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Abstract
Spin noise based quantum random number generators first appeared in 2008 and
have since then garnered little further interest, in part because their bit rate is limited
by the transverse relaxation time T2 which for coated alkali vapour cells is typically in
the kbit/s range. Here we present two advances. The first is an improved bit
generation protocol that allows generating bits at rates exceeding 1/T2 with only a
minor increase of serial correlations. The second is a significant reduction of the time
T2 itself by removing the coating, increasing the vapour temperature and introducing
a magnetic-field gradient. In this way we managed to increase the bit generation rate
to 1.04 Mbit/s. We analyse the quality of the generated random bits using entropy
estimation and we discuss the extraction methods to obtain high-entropy bitstreams.
We accurately predict the entropy output of the device backed with a stochastic
model and numerical simulations.

Keywords: Quantum random number generator; Entropy extraction; Stochastic
modelling; Spin noise spectroscopy

1 Introduction
The conceptual challenge in designing a random number generator (RNG) is to guarantee
the true randomness of its output. Traditionally, the device was put through a number of
tests [1–3] to ensure a satisfactory degree of randomness. Passing those tests is a neces-
sary, but not a sufficient condition for true randomness. In fact, there has recently been
a strong shift in recommendations away from empirical testing and towards theoretical
modelling of the entropy generating physical process [4, 5]. With a priori knowledge of
the system behaviour, the device can be guaranteed to produce cryptographically secure
random numbers with near perfect entropy, so long as the model assumptions are shown
to hold experimentally. Quantum systems, which are naturally probabilistic, are perfect
candidates in the construction of a RNG, because the physical origin of randomness (mea-
surement processes) are usually well defined, thus suitable for modelling.

First quantum random number generators (QRNGs) were based on the timing of ra-
dioactive decay [6], while nowadays photonic systems are more common [7]. Standard
approaches are the 50/50 beam splitter configuration, timing photon detection events,
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or using photon counts [7], with the fastest QRNGs based on laser phase noise fluctu-
ations surpassing bitrates of tens of Gbit/s [7]. There also exist a number of non-optical
approaches, for example avalanche detection in semiconductors [8] or quantum tunneling
effect of electrons across p-n junctions [9].

In this work, we focus on the implementation known as the spin noise QRNG [10].
This QRNG approach is rooted in the experimental technique of spin noise spectroscopy
(SNS), used in studying the relaxation properties of alkali metal [11] or semiconductor sys-
tems [12] in a nonperturbative way. When a sample is placed in a transverse magnetic field,
a laser beam along a longitudinal axis can be used to probe fluctuations of the spin polar-
ization of the sample which are imprinted on the polarization of the laser beam through
Faraday rotation. A spin noise spectrum with a width connected to the transverse relax-
ation time T2 [13] can be measured by averaging many spectra. Spin noise RNGs generate
random numbers from the random spin polarization fluctuations of a sample [10]. Corre-
lations present in the output bits are dependent on the T2 of the measured system, requir-
ing short relaxation times to achieve high bitrates. On the other hand, a shorter T2 leads
to a wider spin-noise spectrum [13], thus lowering the signal-to-noise ratio of the signal.
An example are semiconductor systems with typical values of T2 ranging from ns to ps
[14, 15], however, such systems are currently challenging to use for a spin noise QRNG
due to a poor signal-to-noise ratio.

Since being first explored in Ref. [10], little further research has been done on the spin
noise QRNGs. In this work we propose to improve random number generation in a Cs
gas cell by reducing T2 using three modifications. First, an uncoated cell is used in or-
der to increase the dephasing due to wall collisions. Second, heating of the cell increases
the number of collisions between atoms per unit of time, leading to increased dephas-
ing. Third, a magnetic gradient, that can be tuned continuously, is applied along the beam
propagation axis to additionally increase the relaxation rate in a controlled manner. This
leads to improvements of a factor of 50 over previous works.

The original bit generation scheme presented in Ref. [10] works by checking when the
random spin noise signal crosses a threshold. In our work we present an approach that
looks at the timing of the signal’s fluctuations. This alternative protocol generates a larger
quantity of random bits per second, leading to bitrates that surpass 1/T2. In this way, more
entropy can be extracted from the quantum system, although some bits have to be rejected
as part of the extraction phase to rid the bitstream of minimal serial correlations. It can
also be added that this is an approach for the generation of random bits from a stochastic
signal and is not limited to this specific type of QRNG.

