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Abstract
The barren plateau problem in quantum neural networks (QNNs) is a significant
challenge that hinders the practical success of QNNs. In this paper, we introduce
residual quantum neural networks (ResQNets) as a solution to address this problem.
ResQNets are inspired by classical residual neural networks and involve splitting the
conventional QNN architecture into multiple quantum nodes, each containing its
own parameterized quantum circuit, and introducing residual connections between
these nodes. Our study demonstrates the efficacy of ResQNets by comparing their
performance with that of conventional QNNs and plain quantum neural networks
through multiple training experiments and analyzing the cost function landscapes.
Our results show that the incorporation of residual connections results in improved
training performance. Therefore, we conclude that ResQNets offer a promising
solution to overcome the barren plateau problem in QNNs and provide a potential
direction for future research in the field of quantum machine learning.
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1 Introduction
The Noisy Intermediate-Scale Quantum (NISQ) devices are a new generation of quan-
tum computers capable of executing quantum algorithms. However, NISQ devices still
suffer from significant errors and limitations in terms of the number of qubits and coher-
ence time [1]. Despite these limitations, NISQ devices are an important stepping stone to-
wards the development of fault-tolerant quantum computers, as they provide a platform
for exploring and evaluating basic quantum algorithms and applications [2, 3]. Research
in the NISQ era is focused on developing algorithms and techniques that are resilient to
noise and errors, and can run effectively on NISQ devices [4]. This includes algorithms for
quantum error correction [5], quantum optimization [6], and quantum machine learning
(QML) [7].

QML is an interdisciplinary field that combines the concepts and techniques from quan-
tum computing and machine learning (ML). It aims to leverage the unique properties
of quantum systems, such as superposition, entanglement, and interference, to develop
new algorithms and approaches for solving complex machine learning problems [8, 9].

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-023-00216-8
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-023-00216-8&domain=pdf
mailto:mkashif@hbku.edu.qa
http://creativecommons.org/licenses/by/4.0/


Kashif and Al-Kuwari EPJ Quantum Technology            (2024) 11:4 Page 2 of 28

QML is increasingly becoming an exciting application in the NISQ era [2]. The antici-
pation here is that quantum models (by exploiting the exponentially large Hilbert space)
would achieve a computational advantage over their classical counterparts [10, 11], par-
ticularly for quantum datasets [12–14]. As we continue to witness advances in quantum
hardware [15], quantum algorithms [16], and quantum error correction [17], the future of
QML seems bright, and quantum computing will likely play a significant role in the field
of machine learning. A wide range of ML algorithms is being explored in the quantum
realm, including quantum neural networks (QNNs) [18], quantum support vector ma-
chines [19, 20], quantum principal component analysis [21], and quantum reinforcement
learning [22–24]. These approaches have been shown to be effective in various domains,
such as image classification [12, 25–29], natural language processing [30–32], and recom-
mendation systems [33].

QNNs are a promising area of research that aims to combine the power of quantum
computing and neural networks to solve complex computational problems [34, 35]. Unlike
classical neural networks, QNNs use quantum-inspired representations and operations
to encode and process data [36–38]. This allows for the exploration of exponential solu-
tion space and the exploitation of quantum parallelism, potentially leading to faster and
more accurate results [8, 14, 39, 40]. QNNs can be considered as a subclass of variational
quantum algorithms, which aim to optimize parameters (θ ) of a parameterized quantum
circuit (PQC)1 U(θ ) to minimize the cost function C . PQC utilizes tunable parameters to
optimize quantum algorithms through classical computation. An example of a QNN ar-
chitecture is the quantum Boltzmann machine [41, 42], which uses quantum circuits to
model complex probability distributions and perform unsupervised learning tasks. In ad-
dition to unsupervised learning, QNNs have shown potential in various applications such
as quantum feature detection [20], quantum data compression and denoising [43, 44], and
quantum reinforcement learning [45, 46]. QNNs can also be used for quantum-enhanced
image recognition [7, 47] and quantum molecular simulations [48].

However, despite their potential, QNNs are still in the early stages of development and
face several technical and practical challenges. In particular, training and optimizing the
parameters in QNNs pose significant challenges. To address these challenges, the research
community has been developing quantum landscape theory [49] that explores the prop-
erties of cost function landscapes in QML systems. Consequently, interesting results have
been obtained in the study of QNN’s training landscapes, including the occurrence of bar-
ren plateaus (BP) [50], the presence of sub-optimal local minima [51], and the impact of
noise on cost function landscapes [52–55]. These findings provide important insights into
the properties of QNNs and their training dynamics, and can inform the development of
new algorithms and strategies for training and optimizing QNNs.

In particular, the BP problem refers to a phenomenon in which the circuit’s expressive-
ness, as measured by its ability to approximate a target unitary operation, is severely lim-
ited as the number of qubits in the circuit increases [50], which is mainly due to vanishing
gradients in the parameter space. The phenomenon of BP in QNNs is a significant chal-
lenge that impedes the advancement and widespread implementation of QNNs. To miti-
gate the BP, various strategies have been proposed, including the use of clever parameter
initialization techniques [56], pre-training [57], examination of the dependence on the

1we will use the terms “PQC” and “quantum layers” interchangeably.
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cost function [58, 59], implementation of layer-wise training of QNNs [60], and initializa-
tion parameters drawn from the beta distribution [61]. The trainability vs expressibility
analysis of QNNs from the aspect of BP is conducted in [62], where a trade-off between
quantum layers width and depth has been observed for a better learning performance.
These solutions aim to overcome the limitations posed by the BP in QNNs and facilitate
the full realization of their potential. However, it is important to note that the solution that
works best for one QNN architecture may not work for another, as the BP problem can
be highly dependent on the specific problem being solved and the quantum architecture
being used.

Related work In recent research efforts, the concept of utilizing the residual approach
in QNNs has gained traction. One such work, proposed in [63], introduces a hybrid
quantum-classical neural network with deep residual learning. The authors explore the
integration of the residual block structure into QNN architecture and highlight its poten-
tial benefits. Specifically, they emphasize that connecting residual blocks with QNNs can
enhance robustness against noise, a crucial consideration in quantum computing applica-
tions.

In contrast, our research focuses on a different aspect of the residual approach in QNNs.
We aim to transform the traditional QNN architecture into a residual structure by divid-
ing the conventional QNN architecture into multiple quantum nodes (each containing its
own PQC), and investigate its effectiveness in mitigating the BP phenomenon. BP are a
challenge that arises as the number of qubits in quantum circuit increases, leading to deep
quantum circuits. Our primary objective is to address this issue and improve the training
performance of QNNs.

