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Abstract
We investigate how to generate the nonreciprocal macroscopic tripartite
entanglement among the atomic ensemble, ferrimagnetic magnon and mechanical
oscillator in a hybrid atom-optomagnomechanical system, where an ensemble of
two-level atoms and a yttrium iron garnet micro-bridge supporting the magnon and
mechanical modes are placed in a spinning optical resonator driven by a laser field.
The phonon being the quantum of the mechanical mode interacts with the magnon
and the optical photon via magnetostriction and radiation pressure, respectively, and
meanwhile the photon couples to the atomic ensemble. The results show that not
only all bipartite entanglements but also the genuine tripartite entanglement among
the atomic ensemble, magnon and phonon could be generated at the steady state.
Moreover, the nonreciprocity of atom-magnon-phonon entanglement can be
obtained with the aid of the optical Sagnac effect by spinning the resonator, in which
the entanglement is present in a chosen driving direction but disappears in the other
direction. The nonreciprocal macroscopic tripartite entanglement is robust against
temperature and could be flexibly controlled by choosing the system parameters. Our
work enriches the study of macroscopic multipartite quantum states, which may have
potential applications in the development of quantum information storage and the
construction of multi-node chiral quantum network.

Keywords: Genuine tripartite entanglement; Nonreciprocal entanglement;
Macroscopic quantum state; Magnetostriction; Radiation pressure

1 Introduction
In recent years, a variety of quantum systems including atomic ensembles [1], supercon-
ducting qubits [2], trapped ions [3], semiconductor quantum dots [4], and spins in mag-
netic materials or diamonds [5, 6] have become promising candidates for studying the
light-matter interactions, which are significantly applied in quantum information process-
ing and quantum computing. Especially, magnons, quanta of collective spin wave excita-
tion in yttrium iron garnet (YIG) as the representative magnetic material, provide a wide
platform to build hybrid quantum networks and realize multi-functional quantum tasks
via combining various quantum systems with different advantages. The strong and even
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super-strong couplings between magnons and microwave cavity photons have been re-
ported due to the high spin density of YIG [7, 8], and magnons can also interact with opti-
cal photons, superconducting qubits, and phonons [9, 10]. It is noted that the cavity opto-
magnomechanical system is proposed by means of the magnetostrictive and radiation-
pressure interactions mediated by the mechanical motion [11]. In such a hybrid sys-
tem, some fascinating quantum phenomena have been demonstrated, such as microwave-
optical conversion and entanglement [11, 12], atom-magnon entanglement [13], Fano-
type optical response and four-wave mixing process [14], and phonon-magnon-photon
entanglement [15].

Entanglement is an essential quantum effect in hybrid quantum systems, particularly
the multipartite continuous variable entanglement plays a key role in multi-party quan-
tum communication and network [16, 17]. And the nonlocal correlation of macroscopic
objects can be widely used in large-scale fundamental testing of quantum mechanics,
quantum to classical transitions, and building more powerful sensing, communication,
processing, and storage devices [18–20]. In cavity optomechanics, significant progress
has been made in the study of macroscopic entanglement via the optomechanical ra-
diation pressure [21], where the entanglements of two distant macroscopic mechanical
resonators and between the massive mechanical oscillator and the electromagnetic field
or collective atomic spin oscillator have been reported [22–26]. Apart from the optome-
chanical system, cavity magnonics has gradually become an advantageous platform for
studying macroscopic quantum entanglement [9, 10]. For example, two long-distance fer-
rimagnetic spheres can be entangled by exploiting the magnetostrictive interaction [27],
squeezed-reservoir engineering [28], nonlinear Kerr effect of magnons [29], etc. Tan et al.
[30] proposed a scheme to entangle a macroscopic mechanical motion and a YIG sphere
mediated by the electromagnetic cavity far beyond the sideband-resolved regime. And
Zhong et al. [31] recently presented that the macroscopic tripartite entanglement and
steering of three YIG spheres can be achieved by a squeezed reservoir. Moreover, the mul-
tipartite quantum correlations among the magnons, photons, phonons, and atoms have
been studied [32–37].