2 Experimental work
The experimental setup is outlined in Fig. 1(a). It consists of a Toptica TA pro 852 nm
laser source blue-detuned by 1 GHz from the Cs D2 line. The beam is Gaussian with the
1/e2 width of approximately 1 mm. The laser light is linearly polarized before entering a
magnetically shielded cylindrical uncoated Thorlabs Cs glass reference cell with a diame-
ter of 19 mm and a length of 75 mm (GC19075-CS). The input polarization is set by a λ/2
wave-plate after the linear polarizer. The laser beam passes through the cell and is split on
a polarizing beam splitter (PBS). We attenuate one of the beams by a factor of 10 by using
an OD1 attenuator and measure their intensities with photodiodes.
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Figure 1 (a) Schematic representation of the experimental configuration. A laser beam is linearly polarized
and sent through a magnetically shielded uncoated heated Cs cell in a magnetic field. The beam is split on a
PBS according to the orientation of the λ/2 plate and recorded by a balanced polarimeter, after which the
signal is sent to post processing. (b) Examples of recorded spin noise power spectral densities (PSD) at
νL = 510 kHz in the absence of a magnetic field gradient (blue) and in a high gradient (red)
(dBz/dy ≈ 1.3 mT/m). (c) Polarimeter output signal; the red vertical dashed line separates the cases where the
spin noise is absent (left) and when it is present (right). The red horizontal lines correspond to ±5σbg where
σbg is the standard deviation of photon shot noise and electronic noise of the measurement system. The
QCNR is σs/σbg ≈ 3.16 where σs corresponds to the standard deviation of the signal with spin noise. LP, linear
polarizer; λ/2, half-wave plate; B, magnetic field; PBS, polarizing beam splitter; A, attenuator; PD, photodiode

By using the λ/2 wave-plate we balance the beam intensities after the PBS so that the
intensity is equal on both photodiodes. In the case where one of the beam lines is attenu-
ated, a balanced signal will correspond to the case where one beam line exiting the PBS is
significantly higher in power than the other. This allows us to use higher laser powers in
the sample while at the same time eliminating any non-linear effects of the photodetectors
due to high incident intensity [16]. We use this setup to ensure SNR saturation of the spin
noise signal, although higher powers lead to power broadening [17].

The Cs cell is placed in a magnetic field B = 0.129 mT perpendicular to the laser prop-
agation axis, corresponding to a Larmor frequency of approximately νL = 450 kHz, which
defines the center of the spin noise spectrum. When the polarization has a non-zero com-
ponent along the beam propagation axis, 〈sy〉 �= 0, the polarization angle θ (vertical in the
xz plane before entering the λ/2 waveplate) of the beam changes according to θ = N θ0〈sy〉;
this is known as Faraday rotation (here N is the number of atoms in the volume of the
beam and θ0 is the rotation per atom). Since fluctuations of 〈sy〉 are random, θ also changes
randomly with time. This is then mapped to fluctuations of amplitude by use of the PBS,
and measured by a balanced polarimeter. The balanced polarimeter subtracts two pho-
todetector signals, and feeds its output into a SR650 filter unit, which amplifies the po-
larimeter signal by 20–30 dB. The filter output is sampled using a Digilent Analog Dis-
covery Pro 3000 Series at a sample rate of 100 MHz.

An example of the captured spin noise spectrum is shown in Fig. 1(b). The recorded
spectrum is comprised of the Lorentzian spin noise signal, and a flat background (–170 to
–180 dBV/Hz) which is a sum of photon shot noise and electronic noise. The background
as seen in Fig 1(b) primarily consists of photon shot noise as in our experiments electronic
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noise is orders of magnitude lower. In our experiments the ratio σs/σbg ≈ 2 – 4 represents
the quantum to classical noise ratio (QCNR) where σs and σbg are the standard deviations
of the signal with and without spin noise present, respectively.

