The designed quantum circuits of U2(θ2) for data 0–data 7

Finally, we measure all quantum bits and read the measurement results. We can cate-
gorize the results into successful outcomes and unsuccessful outcomes. Successful out-
comes refer to measurements of the nD bits yielding 0, while unsuccessful outcomes are
those where this part is non-zero. We post-select these successful results, where the index
i of the state with the highest probability, that is “000”, is denoted as i∗. Considering the
problem setup where the target data is defined as an all-black image, i.e., the 0-th image
in the database, the target index should be “000”. These aligns with the results obtained by
our algorithm as shown in the first subfigure of Fig. 7, indicating the successful comple-
tion of the pattern-matching task. To further elucidate the performance of the proposed
algorithm, we made several different comparisons.

In evaluating the performance of different quantum pattern matching algorithms with
different quantum circuits, that are searched or optimized structure, denoted as AQ, the
un-optimized one, denoted as AA, and exact encoding circuit, denoted as EE, we con-
ducted a comprehensive analysis based on several key metrics. The algorithms under con-
sideration include a basic algorithm for computing similarity, denoted as N in the resulting
pictures Fig. 5, Fig. 8, Fig. 9, and Fig. 11, which calculates the similarity between the tar-
get and the element in the database by only performing encoding operator (U1 and U†

2 )
without performing any probability amplitude amplification operations, schemes based
on Grover’s search algorithm, denoted as G in the resulting pictures Fig. 6, Fig. 8, Fig. 9,
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Figure 5 The comparison of the results of image pattern matching using different numbers of CNOT gates
without amplification. The title of each subfigure is the target data in its situation, the x-coordinate represents
the eight results with higher probability obtained by measurement in two cases respectively, ‘rest’ is the
probability of remaining outcome and the y-coordinate is the corresponding value. Finally, the bar with the
color watermelon red represents the output of the case with more gates, and the bar with the color
grayish-blue represents that with fewer gates. Notably, here and in the following only the structure of U2 is
optimized

Fig. 11, which executes two phase inversions in the process of marketing and amplitude
amplification, and our scheme based on Long’s algorithm,denoted as L in the resulting
pictures Fig. 7, Fig. 8, Fig. 9, Fig. 11. The evaluation criteria encompassed factors such as
the success probability, the accuracy and the computational complexity.

In the context of the problem setup in this section, the measurement results of these
three algorithms accomplishing the pattern matching task based on distinct circuits are
depicted in Fig. 5 through Fig. 11.

First, we showcase the output accuracy (i.e., the probability of correctly completing
the pattern-matching) achieved by three algorithms on three circuits as shown in Fig. 5
through Fig. 9, comparing them from five different perspectives illustrated in Fig. 10. Fig-
ure 5 is the comparison of the results of algorithm N on AA and AQ. The figure displays the
measurement results obtained when each of the 8 images from the database is considered
as the target data. The horizontal axis represents the measurement results of 6-qubit quan-
tum bits, where the first three bits represent nD-bits, and the latter three bits represent
nX -bits. The vertical axis represents the measurement probability corresponding to each
measurement result. The bars in the graph depict the eight highest probability outcomes,
while ‘rest’ represents the collection of all other outcomes. As no amplification has been
applied, the average maximum probability of correct results should not exceed 1

8 . Our ex-
perimental results align with the expected outcome. Further, the result demonstrates that
the searched structure firstly can complete the task correctly and then, by contrast, can
achieve comparative or even better performance with fewer quantum gates. To further as-
sess the performance of the optimized structure AQ, we conduct algorithms G and L on it,
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Figure 6 The comparison of results of image pattern matching using different numbers of CNOT gates based
GSA. The bar with the color orange represents the output of the case with more gates, and the bar with the
color sky blue represents that with fewer gates

Figure 7 The comparison of the results of image pattern matching using different numbers of CNOT gates
based on Long’s algorithm. The red bar represents the output of the case with more gates and the blue one
represents that with fewer gates. The outcome shows that the successful probability of completing pattern
matching is considerably enhanced and the ‘failure’ (not exactly) probability, i.e., the value of bar ‘rest’ greatly
depressed

and compared the results with those obtained on the structure before optimization, that is
AA, as shown in Fig. 6 and Fig. 7. The meanings of the horizontal and vertical axes in these
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Figure 8 The comparison of the results of image pattern matching with exact encoding based on three
algorithms. The title of every subfigure is the target data in its situation, the x-coordinate is the eight results
with higher probability obtained by measurement in three cases respectively, ‘rest’ is the probability of
remaining outcome and the y-coordinate is the corresponding value