Nonreciprocity representing the unidirectional invisibility of light in propagation has
been an indispensable tool to construct the optical functional components and complex
information processing network [38]. Recently, the Fizeau light-dragging effect induced
by spinning the optical resonator leads to a positive or negative frequency shift of opti-
cal frequency, which has become an experimentally feasible approach to explore various
quantum nonreciprocal phenomena including nonreciprocal photon blockade [39, 40],
quantum entanglement and steering [31, 37, 41, 42], phonon laser [43], and sideband re-
sponses [44]. Interestingly, Wang et al. [45] theoretically show the nonreciprocal magnon
blockade could be generated based on the microwave cavity-mediated qubit-magnon co-
herent and dissipative couplings at the quantum limit level. And the magnon Kerr effect
also can be used to create the nonreciprocal quantum entanglement via tuning the bias
magnetic field direction [46]. Exploring the nonreciprocal multipartite entanglement of
macroscopic objects is of great significance to the storage and transmission of informa-
tion in complex quantum chiral network, but the study is still few and needs to be further
supplemented.

Inspired by the above, we propose a scheme to generate the nonreciprocal macroscopic
tripartite entanglement among the atomic ensemble, ferrimagnetic magnon and mechan-
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ical oscillator in a magnon-based hybrid system. In this system, the optomechanical and
magnomechanical couplings are mediated by the mechanical oscillator via the magne-
tostrictive and radiation pressure interactions, and the optical photon in a spinning res-
onator couples to an ensemble of two-level atoms in the low-excitation limit. By driving
the magnon with a sufficiently strong red-detuned microwave field, the magnon-phonon
entanglement is initially prepared, which is partially distributed to the atom-magnon and
atom-phonon subsystems when the optical photon and the atom are respectively scattered
onto the two sidebands of the phonon. Specifically, the genuine tripartite entanglement
among the atom, magnon, and phonon modes could be achieved, and the stationary en-
tanglement is robust against thermal fluctuations. Moreover, the nonreciprocal bipartite
and tripartite entanglements are induced by the Fizeau light-dragging effect by spinning
the resonator, and the ideal nonreciprocal tripartite entanglement could be obtained by
properly choosing the system parameters.

In Sect. 2, we introduce a hybrid atom-optomagnomechanical system composed of a
YIG micro-bridge supporting the magnon and phonon, an spinning optical resonator, and
an atomic ensemble, provide its Hamiltonian and the corresponding quantum Langevin
equations (QLEs), and study the linearized dynamics of this system. In Sect. 3, we show the
generation of macroscopic atom-magnon-phonon entanglement and discuss the nonre-
ciprocity of multipartite entanglement under the influence of various system parameters.
In Sect. 4, a summary is given.

2 Model and equation
We consider a hybrid atom-optomagnomechanical system consisting of an atomic ensem-
ble of two-level atoms, a magnon, a phonon, and an optical photon, as shown in Fig. 1(a)
and 1(b). A YIG micro-bridge attached to a small high-reflectivity mirror pad on the sur-
face and an atomic ensemble are placed in a spinning optical resonator driven by a laser
field. The YIG crystal is driven by a microwave field and simultaneously in a uniform bias
magnetic field along the z direction, where the magnetostriction-induced phononmode
interacts with the magnon. The optical photon couples to the phonon and the atomic
ensemble via the radiation-pressure [12, 13] and collective Tavis–Cummings-type inter-
actions [47–49], respectively. The Hamiltonian of the system is given by the sum of the
free term

H0/� = ωmm†m + ωcc†c +
ωa

2
Sz +

ωb

2
(
q2 + p2) (1)

and the interaction term

HI/� = ga
(
S+c + S–c†

)
+ gmm†mq – gcc†cq + iE1

(
m†e–iω0t – H .c.

)
+ iE2

(
c†e–iωLt – H .c.