Furthermore, a related study in [64] employs the residual approach in the optimization
of an IoT platform. The authors also conclude that the residual approach in QNNs ex-
hibits greater robustness against noisy data and better performance in learning unitary
functions.

In a different context, [65] explores the residual approach in QNNs but with a focus on
shallower quantum circuits rather than deep ones. The authors aim to achieve compa-
rable performance with shallower circuits, and they suggest manipulating data encoding
strategies to improve accuracy. Our work, however, entirely concentrates on quantum cir-
cuit width, i.e., the number of qubits, as a means to study and address the barren plateaus
phenomenon, independent of the data encoding technique.

Overall, these research efforts collectively contribute to the growing body of knowledge
on the residual approach in QNNs, highlighting its potential benefits for various quantum
computing applications.

Contribution In this paper, we propose a novel solution to mitigate the issue of barren
plateaus (BP) in quantum neural networks (QNNs). Our approach is based on the concept
of residual neural networks, which were previously introduced as a means of overcoming
the problem of vanishing gradients in classical neural networks. In this context, we in-
troduce the concept of residual quantum neural networks (ResQNets) by incorporating
residual connections between two quantum layers of variable depths. Our findings sug-
gest that the utilization of ResQNets substantially enhances the training process of QNNs
as compared to their non-residual counterparts, denoted as PlainQNets. To substantiate
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the efficacy of our proposed ResQNets, we undertake a systematic comparison involving
an analysis of the cost function landscapes and an assessment of their training perfor-
mance with that of PlainQNets. The results obtained from our experimental investigations
elucidate that the incorporation of residual connections in QNNs (ResQNets) effectively
mitigate the adverse effects of BP and result in improved overall training performance.

Organization The rest of the paper is organized as follows: Sect. 2 provides an overview
of classical and quantum residual neural networks and motivates their application. Sec-
tion 3 discusses parameterized quantum circuits and elaborates on how multiple PQCs
can be cascaded. This section also introduces the residual approach in cascaded PQCs.
The methodology we adopt in this paper while conducting the various experiments is
provided in Sect. 4. Section 5 presents the results we obtained on both the simulation en-
vironment and real quantum devices. Finally, the paper concludes in Sect. 6 with a few
concluding remarks and pointers to possible extensions to this work.

2 Residual neural networks
Residual Neural Networks (ResNets) are a type of deep neural network architecture that
aims to improve the training process by addressing the problem of vanishing gradients.
The basic idea behind ResNets is to introduce residual connections between layers in
the network, allowing easier optimization as the network gets deepens. The residual con-
nections allow the network to learn residual mapping rather than trying to fit the target
function directly. This helps prevent the vanishing gradient problem, where the gradients
in the backpropagation process become very small, making it difficult to update the pa-
rameters effectively. ResNets were first introduced in [66], where the authors showed that
ResNets outperformed traditional deep neural networks on benchmark image recognition
tasks and demonstrated that ResNets could accommodate significantly deeper architec-
tures than previous networks without sacrificing accuracy.

Residual connections in ResNets have been shown to be effective in training very deep
neural networks, with hundreds or even thousands of layers. This has drastically improved
the performance in several computer vision and natural language processing tasks. A typ-
ical structure of a residual block is depicted in Fig. 1a.

Figure 1 Residual block structure
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Given an input feature map x, the basic building block of a ResNet can be defined as:

H(x) = F(x, Wi) + x,

where H(x) is the output of the block, F is a non-linear function represented by a series
of neuron and activation layers with parameters Wi, and x is the input feature map that is
added back to the output (the residual connection). The model is trained to learn the func-
tion F such that it approximates the residual mapping y – x, where y is the desired output.
By introducing residual connections, ResNets can address the vanishing gradient problem
in deep neural networks, allowing for deeper architectures to be trained effectively.

In this paper, we introduce the quantum counterpart of ResQNet, namely residual quan-
tum neural network (ResQNet), a QNN architecture combining the principles of classical
ResNets with QNNs. The basic idea is to add a residual connection between the output of
one layer of quantum operations and the input of the next layer. This helps to mitigate the
vanishing gradient problem, a.k.a. BP, which is a major challenge in QNNs and arises as the
number of qubits in the systems increases. Figure 1b directs how ResQNets is compared
to ResNets.

In ResQNets, the residual connection is mathematically represented as:

ψout(θ ) = ψ(θ ) + U(θ )ψ(θ ),

where ψ(θ ) is the input to the quantum circuit, U(θ ) is the unitary operation defined by
the PQC, and ψout(θ ) is the output.

3 Parameterized quantum circuits
QNN is a type of Parameterized Quantum Circuit (PQC), which is a quantum circuit that
has tunable parameters that can be optimized to perform specific tasks. In a QNN, the pa-
rameters are typically optimized using classical optimization algorithms to learn a target
function or perform a specific task. The PQC architecture of a QNN allows for the rep-
resentation and manipulation of quantum data in a manner that can be used for various
applications, such as QML and quantum control. The mathematical derivation of PQC
involves the representation of quantum states and gates as matrices and the composition
of these matrices to form the overall unitary operator for the circuit.

A quantum state can be represented by a column vector in a Hilbert space, where the
elements of the vector are complex numbers that satisfy the normalization constraint:

|ψ〉 =
[
α β

]
, |α|2 + |β|2 = 1.

A quantum gate is represented by a unitary matrix, which preserves the norm of the
vector, i.e., the inner product of the transformed vector with itself is equal to the inner
product of the original vector with itself:

U†U = UU† = I,

where U† is the conjugate transpose of U and I is the identity matrix. A PQC can be
modeled as a sequence of gates, each represented by a unitary matrix based on classical
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parameters. The overall unitary operator of the circuit can be obtained by composing the
matrices of the individual gates in the correct order:

Ucircuit = Un(θn) · · ·U2(θ2)U1(θ1),

where Ui(θi) is the unitary matrix representing the i-th gate and θi is a classical parameter.
The final quantum state after applying the PQC to an initial state can be obtained by

matrix-vector multiplication:

|ψfinal〉 = Ucircuit|ψinitial〉.

The parameters θ1, . . . , θn can be optimized using classical optimization algorithms to
achieve a desired quantum state or to maximize an objective function such as the expected
value of a measurement outcome. The optimization problem can be written as:

θ∗ = arg max
θ

∣
∣〈ψdesired|Ucircuit(θ )|ψinitial〉

∣
∣2.