Figure 9 The comparison of the results of image pattern matching using fewer CNOT gates based on three
algorithms. The title of every subfigure is the target data in its situation, the x-coordinate is the eight results
with higher probability obtained by measurement in three cases respectively, ‘rest’ is the probability of
remaining outcome and the y-coordinate is the corresponding value

figures are the same as in Fig. 5. In both of these algorithms, AQ demonstrates comparable
accuracy to the previous structure AA on average and performed well in completing the
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Figure 10 Partial experimental design framework. The horizontal axis represents abbreviations for the
executed algorithms in the experiment, while the vertical axis denotes abbreviations for the circuits employed
in the experiment. Each point in the graph represents an experiment conducted under the specified
conditions at the corresponding coordinates

Figure 11 The comparison of the successful probability of image pattern matching using different number
CNOT gates based on three algorithms. The title of every subfigure is the target data in its situation, the
x-coordinate is all of the measurement outcomes without postselection in three cases respectively and the
y-coordinate is the corresponding value. The successful probability of pattern matching is the sum of the
probabilities of the results whose nD bits are represented by the first three digits of abscissa being 0

tasks. Through the comparison of these three experiments, we effectively highlight the
efficacy of the searched optimized structure, that is, the output precision of AQ is com-
parable to or better than that of its more resource-intensive version AA, which indicates
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that our scheme could be used for some problems without strict precision requirements,
such as the calculation of the global trend of the financial market indicator.

Figure 8 and Fig. 9 present the experimental results of three algorithms executed on the
AA and AQ, respectively, with the same settings for the horizontal and vertical axes as in
Fig. 5. In contrast to Fig. 5 and Fig. 7, which showcase circuit performance, the purpose
is to provide a clearer horizontal comparison of the output accuracy of the three algo-
rithms. By examining whether the amplitude amplification operation is performed, the
results indicate that the accuracy of the two algorithms executing this operation is higher.
For example, the probability of correctly matching data-0 in Algorithm G is approximately
1.6 times that of Algorithm N , clearly demonstrating the functionality of amplitude ampli-
fication operation. In terms of overall execution performance, Algorithm L, our proposed
algorithm, exhibits significantly higher output accuracy compared to Algorithm G. The
probability of correctly matching data-0 in Algorithm L is nearly 2.5 times that of Algo-
rithm N and almost 1.5 times that of Algorithm G. The above results intuitively reflect,
from a mathematical perspective, the improvement in our algorithm’s accuracy in success-
fully completing the task. In comparison, data-4’s circuit performance is relatively poor in
our scheme, but it can still complete the task of pattern matching with a better than other
two algorithms.

Considering the 5 result graphs mentioned earlier, our algorithm outperforms existing
quantum pattern matching algorithms based on GSA that use exact encoding by achieving
the pattern task with fewer computational resources and higher precision, which makes
the scheme more appropriate for NISQ [48] device to emerge.

Secondly, we focus on the success probabilities denoted as ′ Prob′ of the three algorithms
in accomplishing quantum pattern matching tasks on AQ. It should be noted that ′ Prob′

refers to the sum of the probabilities of results whose nD bits are measuring as “000”, which
indicates that the obtained states overlap with |0〉⊗3, differing from the definition of ‘ac-
curacy’ mentioned before. The sum of the remaining result probabilities represents the
failure probability. For brevity, only the comparison for the case of T = data-0 is given in
Fig. 11. The horizontal and vertical axes in Fig. 11 are set the same as in Fig. 5, systemati-
cally displaying all possible measurement outcomes. A comparison of the results between
Algorithm N and Algorithm G shows a significant reduction in the failure probability for
Algorithm G, attributed to the amplitude amplification operation. Algorithm L, building
upon this, further reduces the failure probability or, in other words, suppresses the prob-
ability amplitude of states that do not overlap with the |0〉⊗3 state. Concretely, the result
shows that our scheme can achieve a successful probability of 95% while the other two
schemes can only achieve the probabilities of 46.2% and 71%, respectively, which verifies
the effectiveness of our proposal. A higher success probability implies fewer repetitions
of algorithm execution needed to obtain measurement results, further reducing the com-
putational resources consumed by the algorithm, such as quantum state. This makes our
scheme more efficient and practically executable.