)
,

(2)

where m(m†) and c(c†) are annihilation (creation) operators of the magnon and the op-
tical photon, respectively, satisfying [j, j†] = 1(j = m, c). Sz,± =

∑Na
i=1 σ i

z,± are collective spin
operators of an ensemble of Na two-level atoms with Pauli matrices σz,± and satisfy the
commutation relations [S+, S–] = Sz and [Sz, S±] = ±2S±. q and p are the dimensionless po-
sition and momentum of the phonon ([q, p] = i�). ωm,ωc,ωa,and ωb are resonant frequen-
cies of the magnon, optical photon, atomic ensemble and phonon modes, respectively. The
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Figure 1 (a)-(b) Hybrid atom-optomagnomechanical system. An optical mode driven by a laser at frequency
ωL in a spinning resonator couples to an ensemble of two-level atoms (a) and a magnon mode (m) in a YIG
micro-bridge by the mediation of a phonon mode (b) induced by magnetostriction. The YIG micro-bridge is
driven by a strong microwave field at frequency ω0, and simultaneously is in a uniform bias magnetic field
along the z direction. (c) Frequencies and linewidths of the system. When the magnon is resonant with the
blue sideband (anti-Stokes) of the driven field at frequencies ω0 +ωb and the optical photon and atom
modes are scatted by the phonon onto two sidebands, the genuine atom-magnon-phonon entanglement is
generated at the steady state. (d) By fixing the CW rotation of the resonator, we have the frequency ωc –�s

(ωc +�s) for the optical CW (CCW) mode when the light is driven from the right-hand (left-hand)

magnon frequency can be flexibly adjusted by the external bias magnetic field H , which is
described as ωm = γ H with the gyromagnetic ratio γ /2π = 28 GHz/T. ga = μ

√
ωc/2�ε0Vc

is the atom-photon coupling coefficient, where μ is the atomic dipole moment, ε0 is the
vacuum conductivity, and Vc is the optical mode volume. gm (gc) is the single-magnon mag-
nomechanical (single-optical optomechanical) coupling strength. The Rabi frequency [32]
E1 =

√
5

4 γ
√

NHd indicates the coupling strength between the magnon and the microwave
driving field with frequency ω0 and amplitude Hd , where N is the total spin number of
the YIG micro-bridge. E2 =

√
2κcPL/(�ωL) denotes the coupling strength between the op-

tical photon and the driving laser field with frequency ωL and power PL, where κc is the
optical photon decay rate. When the excitation probability of a single atom is small [50],
the atom is in the low-excitation limit. In this case, all atoms are initially prepared in the
ground state (Sz � 〈Sz〉 � –Na), and the dynamics of the atomic polarization can be de-
scribed in terms of bosonic operators. The atomic annihilation operator could be defined
as a = S–/

√|〈Sz〉|, which satisfies the usual bosonic commutation relation [a, a†] = 1.
On the other hand, due to the optical Sagnac effect, the counterpropagating light would

travel different effective optical path lengths by spinning the resonator. In this case, the
optical photon experiences an opposite Fizeau frequency shift �s (ωc → ωc + �s), de-
generating into the clockwise (CW) and counterclockwise (CCW) modes [39, 41]. In a
rotating frame with respect to �ωL(a†a + c†c) + �ω0m†m, the bosonized Hamiltonian can
be written as

H/� = �aa†a + �mm†m + �cc†c +
ωb

2
(
q2 + p2) + gN

(
a†c + ac†

)

+ gmm†mq – gcc†cq + iE1
(
m† – m

)
+ iE2

(
c† – c

)
, (3)
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where �a = ωa– ωL, �m = ωm– ω0, �c = ωc– ωL + �s, and gN = ga
√

N describes the ef-
fective atom-photon coupling strength. If the resonator is rotated in CW direction (see
Fig. 1(a))) with an angular velocity 	, the Sagnac–Fizeau shifts are [51]

�s = ±nR	ωc

c

(
1 –

1
n2 –

λ

n
dn
dλ

)
, (4)

where n(R) is the refractive index (radius) of the resonator, c(λ) is the speed (wavelength)
of light in vacuum, and the dispersion term dn/dλ is relatively small and can be ignored.
�s > 0 (�s < 0) denotes that the optical CCW (CW) mode is driven from the left-hand
(right-hand) side.