Solving this optimization problem provides the optimal set of parameters θ∗ that pro-
duce the desired outcome.

3.1 Cascading PQCs
In the proposed ResQNets, we encapsulate PQC/QNNs into a quantum node (QN) and
arrange multiple QNs in a series, so that the output of one QN serves as the input of the
next. This structure enables us to introduce the residual learning approach in a manner
that allows the PQCs to work together to achieve the desired outcome. The process of cas-
cading PQCs involves feeding the output of each PQC into the input of the next, creating
a layered structure where each layer represents a single PQC. In this case, each PQC can
build on the outputs of the previous ones, leading to a more complex and sophisticated
computation. The residual learning approach is used to ensure that the overall computa-
tion remains stable, where the output of each PQC is combined with the input of the next
in a specified manner.

We now present the mathematical formulation for connecting multiple PQCs in se-
quence. We will refer to each PQC as Ui where i denotes the QN it is encapsulated in.

3.1.1 2-cascaded PQC
Consider two PQCs denoted as U1(θ1) and U2(θ2), where θ1 and θ2 are classical param-
eters. The first PQC U1(θ1) is applied to an initial quantum state |ψinitial〉 to obtain an
intermediate quantum state |ψintermediate〉:

|ψintermediate〉 = U1(θ1)|ψinitial〉.

The second PQC U2(θ2) is then applied to the intermediate state |ψintermediate〉 to obtain
the final quantum state |ψfinal〉:

|ψfinal〉 = U2(θ2)|ψintermediate〉.
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The overall unitary operator of the two cascaded PQCs can be obtained by composing
the matrices of the individual PQCs in the correct order:

Ucircuit = U2(θ2)U1(θ1).

The final quantum state after applying the two cascaded PQCs to an initial state can be
obtained by matrix-vector multiplication:

|ψfinal〉 = Ucircuit|ψinitial〉.

The parameters θ1 and θ2 can be optimized using classical optimization algorithms to
achieve a desired quantum state or to maximize an objective function such as the expected
value of a measurement outcome. The optimization problem can be written as:

θ1, θ2 = arg max
θ1,θ2

∣∣〈ψdesired|Ucircuit(θ1, θ2)|ψinitial〉
∣∣2

= arg max
θ1,θ2

∣
∣〈ψdesired|U2(θ2)U1(θ1)|ψinitial〉

∣
∣2.

Solving this optimization problem returns the optimal set of parameters (θ1, θ2) that
produce the desired outcome.

3.1.2 n-cascaded PQCs
Similarly, for n cascaded PQCs, where each PQC takes the output of the previous one as
its input, the intermediate states can be described as follows:

|ψintermediate,i〉 = Ui(θi)|ψintermediate,i–1〉,

where i = 1, 2, . . . , n and |ψintermediate,0〉 = |ψinitial〉. The overall unitary operator of the n
cascaded PQCs can be obtained by composing the matrices of the individual PQCs in
the correct order:

Ucircuit = Un(θn) · · ·U2(θ2)U1(θ1).

The final quantum state after applying the n cascaded PQCs to an initial state can be
obtained by matrix-vector multiplication:

|ψfinal〉 = Ucircuit|ψinitial〉.

The parameters θ1, θ2, . . . , θn can be optimized using classical optimization algorithms to
achieve a desired quantum state or to maximize an objective function such as the expected
value of a measurement outcome. The optimization problem can be written as:

θ1, θ2, . . . , θn = arg max
θ1,θ2,...,θn

∣∣〈ψdesired|Ucircuit(θ1, θ2, . . . , θn)|ψinitial〉
∣∣2

= arg max
θ1,θ2,...,θn

∣
∣〈ψdesired|Un(θn) · · ·U2(θ2)U1(θ1)|ψinitial〉

∣
∣2.

Solving this optimization problem returns the optimal set of parameters (θ1, θ2, . . . , θn) that
produce the desired outcome.
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3.2 Residual PQCs
We now introduce residual blocks in the cascaded PQCs encapsulated in QNs which we
call ResQNets. In ResQNets, the output of the previous PQC is added to its input and
fed as an input to the next PQC. The residual block is inserted to facilitate efficient in-
formation flow and improved performance. The primary objective of incorporating resid-
ual blocks in QNNs here is to overcome the difficulties associated with BP and thereby
improve the learning process. Furthermore, the proposed method aims to harness the
strengths of both residual learning and quantum computing to tackle complex problems
more effectively.

To mathematically formulate our proposed ResQNets, we start by considering the case
of two PQCs, and extend the approach to the general case of cascading n PQCs with n
residual blocks. We will refer to each PQC as Ui where i denotes the QN it is encapsulated
in.

3.2.1 1-residual block
ResQNet with a single residual block contains a maximum of two PQCs of arbitrary depth
enclosed in two separate QNs. The first QN serves as a residual block whose input is added
to its output before passing it as input to the PQC in the next QN. In the context of the
NISQ era, hybrid QNNs have gained considerable traction. These models exhibit a dis-
tinctive architecture wherein the input data, characterized by its classical nature, necessi-
tates an initial encoding process. This encoding procedure plays a vital role in preparing
the data for processing on quantum computer. It is important to note that in this paper
we exclusively employ a configuration wherein classical datasets are not utilized. Instead,
our approach involves the initialization of qubits in ground states and the gates in PQC
are randomly parameterized prior to the training phase. Nevertheless, here we present a
comprehensive mathematical framework that accommodates the broader context of hy-
brid systems. This formalism is especially pertinent in scenarios where classical datasets
form an integral component of the computational process. An illustrative configuration
featuring a pair of Quantum Nodes (QNs), where the initial node functions as the residual
block, is depicted in Fig. 2.

Figure 2 Illustration of residual approach in hybrid quantum neural networks
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The two QNs will have two PQCs denoted as U1(θ1) and U2(θ2), where θ1 and θ2 are
classical parameters encoded in such a way that the quantum circuit can process them.
The classical dataset is a set of data points, i.e., D = {x(i)}, where x(i) represents the ith
datapoint. The next step is to encode the classical data Each data point x(i), is encoded
using an encoding method (e.g., angle or amplitude encoding [67]). The angle-encoded
data for the ith data point can be denoted as θ (i). Each encoded data point θ (i) is used
as parameters for the PQC in the first quantum node (QN1). This PQC processes the
encoded data and upon measurement, it generates a classical result y(i)

1 . The classical result
y(i)

1 from QN1 is added to the original data x(i) element-wise to obtain a new modified
classical dataset denoted by D′ = {x(i) + y(i)

1 }. Each data point in D′ is then encoded again
to obtain a new set of encoded data denoted by θ ′ (i) which is then used as input for a PQC
in the second quantum node (QN2). The PQC in second QN processes this encoded data
and upon measurement it generates classical result y(i)

2 which, in case of two QNs, is the
final output of the network used for cost function optimization.