Finally, we analyze the query complexity (number of executions of the oracle) and circuit
size of the proposed algorithm. Long’s algorithm is a variant of GSA, with smaller phase
rotation angles executed during queries. Therefore, the relationship between the query
count k′

op of Long’s algorithm and the query count kop of GSA is: k′
op ≥ kop. Such that

the query complexity of our quantum pattern matching scheme remains the same to be
O(

√
N). Next we discuss the size of the circuit for implementing our algorithm. In the
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context of the problem setting in this section, our algorithm requires preparing a database
state of six qubits and a target data state of three qubits. If the former is prepared using
traditional exact encoding circuits, it would require 32 six-qubit Toffoli gates, which can
be decomposed into 128 CNOT gates. As for the latter, it would require one Toffoli gate,
which need 6 CNOT gates [49]. If considering the case where some quantum computing
devices only allow nearest-neighbor interactions between qubits, then the approximate
number of CNOT gates required to prepare an arbitrary n-qubit quantum state on an
initialized quantum circuit is:

10
3

2n + 2n2 – 12n +

⎧
⎨

⎩

14
3 , n mod 2 = 0,

10
3 , n mod 2 = 1,

showing an exponential relationship with the number of bits, n. If method in [30] is em-
ployed, the database state preparation would require 30 CNOT gates, and the target data
state preparation would need 6 CNOT gates. The circuit depth, gate count, and the rela-
tionship with the number of bits are O(poly(n)) and O(n), respectively. In our approach,
the number of gates needed to prepare these two states will be further reduced. Taking the
target data state preparation as an example, the average number of required CNOT gate in
our scheme is approximately 3 as shown in Fig. 4. As for the complexity, it still maintains
to be O(poly(n)) in depth and O(n) in multi-qubit gate. Correspondingly, as a trade-off,
when running the same algorithm, the output accuracy of our optimized structure may
be slightly lower than that of precise encoding, but comparable to the accuracy achieved
using method in [30], and enough to properly solve the problems that do not need exact
encoding.

4 Conclusion
In this study, we propose a quantum pattern matching scheme based on QASA and Long’s
algorithm, which significantly improves the performance through the optimization of cir-
cuit structures and a customized phase rotation angle. Specifically, we first optimized the
gate layout of the encoding circuit based on QASA. In comparison to existing solutions,
our approach uses fewer two-qubit entangling gates, exhibiting a linear relationship with
the number of bits rather than an exponential one, making it a more computationally op-
tion. Building upon this foundation, we significantly enhanced the success probability of
the quantum pattern matching algorithm using Long’s Algorithm. This implies a substan-
tial reduction in the number of algorithm iterations required to obtain measurement re-
sults, further conserving computational resources. To validate the correctness and effec-
tiveness of our approach, we took a simple instance of image pattern matching as an ex-
ample and compared the performance of different algorithms on various circuit structures
from both horizontal and vertical perspectives, as illustrated in Fig. 10. The results indi-
cate that, compared to existing algorithms based on GSA and exact encoding, as well as
existing schemes based on GSA and AAE, our approach can achieve the pattern matching
task with higher accuracy while using fewer quantum computational resources. Hence, it
will help with immediate and practical applications for NISQ devices.

Meanwhile, our algorithm demonstrated notable advancements in circuit size and suc-
cess probability of the quantum pattern matching, offering valuable insights for future
quantum computing research. Nevertheless, we acknowledge the limitations of this study,
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for example, our circuit optimization process is completed using gradient descent, and
during this process, there is a possibility of encountering the phenomenon of gradient
vanishing, commonly known as the ‘barren plateau’. For future research, we recommend
further exploration of the application of quantum search algorithm in classical computing
fields such as artificial intelligence. This field still holds many unresolved mysteries, and
we look forward to more researchers joining in and making breakthroughs. This study
contributes to the development of the quantum computing field, laying the foundation for
broader research endeavors.
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