In the standard fluctuation-dissipation theorem, the QLEs of the system can be obtained

ȧ = –(i�a + γa)a – igN c +
√

2γaain,

ċ = –(i�c + κc)c + igccq + E2 +
√

2κccin,

ṁ = –(i�m + κm)m – igmmq + E1 +
√

2κmmin,

q̇ = ωbp, ṗ = –ωbq – γbp + gcc†c – gmm†m + ξ ,

(5)

where γa, κm, and γb are dissipation rates of the atomic excited level, the magnon, and the
phonon, respectively. ain, cin, and min are the corresponding input noise operators with
zero mean, which satisfy the following correlation functions: 〈j(t)j†(t′)〉 = [Nj(ωj) + 1]δ(t –
t′), and 〈j(t)†j(t′)〉 = Nj(ωj)δ(t – t′)(j = a, c, m). ξ (t) is the Hermitian Brownian noise oper-
ator, which is essentially non-Markovian. But for a large mechanical quality factor Qb =
ωb/γb � 1 [52], the Markovian approximation can be taken, so it can be considered as a
δ-autocorrelation: 〈ξ (t)ξ (t′)+ξ (t′)ξ (t)〉/2 � γb[2Nb(ωb)+1]δ(t – t′). The equilibrium mean
thermal number of each mode is defined as Nk(ωk) = [exp(�ωk/κBT) – 1]–1(κ = a, c, m, b),
where κB and T are the Boltzmann constant and the environmental temperature, respec-
tively.

By continuously driving the magnon and the optical photon with strong pumping fields,
the magnomechanical and optomechanical couplings can be enhanced, which leads to
large steady-state coherent amplitudes |〈m〉|, |〈c〉| � 1. Therefore, the dynamics of the sys-
tem can be linearized around the steady-state values by writing the operators as k = 〈k〉+δk
and neglecting the second-order fluctuation terms. The quadratures of the atomic ensem-
ble, magnon, and optical photon are defined as Xj = (j + j†)/

√
2 and Yj = i(j† – j)/

√
2, and

similarly for the quadrature components of input noise operators Xin
j = (jin + j†in)/

√
2 and

Y in
j = i(j†in – jin)/

√
2. The linearized QLEs describing the quantum fluctuations of the sys-

tem can be expressed as

u̇(t) = Au(t) + n(t), (6)

where u(t) = [δXa(t), δYa(t), δXc(t), δYc(t), δq(t), δp(t), δXm(t), δYm(t)]T , n(t) = [
√

2κaXin
a ,√

2κaY in
a ,

√
2κcXin

c ,
√

2κcY in
c , 0, ξ (t),

√
2κmXin

m ,
√

2κmY in
m ]T and the drift matrix A is given



Zheng et al. EPJ Quantum Technology            (2024) 11:8 Page 6 of 14

by

A =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

–γa �a 0 gN 0 0 0 0
–�a –γa –gN 0 0 0 0 0

0 gN –κc �̃c Gc 0 0 0
–gN 0 –�̃c –κc 0 0 0 0

0 0 0 0 0 ωb 0 0
0 0 0 –Gc –ωb –γb 0 Gm

0 0 0 0 –Gm 0 –κm �̃m

0 0 0 0 0 0 –�̃m –κm

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. (7)

�̃c = �c – gc〈q〉 (�̃m = �m + gm〈q〉) is the effective optomechanical (magnomechanical)
detuning including the frequency shift due to the radiation pressure (magnetostriction),
where the mechanical displacement is 〈q〉 = (gc|〈c〉|2 – gm|〈m〉|2)/ωb. Gm = –i

√
2gm〈m〉 and

Gc = i
√

2gc〈c〉 are the corresponding effective coupling strengths, where

〈m〉 =
E1

κm + i�̃m
,

〈c〉 =
E2(γa + i�a)

g2
N + (κc + i�̃c)(γa + i�a)

.
(8)

The average value of the atomic mode is 〈a〉 = –igN 〈c〉/(γa + i�a). Under the optimal con-
ditions |�̃m|, |�a|, |�1| � ωb � κj (see Fig. 1(c)), the average values can be simplified as
〈m〉 � –iE1/�̃m and 〈c〉 � iE2�a/(g2