The mathematical formulation for a single residual block in two QN setting starts with
preparing and initializing the qubits. We initialize the qubits in ground state:

|ψ (1)
initial〉 = |0〉⊗n

where n is the number of qubits and the superscript denotes the PQC number number,
i.e., 1 here denotes the qubit initialization in the first PQC. After the qubit initialization,
the next step is to encode the classical data features into quantum space:

θ (i) = fencode
(
x(i)),

where fencode is the encoding function which maps the classical input features to quantum
space. The first PQC U1(θ1) is applied to the encoded input features to obtain an interme-
diate quantum state |ψintermediate〉:

|ψintermediate〉 = U1(θ (i))|ψ (1)
initial〉.

Upon measurement the intermediate quantum state |ψintermediate〉 collapses and returns
the classical result:

y1 = M|ψintermediate〉,

where M denotes the qubit measurement. The qubits in second PQC are also prepared
in ground state:

|ψ (2)
initial〉 = |0〉⊗n

where the superscript (2) denotes the PQC number. Now, the input of the second PQC
U2(θ2) is not just the output of QN1 but the sum of the original input (x(i)) and the inter-
mediate result (y1).

x′ (i) = x(i) + y(i)
1 .
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We again have to encode the new data points obtained after addition of original input and
intermediate result before passing it to the PQC in QN2.

θ ′ (i) = fencode
(
x′ (i)).

The final quantum state obtained after the second QN would be:

|ψfinal〉 = U2(θ
′(i))|ψ (2)

initial〉.

After measuring the qubits in second QN, the final quantum state collapses and we get
the final classical result:

y2 = M|ψfinal〉.

The parameters θ can be optimized using classical optimization algorithms to achieve a
desired quantum state or to maximize an objective function such as the expected value of
a measurement outcome.

3.2.2 2-residual blocks
In ResQNets with two residual blocks, up to three PQCs can be incorporated within three
QNs. There are three potential configurations for the residual blocks in this setup:

1. utilizing only the first QN as a residual block,
2. combining the first two QNs to form a single residual block,
3. utilizing both the first and second QNs individually as separate residual blocks.
For our mathematical formulation, only the third configuration will be considered since

it is the general setting for the case of two residual blocks; other configurations effec-
tively contain a single residual block, which has already been mathematically derived in
Sect. 3.2.1. However, we will conduct experiments that examine all three configurations to
determine which configuration performs the best. Let U1(θ1), U2(θ2), and U3(θ3) be PQCs
enclosed in three QNs, where θ1, θ2, and θ3 are the quantum-encoded classical parameters.
The qubits in the first PQC are intialized in ground state:

|ψ (1)
initial〉 = |0〉⊗n

The intial classical input features are encoded into qubit rotation angles:

θ
(i)
1 = fencode

(
x(i)).

The first PQC U1(θ1) takes the initial quantum state |ψinitial〉 as its input and produces an
intermediate quantum state |ψintermediate〉:

|ψintermediate〉 = U1(θ (i)
1 )|ψ (1)

initial〉.

The |ψintermediate〉 is the output of U1(θ1) before the measurement. Upon measuring the
qubits the quantum state |ψintermediate〉 collapses and produces a classical result:

y1 = M|ψintermediate〉.
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Before passing the output of QN1 (y1) as input to QN2, it is first added element-wise with
the original input x(i). Since, both y1 and x(i) are classical values, therefore an encoding
function is again applied in order for the PQC in QN2 to process them:

x′ (i) = x(i) + y(i)
1 ,

θ
(i)
2 = fencode

(
x′ (i)).

The encoded data is then passed to second PQC, yielding another intermediate quantum
state |ψ ′

intermediate〉:

∣
∣ψ ′

intermediate
〉

= U2(θ (i)
2 )

∣
∣ψ (2)

initial
〉
.

where |ψ (2)
initial〉 denotes the ground state initialization of qubits in second PQC. The quan-

tum state |ψ ′
intermediate〉 is the result before measurement and upon measuring the PQC in

QN2, we get the classical result:

y2 = M
∣
∣ψ ′

intermediate
〉
.

Finally, the third PQC U3(θ3) takes the sum of output of QN1 (which also is the input of
QN2) and output of QN2 as input and produces the final quantum state |ψfinal〉:

x′′ (i) = y(i)
1 + y(i)

2 .

Since x′′ (i) is again classical, so it has to encoded before passing it to the U3(θ3):

θ
(i)
3 = fencode

(
x′′ (i)).

The final quantum state obtained after the action of U3(θ3) will be:

|ψfinal〉 = U3(θ (i)
3 )

∣∣ψ (3)
input

〉
.

where
∣∣ψ (3)

input
〉

denotes the ground state initialization of qubits in third PQC. The final
quantum state collapses into a classical vector after measurement, which will be the final
result of the network used for further optimization.

y3 = M|ψfinal〉.

The same procedure can be extended for n-residual blocks with different residual config-
urations.

Given a set of n PQCs, U1(θ1), U2(θ2), . . . , Un(θn) and an initial quantum state |ψinitial〉,
the objective is to find the set of parameters θ = θ1, θ2, . . . , θn that maximizes (or minimizes)
some cost function C(θ ) associated with the final quantum state |ψfinal〉 produced by the
cascaded PQCs. The optimization problem can be formulated as:

θ∗ = arg max
θ

C(θ )



Kashif and Al-Kuwari EPJ Quantum Technology            (2024) 11:4 Page 12 of 28

or

θ∗ = arg min
θ

C(θ ),

where θ∗ represents the optimal set of parameters that maximizes (or minimizes) the cost
function. The cost function C(θ ) can be defined based on the desired behavior of the quan-
tum circuit and can be calculated from the measurement result of final quantum state
|ψfinal〉.