N – �̃c�a), which are the pure imaginary numbers.
Correspondingly, the effective coupling strengths Gm and Gc are approximately real num-
bers. If the real parts of all eigenvalues of A are negative, the system is stable and reaches
a steady state when t → ∞. The steady-state conditions of system can be derived by the
Routh–Hurwitz criterion [53] (i.e., |A – λI| = 0). In this work, the characteristic equation
is in the form of eighth-order polynomial for the 8 × 8 drift matrix A, which is difficult
to solve the stability conditions analytically. Here we numerically calculate and guaran-
tee that all parameters satisfy the stability conditions. Due to the linearized dynamics
and Gaussian input noise, the system is a continuous variable (CV) four-mode Gaus-
sian state, which can be characterized by a 8 × 8 covariance matrix (CM) V defined as
Vij = 〈ui(t)uj(t′) + uj(t′)ui(t)〉/2 (i, j = 1, 2, . . . 8). The steady-state CM V can be obtained by
solving the Lyapunov equation [54]

AV + VAT = –D, (9)

where D = diag[κa(2Na +1),κa(2Na +1),κc(2Nc +1),κc(2Nc +1), 0,γb,κm(2Nm +1),κm(2Nm +
1)] is the diffusion matrix defined as 〈ni(t)nj(t′) + nj(t′)ni(t)〉/2 = Dijδ(t – t′). The mini-
mal residual contangle Rmin

τ [55] is taken to quantify the genuine tripartite entanglement
among the atomic, the magnon and the phonon, which is given by

Rmin
τ ≡ min

[
Ra|mb

τ , Rm|ab
τ , Rb|am

τ

]
, (10)

where Ri|jk
τ ≡ Ci|jk – Ci|j – Ci|k ≥ 0 (i, j, k = a, m, b) is the residual contangle, which is

a CV analogue of tangle for discrete-variable tripartite entanglement, Cu|v is defined
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Figure 2 Density plot of logarithmic negativity related to bipartite entanglement (a) Emb , (b) Eab , (c) Eam , and
(d) tripartite atom-magnon-phonon entanglement Rmin

τ versus detunings �̃m and �a with �̃c = –�a and
	 = 0. See text for the other parameters.

as the square of logarithmic negativity [56] of subsystems u and v (v contains one or
two subsystems), namely, Cu|v = E2

u|v with EN = max[0, – ln(2v)]. When v contains one
mode, v = min[eig|i	2Ṽ4|] (the symplectic matrix 	2 =

⊕2
j=1 iσy and the y-Pauli matri-

ces σy), Ṽ4 = P12V4P12, P12 = diag[1, –1, 1, 1] (the martix that implements partial trans-
position at the level of CMs) and V4 is the 4 × 4 CM of the two modes. When v con-
tains two modes, for calculation the logarithmic negativity Ei|jk , one only needs to follow
the definition by replacing 	2 = iσy ⊕ iσy with 	3 = iσy ⊕ iσy ⊕ iσy, and Ṽ4 = P12V4P12

with Ṽ6 = Pi|jkV6Pi|jk , where P1|23 = diag[1, –1, 1, 1, 1, 1], P2|13 = diag[1, 1, 1, –1, 1, 1], P3|12 =
diag[1, 1, 1, 1, 1, –1] are partial transposition matrices. The residual contangle satisfies the
monogamy inequality, thus when Rmin

τ > 0, the corresponding genuine tripartite entangle-
ment is present in the system.

3 Results and discussion
We numerically calculate the bipartite and tripartite entanglements among three of modes
atom ensemble, magnon and phonon versus detunings �̃m and �a for the case 	 = 0 at the
steady state, which are shown in Fig. 2. Here the static system has reciprocity regardless
of the driving direction. The experimentally feasible parameters are taken as [12, 13, 32]
ωm/2π = 10 GHz, ωb/2π = 25 MHz, λc = 1550 nm, γa/2π = κm/2π = 1 MHz, γb/2π = 100
Hz, κc/2π = 1.5 MHz, gN /2π = 16 MHz, Gm/2π = 8 MHz, Gc/2π = 3 MHz, gc/2π = 1 kHz,
T = 10 mK, and the atom ensemble is tuned to off-resonant coupling with the optical pho-
ton (�a = –�̃c). The effective magnomechanical coupling Gm/2π = 8 MHz corresponds
to a microwave drive power P0 � 1.44 mW for a 8 × 3 × 1 μm3 YIG micro-bridge with
gm/2π = 25 Hz [14]. From Fig. 2(a), 2(b) and 2(c), it can be found that all bipartite en-
tanglements among the atom, magnon and phonon modes can coexist in the parameters
regime around �̃m � ωb and �a � –ωb. Interestingly, the genuine tripartite entanglement
of the three modes could be achieved at steady state, which is demonstrated by the min-
imum residual contangle Rmin

τ greater than zero in Fig. 2 (d). The similar mechanism has
been demonstrated to achieve the genuine atom-light-mirror entanglement in cavity op-
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tomechanics and magnon-photon-phonon entanglement in cavity magnomechanics, re-
spectively [32, 50]. Different from that, our work combines the respective advantages of
the two systems, and further prepares the macroscopic tripartite entanglement among the
atomic ensemble, massive ferrimagnetic magnon and mechanical oscillator based on the
cooperative effect of magnetostrictive and radiation-pressure interactions.

Figure 3 shows the influence of the effective optical detuning, thermal fluctuations
and mechanical damping on the bipartite and tripartite entanglements among the atom,
magnon and phonon modes in the static system (	 = 0). In Fig. 3(a), three bipartite entan-
glements interplay with each other and the degree of entanglements could be controlled
by detuning �̃c. It can be seen that the variation trend of magnon-phonon (blue dashed)
entanglement with detuning �̃c is opposite to that of the atom-magnon (black dot-dashed)
and atom-phonon (red solid) entanglements. This indicates that the magnon-phonon en-
tanglement originally prepared in the magnomechanical system is used as a quantum re-
source, which is partially distributed to the atom-phonon and atom-magnon subsystems,
thus yielding a genuinely macroscopic tripartite entangled state in the hybrid system. The
tripartite entanglement in terms of the minimum residual contangle Rmin

τ versus �̃c is
illustrated in Fig. 3(b). It can be found that the atom-magnon-phonon entanglement is
sensitive to detuning �̃c, and the maximum tripartite entanglement can reach 0.037 at
�̃c = 0.5ωb. Figure 3(c) shows the bipartite and tripartite entanglements under the effect
of ambient temperature with optimized �̃c. We can see that all entanglements are de-
graded by the increase of thermal fluctuations. The macroscopic tripartite entanglement
can survive up to T � 210 mK, and the atom-magnon and atom-phonon entanglement
even exist for bath temperature over 350 mK. Due to the attachment of a mirror on the
surface of YIG bridge, an additional mechanical damping of the phonon is inevitably intro-
duced. The steady-state entanglements versus the mechanical damping γb with optimal
�̃c are shown in Fig. 3(d). It is obvious that the entanglement remains almost constant
with the increase of damping rate to γb/2π ∼ 5 × 103 Hz, and the macroscopic tripartite
entanglement is still present with a large damping rate γb/2π ∼ 5 × 104 Hz.

It is essential to elucidate the mechanism for generating macroscopic tripartite entan-
glement in such quadripartite compound hybrid system with large frequency mismatch.
For this purpose, we proceed via the linearized Hamiltonian of the static system (	 = 0)
for quantum fluctuations

Hlin = �aδa†δa + �̃mδm†δm + �̃cδc†δc + ωbδb†δb + gN
(
δa†δc + δaδc†

)

+
[
G′

m
(
δm†δb + δmδb

)
– G′

c
(
δc†δb + δcδb

)
+ H .c.

]
, (11)

where δb = (δq + iδp)/
√

2, G′
m = Gm/

√
2, and G′

c = Gc/
√

2. When the magnon is driven
by a sufficiently strong red-detuned microwave field (�̃m � ωb), the magnomechanical
anti-Stokes scattering is activated and the strong magnomechanical coupling (Gm/2π = 8
MHz) that breaks the weak coupling condition (Gm � ωb) of the rotating-wave (RW) ap-
proximation. In this case, the magnomechanical RW term ∝ δm†δb + δmδb† and the op-
tomechanical coupling δc†δb + δcδb† (the weak optomechanical coupling strength satis-
fies the RW approximation condition for the optical photon driven by a red-detuned laser
field) are linear beam-splitter interactions, which can significantly cool the low-frequency
mechanical mode (∼MHz) in the resolved sideband limit (ωb � κm,κc). The heat of
phonon thermal excitation can be eventually dissipated to the environment through
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Figure 3 (a) Bipartite entanglement Emb , Eab , and Eam and (b) tripartite entanglement Rmin
τ versus detuning