4 Methodology
In classical NNs, residual neural networks (ResNets) were proposed to overcome the
problem of vanishing gradients and were very useful for enabling deep learning in clas-
sical machine learning. In this paper, we propose a Residual Quantum Neural Networks
(ResQNets), to enable deep learning in QNNs by mitigating the effect of BP as a function
of the number of layers.

The conventional approach to constructing QNNs contains an arbitrarily deep PQC,
which takes some input and yields some output. Such an architecture typically has a single
QN, as depicted in Fig. 3a. In this paper, we refer to this traditional QNN architecture as
“Simple PlainQNet”.

To construct our proposed ResQNets, we need to further split the traditional QNN ar-
chitecture into two QNs, where every QN contains arbitrary deep quantum layers. Since
our proposed ResQNets contain at least two QNs and the traditional way of constructing
QNNs contains a single QN, we construct a slightly modified version of simple PlainQNet,
which we call “PlainQNet” and includes two or more QNs, with each QN containing PQCs
of arbitrary depth, as shown in Fig. 3b. In PlainQNets, the output of the previous QN is fed
to the next QN. The purpose of constructing PlainQNet is to have a fair comparison with
our proposed ResQNets because ResQNets need two or more QNs to work. An example

Figure 3 QNN architecture used in this paper (a) Simple PlainQNet (b) PlainQNet and (c) ResQNet. The
internal architure and working of QN is shown Fig. 2
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of ResQNet architecture with two QNs is shown in Fig. 3c. The PlainQNet architecture is
similar to general QNN split into two QNs, whereas in the case of ResQNet, the first QN
serves as the residual block, i.e., the input of the first QN is added to its output and then
passed as input to the second QN.

It should be noted that ResQNets can comprise multiple QNs with various arrange-
ments of residual blocks. For instance, the ResNet from Fig. 3c can be extended to have
three QNs, in which case three potential configurations can be employed. These include
having the first and second QNs acting as individual residual blocks, combining the first
and second QNs to serve as a single residual block, and only the first QN functioning as
the residual block. The possibility of these three configurations has been taken into con-
sideration. We also consider the case of three QNs with these configurations.

4.1 Quantum layers design
For the design of quantum layers, we use a periodic structure containing two single-qubit
unitaries (RX and RY ) per qubit. These unitaries are randomly initialized in the range
[0,π ]. Furthermore, a two-qubit gate, i.e., CNOT-gate is used to entangle qubits, and every
qubit is entangled with its neighboring qubit. Figure 4 shows the example design of the
quantum layers we used (5 qubits). All the QNs in our experiments have the same quantum
layers desgin.

4.2 Depth of quantum layers
The impact of the quantum layer depth in examining the existence of BP in the cost func-
tion landscape of a QNN is significant. Effective depth (the longest path within the quan-
tum circuit until the measurement) is crucial in this regard. For convenience, We introduce
two depth parameters: layer depth (DL) and effective depth (DE). The layer depth DL refers
to the combined number of repetitions of the quantum layer illustrated in Fig. 4 in both
QNs, while the effective depth DE represents the overall depth. For our quantum layers
design, the following equation can be used to calculate the effective depth.

Total Effective Depth = DE = 4 × DL + k, (1)

where k = 2, 3, 4, 5 . . . for 5, 6, 7, 8 . . . qubits, respectively. Since the quantum layers are split
into two separate QNs, and the depth per QN can be crucial to achieving better per-

Figure 4 Quantum Layers Design
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Table 1 Depth combinations per QN

DL in QN-1 DL in QN-2 In-text representation

1 5 (1, 5)
5 1 (5, 1)
2 4 (2, 4)
4 2 (4, 2)
3 3 (3, 3)

formance, it is important to calculate DE of each QN individually and then add them
to obtain the final DE . Failure to calculate the depth in each QN separately could re-
sult in an effective depth different from the sum of the effective depths of each QN, i.e.,
DL/QN1 + DL/QN2 �= DE . For example, with DL = 2, the total effective depth would be 10
without considering the splitting into two QNs. However, if DL is split into two QNs with
DL/QN = 1, the effective depth would be 12. A modified version of Eq. (1) should be used
to calculate the DE per QN, as described below.

Effective Depth per QN = DE/QN = 4 × DL/QN + k. (2)

4.3 Depth distribution per QN
As previously discussed, ResQNets and PlainQNets consist of multiple QNs, which results
in different depth splits for a given depth of quantum layers. According to the definition
of BP, the gradient vanishes as a function of the number of qubits; hence, we fix the depth
of quantum layers to DL = 6, and only vary the number of qubits. Table 1 summarizes
the different depth per QN combinations for DL = 6, and all these depth combinations
are tested for different numbers of qubits. Column 3 of Table 1 represents the depth split
in the form of ordered pairs (we refer to this form in the rest of the paper whenever we
discuss depth split per QN). For instance, (1, 5) denotes DL = 1 in the first QN and DL = 5
in the second QN. The depth per QN combination can be extended to more than two QNs
in a similar manner.

4.4 Cost function definition
For training our proposed ResQNet, we consider a simple example of learning the iden-
tity gate. In such a scenario a natural cost function would be the difference of 1 minus
the probability of measuring an all-zero state, which can be described by the following
equation.

C =
〈
ψ(θ )

∣
∣(I – |0〉〈0|)∣∣ψ(θ )

〉
= 1 – p|0〉.

We consider the global cost function setting, i.e., we measure all the qubits in the net-
work. Therefore, the above cost function definition will be applied across all the qubits
according to the following equation.

C =
〈
ψ(θ )

∣
∣(I – |00 . . . 0〉〈00 . . . 0|)∣∣ψ(θ )

〉
= 1 – p|00...0〉. (3)

For cost function optimization, we use Adam optimizer (with a stepsize of 0.1), which is
a gradient-based optimization method for optimization problems. The Adam optimizer
updates the parameters of a model iteratively based on the gradient of the loss function
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with respect to the parameters. The Adam optimizer uses an exponentially decaying av-
erage of the first and second moments of the gradients to adapt the learning rate for each
parameter. Let gt be the gradient of the loss function with respect to the parameters at
iteration t. The first moment, mt , and the second moment, vt , are computed as follows:

mt = β1mt–1 + (1 – β1)gt ,

vt = β2vt–1 + (1 – β2)g2
t ,

where β1 and β2 are the decay rates for the first and second moments, respectively. The
bias-corrected first moment and second moment are then computed as:

m̂t =
mt

1 – β t
1

,

v̂t =
vt

1 – β t
2

.