�̃c . Bipartite and tripartite entanglement versus (c) temperature T and (d) mechanical damping rate γb
where �̃c is optimized for each entanglement, respectively. The other parameters are the same as in Fig. 2

magnon and photon decay. The counter-RW term ∝ δm†δb† + δmδb corresponding to
the parametric down-conversion interaction, which plays an important role in generating
the magnon-phonon entanglement. When the optical and atom modes are scattered by
the mechanical vibration onto the two sidebands (�a = –�̃c, see Fig. 1(c)), the magnon-
phonon entanglement is partially distributed to the atom-phonon and atom-magnon sub-
systems through the atom-photon and optomechanical state exchange interactions, real-
izing a genuinely tripartite entangled state in the system.

Then we show that the classical nonreciprocity of mean optical photon number and
quantum nonreciprocity of macroscopic entanglements can be observed by spinning the
resonator. Here we adopt the angular velocity 	 = 20 KHz and the resonator with n = 1.48
and R = 1.1 mm, which are feasible in the current experimental technology [41, 51]. Due
to the optical Sagnac effect, the frequency of the optical photon driven from the left-hand
(right-hand) side experiences a blue (red) shift �s > 0 (�s < 0) (see Fig. 1(d)) in the spinning
resonator. Accordingly, the effective optomechanical detuning (�̃c = ωc – ωL + �s – gc〈q〉)
are different for the CW and CCW modes. And the mean optical photon number exhibits
nonreciprocity (|〈c(�s > 0)〉|2 �= |〈c(�s < 0)〉|2) for the same driving field pump power in
opposite directions, which is demonstrated in Fig. 4(a). Furthermore, the optomechani-
cal coupling strength (Gc =

√
2gc〈c〉) and the average value 〈q〉 = (gc|〈c〉|2 – gm|〈m〉|2)/ωb

are also affected, which leads to the irreversibility of entanglement when the optical pho-
ton is driven in opposite directions. The stationary nonreciprocal bipartite entanglements
versus detuning �̃c are respectively shown in Fig. 4(b), 4(c), and 4(d). Taking the atom-
magnon entanglement in Fig. 4(d) as an example, it can be seen that the atomic ensemble
and magnon are strongly entangled at �̃c = ωb when the optical photon is driven in CW
(�s < 0), yet fully separated in the opposite driving direction (�s > 0).

The macroscopic tripartite entanglement among the atomic ensemble, ferrimagnetic
magnon and mechanical oscillator also inherits the nonreciprocal property, which is
depicted in Fig. 5(a). It is evident that the tripartite entanglement is the strongest at
�̃c = 0.5ωb without spinning (black dashed). When the resonator is selectively rotated,
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Figure 4 (a) Mean optical photon number |〈c〉|2 versus detuning �̃c with �a = –0.5ωb in the presence of
the spinning. Nonreciprocal bipartite entanglement (b) Emb , (c) Eab , and (d) Eam versus detuning �̃c with
�a = –�̃c . We take �̃m =ωb and 	 = 20 KHz in all plots. The other parameters are the same as in Fig. 2

Figure 5 Nonreciprocal tripartite entanglement Rmin
τ (a) versus detuning �̃c , the temperature T with

�̃c = 1.4ωb , and (c) the rotation speed 	 with �̃c = 0.95ωb . (d) The chiral factor χ of atom-magnon-phonon
entanglement as a function of detuning �̃c and rotation speed 	. The other parameters are the same as in
Fig. 2

the maximum of tripartite entanglement is generated at �̃c = ωb by driving the optical
photon from the right-hand side (�s < 0) but disappears from the left-hand side (�s > 0)
at the same conditions, which realizes the nonreciprocal macroscopic tripartite entangle-
ment at steady state. Figure 5(b) shows the nonreciprocal tripartite entanglement versus
temperature with �̃c = ωb. It could be found that the tripartite entanglement is damped
by thermal fluctuations without the spinning, but which could be strongly enhanced by
rotating the resonator with the appropriate driving direction of laser field. The tripartite
entanglement versus the rotation speed 	 with �̃c = 0.95ωb for the opposite driving di-
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rection �s > 0 or �s < 0 is illustrated in Fig. 5(c). Obviously, once the optical resonator is
rotated, the nonreciprocity of the atom-magnon-phonon entanglement would appear. As
the rotation speed increases, the tripartite entanglement is gradually weakened for �s > 0,
but the entanglement could be significantly enhanced for �s < 0.

In order to further study the nonreciprocity of macroscopic atom-magnon-phonon en-
tanglement, the chiral factor is chosen to quantify, which is defined as

χ =
∣∣
∣∣
Rmin

τ (�s > 0) – Rmin
τ (�s < 0)

Rmin
τ (�s > 0) + Rmin

τ (�s < 0)

∣∣
∣∣. (12)

The chiral factor χ > 0 (χ ≤ 1) denotes that the nonreciprocity of tripartite entanglement
is present. Figure 5(d) shows the chiral factor versus detuning �̃c and rotation speed 	. It
can be found that the tripartite entanglement is reciprocal (χ = 0) without the spinning of
the resonator 	 = 0. However, the nonreciprocal tripartite entanglement appears by spin-
ning the resonator, and the nonreciprocity of entanglement can be flexibly implemented
by the optical detuning and rotating speed of the resonator. The nearly ideal macroscopic
nonreciprocal tripartite entanglement could be obtained (χ = 1) in the steady-state sys-
tem.

Finally, we discuss the validity of the system and the detection of nonreciprocal entan-
glement. The above results are valid only when atom and magnon are in low-lying ex-
citations. When the single-atom excitation probability Pa = g2

a |〈a〉|2/(�2
a + γ 2

a ) is much
smaller than 1 and 〈a†a〉 � Na, the atomic polarization can be described by boson oper-
ators. In this paper, we obtain 〈a†a〉 = |〈a〉|2 ∼ 106 � Na ∼ 107 with ga/2π = 2 × 103 Hz
[50] and |�a| � ωb, which satisfies Pa ∼ 0.006 � 1. For the magnon, 〈m†m〉 = 5.1×1010 �
5N = 5.1×1011, which meets the low-excitation condition. The steady-state entanglement
properties can be verified by experimentally measuring the corresponding CMs using ho-
modyne techniques (see Ref. [22, 54]). A weak microwave (optical) probe field is sent to
resonantly couple to the magnon (atomic ensemble), thus the magnon (atomic polariza-
tion) quadratures can be read out by homodyning the microwave (optical) cavity output.
The mechanical quadratures can be measured by adjusting the detuning and bandwidth
of an adjacent optical cavity, both the position and momentum of the harmonic oscillator
can be measured by homodyning the output of this second cavity. Once the quadratures
of atomic ensemble, magnon and mechanical phonon are obtained, the nonreciprocal bi-
partite and tripartite entanglements could be calculated.

4 Conclusion
In conclusion, we present an approach to create and manipulate the nonreciprocal macro-
scopic atom-magnon-phonon entanglement in a hybrid atom-optomagnomechanical sys-
tem composed of an ensemble of two-level atoms, a YIG micro-bridge, and a spinning op-
tical resonator driven by a laser field. It is found that the atom, magnon, and phonon modes
can be simultaneously entangled with each other by appropriately driving the magnon
and photon, and the genuine tripartite entangled state of the three modes is generated
with the feasible parameters. Furthermore, the atom-magnon-phonon entanglement de-
pending on the optical detuning could be enhanced in a chosen direction but strongly
suppressed in another direction by spinning the resonator. The stationary nonreciprocal
macroscopic entanglement is robust against thermal fluctuations and could be flexibly ma-
nipulated by the spinning speed, size and structure of the resonator, optomechanical and



Zheng et al. EPJ Quantum Technology            (2024) 11:8 Page 12 of 14

magnomechanical coupling strength, dissipations and detunings of optical, microwave,
and magnon modes. The nonreciprocal multipartite entanglement among macroscopic
objects in the magnon-based hybrid system may have practical applications in quantum
information processing, quantum network construction and quantum chiral device inte-
gration.
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