Finally, the parameters are updated using the following equation:

θt+1 = θt –
α

√
v̂t + ε

m̂t ,

where α is the learning rate and ε is a small constant to prevent division by zero.

5 Results and discussion
In order to investigate the issue of BP in both PlainQNets and ResQNets, we maintain a
constant depth of quantum layers, DL = 6, which comprises 100 quantum gates and 60 pa-
rameters. The quantum layer depth distribution is varied among different combinations,
as discussed in Table 1. The DE per QN can then be calculated using Eq. (2). The per-
formance of both networks is evaluated by comparing their cost function landscapes and
training results for the problem specified in Eq. (3).

5.1 PlainQNet and simple PlainQNet
In this paper, the construction of the proposed ResQNets involves the incorporation of a
minimum of two QNs, whereas traditionally QNNs development entails the use of a single
QN (referred to as “simple PlainQNets in this paper). To ensure a fair performance com-
parison of QNNs with no residual connections and our proposed ResQNets, we modify
the architecture of simple PlainQNets by dividing it into two QNs (referred to as “Plain-
QNets” in this paper). This architectural modification is primarily aimed to have a similar
architecture of PlainQNets (QNNs with no residual connection) and ResQNets before
comparing their performance.

Given the modification introduced to the conventional QNN architecture, as stated
above, it is necessary to comparatively analyze the performance of the unaltered simple
PlainQNets and the adapted PlainQNets. This preliminary comparison aims to identify
any potential consequences arising from the structural modification. If this architectural
modification results in minimal disruptions to performance, it would establish a basis for
conducting a subsequent comparative analysis between PlainQNets and ResQNets with
confidence.
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Figure 5 Cost vs. iterations of PlainQNets and simple PlainQNets (a) for 6 qubits (b) for 7 qubits. The
parentheses denote the DL per QN

The simple PlainQNets and PlainQNets are compared for 6-qubit and 7-qubit quantum
layers with a constant depth of DL = 6. In the case of PlainQNets, the depth distribution
per QN can vary, but we use the depth combinations of (5, 1) and (4, 2), where the first
entry represents the depth of the first QN and the second entry represents the depth of
the second QN, as shown in Table 1. We choose deeper quantum layers on the first QN
and relatively shallow depth on the second QN primarily because such a configuration of
depths per QN leads to a better performance, which will be discussed in more detail in
the subsequent sections. For 6-qubit quantum layers, the effective depth (DE) for Plain-
QNets for both depth combinations mentioned above is 30 (as defined in Eq. (2)). The
closest possible DE for simple PlainQNets using the quantum layers considered in this
paper (shown in Fig. 4) is 31 with an overall DL of 7 (as defined in Eq. (1)), which was
used in the comparison. Similarly, for 7-qubit quantum layers, the DE for PlainQNets is
32 for both depth combinations per QN. The closest DE in the case of simple PlainQNets
is obtained for DL = 7.

Both PlainQNets and simple PlainQNets are then trained for the problem specified in
Eq. (3). The training results are displayed in Fig. 5. It can be observed that for 6-qubit
layers, both PlainQNets and simple PlainQNets exhibit comparable performance. How-
ever, when the number of qubits increases to 7, the performance of simple PlainQNets
decreases significantly due to BP, while PlainQNets improves. Based on these observa-
tions, we can infer that it is appropriate to compare the performance of PlainQNets with
that of our proposed ResQNets. Hence, for the remainder of the paper, we will compare
the performance of PlainQNets, which are QNNs containing two (or more) QNs, with that
of ResQNets.

5.2 ResQNet with shallow width quantum layers
In this section, we perform a comparative analysis of the incidence of BP in both Plain-
QNets and ResQNets. Both PlainQNets and ResQNets consist of two QNs, with a max-
imum of one residual block in the case of ResQNets. To facilitate a fair comparison, we
consider shallow depth quantum layers with DL = 6 and incrementally vary the number of
qubits from 6 to 10.
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Figure 6 Cost function landscapes of PlainQNet (upper panel) and ResQNet (lower panel) for 6 Qubits. The
parentheses denotes the DL per QN

Figure 7 Cost vs. iterations of (a) PlainQNets (b) and ResQNets for 6 qubits. The parentheses denote the DL

per QN

5.2.1 6-qubit circuit
In this setting, we experiment with a total of 6 qubits. The cost function landscapes for
both PlainQNet and ResQNet were analyzed and compared, as shown in Fig. 6. The results
demonstrate that a significant portion of the cost function landscapes of the PlainQNet
for almost all the depth combinations are flat and have a narrow region containing the
global minimum. On the other hand, the cost function landscapes of ResQNets are less
flat and have a wider region containing the global minimum, which makes ResQNet more
suitable for optimization.

The training of PlainQNets and ResQNets was performed for the problem defined in
Eq. (3). The results of the training are depicted in Fig. 7. When the depth of the second
QN is equal to or greater than the depth of the first QN, it was observed that the Plain-
QNets do not undergo successful training. This can be attributed to the flat cost function
landscape, i.e., the BP, as depicted in Fig. 6. For the similar depth distribution per QN
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(depth in second QN ≥ depth in first QN), the ResQNets were observed to effectively un-
dergo training. However, they struggled to reach an optimal solution due to the presence
of multiple local minima in their cost function landscape. In instances where the depth of
the first QN is greater than the second QN, both PlainQNets and ResQNets underwent
successful training, but ResQNets outperformed PlainQNets.

5.2.2 8-qubit ciruit
We now conduct experiments on both PlainQNets and ResQNets with 8-qubit layers, and
examine the cost function landscapes of both PlainQNets and our proposed ResQNets.
The overall layer depth is set to 6, and all depth combinations are analyzed. The results
presented in Fig. 8, reveal that approximately 90% of the cost function landscape for Plain-
QNets remains flat irrespective of the depth distribution per QN, making them unsuitable
for optimization. In contrast, the cost function landscapes of ResQNets are still not flat
for all the depth combinations, and thus are more favorable for optimization.

We conduct training experiments for both PlainQNets and ResQNets with 8 qubit quan-
tum layers to solve the problem defined in Eq. (3). The training results are presented in
Fig. 9, which shows that as we increase the number of qubits from 6 to 8, the PlainQNets
get trapped in the flat cost function landscape (i.e., BP) for all the depth combinations per
QN and fail to train effectively for the specified problem.

On the other hand, the ResQNets demonstrate successful training across all the depth
combinations, surpassing the performance of PlainQNets. Notice that ResQNets exhibit
superior learning outcomes when the depth of the first QN is much greater than that of
the second QN (DE in QN1 > > > > DE in QN2), such as in the case of (5, 1). This is because
in such scenarios the cost function landscape has fewer and wider regions leading to the
global minimum. Conversely, when the depth of the second QN is equal to or greater than
that of the first QN, the cost function landscape is characterized by multiple local minima,
making it less suitable for optimization as the optimizer becomes trapped in local minima.
This phenomenon can be attributed to the presence of residual blocks in ResQNets. In the

Figure 8 Cost function landscapes of PlainQNet (upper panel) and ResQNet (lower panel) for 8 Qubits. The
parentheses denote the DL per QN
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Figure 9 Cost vs. iterations of (a) PlainQNets and (b) ResQNets for 8 qubits. The parentheses denote the DL

per QN

Figure 10 Cost function landscapes of PlainQNet (upper panel) and ResQNet (lower panel) for 10 Qubits. The
parentheses denotes the DL per QN

case of two QNs, a residual connection is introduced only after the first block. This helps
in mitigating the issue of BP. However, if the second QN is deep enough, it can still result in
BP. In such scenarios, the cost function landscape still contains multiple local minima and
fewer paths to reach the global minimum, which makes the optimization process more
prone to becoming stuck in a local minimum. Despite this, ResQNets still demonstrate
superior training performance compared to PlainQNets.

5.2.3 10-qubit circuit
To expand our study further, we increased the number of qubits to 10 and performed the
same experiments as with quantum layers of 6 and 8 qubits. The cost function landscapes
were then analyzed for both PlainQNets and ResQNets, as shown in Fig. 10. Similar to the
case of 8 qubit layers, a substantial portion of the cost function landscape of PlainQNets
was found to be flat, indicating the presence of BP and making it unsuitable for optimiza-
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Figure 11 Cost vs. iterations of (a) PlainQNets (b) and ResQNets for 10 qubits. The parantheses denotes the
DL per QN

tion. Conversely, the cost function landscape of ResQNets remained more favorable for
optimization as it was characterized by multiple paths leading to the global minimum,
thus avoiding the occurrence of BP.

Subsequently we trained the 10 qubit quantum layers to address the problem defined in
Eq. (3). The results of these experiments are depicted in Fig. 11. Our analysis indicates that
PlainQNets did not exhibit successful training outcomes for nearly all depth combinations,
with the exception of (4, 2), which showed considerable performance improvement. When
we examined its cost function landscape in Fig. 10, we observed that there exist one or two
narrow regions that contain the solution and may be found by the optimizer to converge to
the solution. However, these narrow regions are unlikely to be encountered and thus the
performance, despite being optimal, is not considered suitable for general optimization
problems. Therefore, it can still be concluded that the PlainQNets are severely affected by
the problem of BP. On the other hand, ResQNets effectively overcame the issue of BP and
demonstrated successful training outcomes for all depth combinations. Our observations
for 10 qubit quantum layers align with our previous findings for 6 and 8 qubit layers in
that ResQNets are more effective when the depth after the residual connection is less.
This suggests that a shallower depth of quantum layers after the residual connection in
ResQNets is more favorable for optimization and mitigating the impact of BP.

Our results conclusively demonstrate that PlainQNets are heavily impacted by the issue
of BP as the number of qubits increases, which significantly hinders their performance
and ability to optimize the cost function. The previous results have demonstrated the ad-
vantage of our proposed ResQNets over PlainQNets in mitigating the phenomenon of BP.
Therefore, in the next section, we will conduct experiments solely with ResQNets.

5.3 ResQNets with wider quantum layers
To analyze the scalability of ResQNets for larger quantum circuits, we consider quantum
layers with a larger number of qubits, i.e., 15 and 20. The depth of the quantum layers, DL,
is kept constant at 6. As the cost function landscapes are known to have a direct impact
on the training results, as shown in Sect. 5.2. Consequently, we only present the training
results for the 15 and 20-qubit quantum layers.
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Figure 12 Cost vs. iterations of ResQNets for (a) 15 qubits and (b) 20 qubits. The parentheses denote the DL

per QN

5.3.1 15-qubit circuit
We train the 15 qubit quantum layers to optimize the problem defined in Eq. (3). The
training results are shown in Fig. 12a. It can be observed that the ResQNets are effectively
trained. Additionally, analogous to the case of shallow width quantum layers, the perfor-
mance is substantially better when the depth in the first QN (before the residual point) is
bigger than the second QN.

5.3.2 20-qubit circuit
We now train the ResQNets for 20-qubit layers for the problem defined in Eq. (3), with a
total layer depth of DL = 6. It can be observed that even with 20 qubit layers, the ResQNets
are effectively trained, as shown in Fig. 12b. Furthermore, similar to the previously shown
results, the ResQNets for 20-qubit layers also perform significantly better when the depth
after the residual point (second QN) is lesser than the depth before the residual point (first
QN).

From the results in Fig. 12, it is evident that the ResQNets are capable of working with
wider quantum layers. The results demonstrate that analogous to the case of shallow-
width quantum layers, the training performance is better with optimal results being
achieved for a larger depth in the first QN and a smaller depth in the second QN.

It should be noted that our experiments are limited by the memory constraints of our
local computer and we cannot go beyond 20 qubits. However, based on our findings, we
believe that the proposed ResQNets would still train effectively even beyond 20 qubits.

5.4 ResQNets with 3-QN
From the analysis presented in previous sections, it can be observed that the ResQNets
consisting of two QNs with a maximum of one residual block can effectively address the
problem of BP and significantly improve the training performance of QNNs. In this sec-
tion, we show that increasing the number of QNs in ResQNets can enhance the perfor-
mance of ResQNets even further. As discussed in Sect. 4, for three QNs we can have mul-
tiple configurations of residual blocks. We consider all of these configurations for our ex-
periments with 20-qubit quantum layers and a fixed quantum layer depth of DL = 6. The
results of the experiments conducted in this section will provide valuable insights into the
optimal configuration of residual blocks for ResQNets with three or more QNs.
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Figure 13 Cost function landscapes of ResQNets for 20 Qubits and 3-QNs. Residual after every QN (Top
panel), Residual after two QNs (middle panel) and residual only after the first QN (bottom panel). The
parentheses denote the DL per QN and the comma denotes the residual point

The cost function landscapes of various residual block configurations in ResQNets with
three QNs were analyzed, as presented in Fig. 13. The results indicate that the optimal
placement of residual blocks has a significant impact on the performance of ResQNets.
When the residual block is added after every QN, the cost function landscape quickly flat-
tens irrespective of the depth per QN, suggesting that this configuration leads to equiva-
lent or suboptimal performance compared to PlainQNets, which is not at all suitable for
optimization.

On the other hand, when the residual block is added after two QNs, the cost function
landscape shows multiple and wider regions containing the global minimum, which makes
this configuration more suitable for optimization. Moreover, this configuration exhibits a
consistent cost function landscape regardless of the depth per QN combination, implying
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Figure 14 Training results of ResQNets with three QNs with 20 qubit layers. (a) Residual after every QN
(b) Residual after two QNs and (c) Residual after the first QN. The parentheses denote the DL per QN and the
comma denotes the residual point

that this particular residual block arrangement is more robust to BP and supports a wide
range of depths and QN combinations.

For the case of adding the residual only after the first QN, with two QNs after the residual
block, the results show that the cost function landscape is better than the case of adding
the residual block after every QN, but not as good as the case where there is a gap of two
QNs while adding the residual.

We then trained ResQNets with three QNs for all the configurations while varying the
depth for each QN combination on the problem defined in Eq. (3). The training results
are shown in Fig. 14. These results align with the behavior of the cost function landscape,
where the residual block configuration skipping two QNs outperforms other configura-
tions. It can be observed that the residual block configuration after every QN does not
train at all, while the residual block configuration after the first QN does converge for all
the depth per QN combinations, but with significantly slower convergence compared to
the residual block configuration after two QNs.

5.5 3-QN vs. 2-QN ResQNet
In this section, we compare the performance of ResQNets with 2 and 3-QNs to demon-
strate the impact of increasing the number of QNs. The analysis was conducted for 20
qubit layers considering the best-performing depth combinations for both 2 and 3-QNs.

For 2-QNs, the results from Fig. 12b indicate that the depth combinations of (5,1) and
(4,2) performed better than other depth combinations. On the other hand, for three QNs,
the results from Fig. 14b and 14c show that the depth combinations of (4 1, 1) and (4, 1 1)
outperformed other depth combinations. A closer examination of the best-performing
depth combinations reveals that the DL before and after the residual block for the depth
per QN combination of (5, 1) in 2-QN ResQNet is equivalent to depth per QN combina-
tion of (4 1, 1) for 3-QN ResQNet. Similarly, the combination (4, 2) in the 2-QN ResQNet
is equivalent to (4, 1 1) in the 3-QN ResQNet. Despite these similarities, as demonstrated
in Fig. 15, the ResQNets with 3-QNs exhibit superior performance, as they converge to
the optimal solution more efficiently compared to the ResQNets with 2-QNs.

5.6 Real quantum device
The results presented so far were obtained by running ResQNets and PlainQNets on a
simulation platform. In this section, we carry out some experiments on real quantum de-
vices. In particular, we trained both ResQNets and PlainQNets with 2-QNs on a 5-qubit
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Figure 15 Training comparison of 2-QN and 3-QN ResQNets for 20 qubit layers. The parentheses denote the
DL per QN and the comma denotes the residual point

Figure 16 Training comparison ResQNets and PlainQNets on (a) real quantum device and (b) simulator. The
values in parentheses denote the depth per QN

quantum layer with 20 epochs using an IBM’s quantum device, namely ibmq_lima. The
quantum layers depth was fixed to DL = 6 with DL = 5 in the first QN, and DL = 1 in the
second QN. This depth combination was chosen considering all the results discussed pre-
viously. We note that due to the limited number of publicly available quantum devices, the
queue times for executing the jobs are considerably long. Therefore, to minimize the train-
ing time, we chose to reduce the number of epochs for real-device training. We trained
both PlainQNets and ResQNets for only 20 epochs on real devices instead of 100 epochs
as in the case of simulation. The training results are illustrated in Fig. 16.

The results presented in Fig. 16a reveal that ResQNets have been trained successfully on
a real device, whereas PlainQNets have not been trained on a real device. The same trend is
observed when both networks are executed on the simulator, as depicted in Fig. 16b. How-
ever, when both PlainQNets and ResQNets are trained on a real device, a slight fluctuation
is observed while approaching the optimal solution due to hardware noise, as compared to
the simulation results. Despite the presence of noise, the rate of decrease in the loss value
for ResQNets is almost identical for both simulation and real experiments. According to
[52], hardware noise can potentially cause BP. However, our results demonstrate that our
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proposed ResQNets are somewhat resilient against hardware noise, as they achieve similar
performance to that of the simulator (though with some fluctuations).

6 Conclusion
The problem of barren plateaus (BP) in quantum neural networks (QNNs) is a critical
hurdle on the road to the practical realization of QNNs. There have been several attempts
to resolve this issue, but the impact of BP can still vary greatly depending on the application
and the architecture of the quantum layers. Thus, it is essential to have multiple solutions
for BP to cover a wide range of problems.

In this paper, we propose residual quantum neural networks (ResQNets) to address
the issue of BP in QNNs. Our approach is inspired by classical residual neural networks
(ResNets), which were introduced to overcome the problem of vanishing gradients in clas-
sical neural networks.

In traditional QNNs, a single parameterized quantum circuit (PQC) with arbitrary
depth is included within a single quantum node (QN). To create ResQNets, we split the
conventional QNN architecture into multiple QNs, each of which contains its own PQC
with varying depths. Splitting the QNNs allows us to introduce the residual connections
between the QNs, forming our proposed ResQNets. In simple QNNs without residual
connections (referred to as PlainQNets), the output from the previous QN serves as the
input to the next. On the other hand, in ResQNets, one or multiple QNs can serve as resid-
ual blocks, with the output from a previous residual block being added to its input before
it is passed on to the next QN.

In our study, we first demonstrate the efficacy of the proposed splitting of the conven-
tional QNN architecture into multiple QNs (PlainQNets) by comparing their performance
to that of conventional QNNs (simple PlainQNets). The comparison results indicated that
the PlainQNets perform better than or equivalent to that of conventional QNNs. Subse-
quently, we compare the performance of PlainQNets with that of our proposed ResQNets
through several training experiments. Our analysis of the cost function landscapes for
quantum layers of increasing qubits shows that incorporating residual connections results
in improved training performance.

Based on our findings, we conclude that the proposed ResQNets provide a promising
solution to overcome the problem of BP in QNNs and offer a potential direction for further
research in the field of quantum machine learning.
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