We note that it is crucial that before any bit generation occurs the data is band-pass
filtered to eliminate any noise arising from unwanted sources. For this purpose one may
use, for example, a Butterworth filter of order 20 centered at νL. The width of the bandpass
filter is to be chosen such that the entire spectrum above the photon shot noise floor is
captured. This filtering step is necessary as other spectral components of the polarimeter
signal arise from sources outside the measurement system (e.g. radio signals, 50 Hz power
line hum etc.)

2.1 Transverse relaxation time tuning
The overarching idea of this section is to introduce improvements towards a faster dephas-
ing rate T–1

2 in different experimental conditions in order to reduce bit correlations. Relax-
ation time estimation was primarily done by computation of the autocorrelation function
C(t) = 1/Z

∑Z
i=1 s(ti)s(ti+i) of the signal s(t), where Z is the length of s(t). This can be cal-

culated efficiently using the Wiener-Khinchin theorem:

C(t) = F–1(∣∣F
(
s(t)

)∣
∣2) ∝ e–t/T2 cos(ωLt), (1)

where ωL = 2πνL, F (f (t)) denotes the Fourier transform (FT) of f (t), and F–1(f (ω)) its
inverse. As can be seen in Fig. 1(b), the spectrum of spin noise is Lorentzian [18]. This
implies that in this case C(t), the inverse FT of a Lorentzian, is an exponentially decay-
ing trigonometric function. The decay of the autocorrelation function coincides with the
transverse relaxation time T2, which can consequently be extracted. This is done by fitting
an exponentially decaying trigonometric function to a numerically computed C(t).

In coated Cs cells the largest contributor to spin dephasing seem to be wall collisions
[20, 21], which randomize the valence electron spin, and, due to hyperfine interaction, the
nuclear spin. This relaxation is directly proportional to the number density of atoms in
the cell n. The lack of a coating in our cell increases the dephasing from the usual rates of
20 Hz [20] or even 0.01 Hz [22] for coated cells to approximately 0.28 MHz at 75◦ C, as
seen from Fig. 2(a).

In this case, the spin noise spectrum is broadened to such an extent that the peak is
below the shot noise level at room temperature. Due to this, we heat the cell in order to
increase the number density of Cs atoms n, as the signal scales with

√
n (see the Appendix).

We install our cell in a ceramic oven which is additionally thermally isolated from the
surrounding environment with a 5 mm layer of glass wool. This setup allows us to reach
temperatures of up to 140◦ C. The heating element, powered by a DC current, consists of
a twisted wire to minimize stray magnetic fields. The constant heating is done throughout
experiments, keeping the Cs cell at a stable 140◦ C; we observed no detrimental effect of
the current on the spin noise spectrum.

The second largest contribution to dephasing is spin-exchange with a dephasing rate
1/T2 = σSEv̄n [23], where σSE is the cross section for a spin-exchange collision, and v̄ is the
relative velocity of Cs atoms. This dephasing rate depends on the temperature through v̄
and n, both of which increase with temperature, making the dephasing quicker. This is
clearly seen in Fig. 2(a). It is unclear to what degree spin exchange plays a role in compar-
ison to wall collisions.
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Figure 2 Dephasing rate effects. (a) Dependence of the relaxation rate 1/T2 on the temperature and number
density in the cell. Heating increases the dephasing rate due to increased wall and spin exchange collisions
through the relative velocity and number density of Cs atoms (described in the text). The number density n at
every temperature is determined from data in Ref. [19]. (b) Dependence of the relaxation rate 1/T∗

2 on
magnetic field gradient. The added gradient effectively dephases the system at a faster rate (T∗

2 )
–1. This was

done at T = 140◦ C. The solid lines correspond to linear fits, the error bars are inside the markers

In order to further increase 1/T2 we install an additional gradient generating coil on
top of the heating oven. This allows us to continuously change T2 by an additional factor.
When a large gradient is present in the sample, it is no longer true that the time correlator
of the system will be an exponentially decaying trigonometric function. The spin noise
spectrum spreads from a Lorentzian [24] as seen in Fig. 1(b) and can be thought of a sum
of peaks at varying Larmor frequencies. The time correlation function will then be

C(t) ∝
∫

ω

f (ω) e–t/T2(ω) cos(ωt) dω, (2)

where f (ω) represents the spectral profile of the spin fluctuations. Due to this, the system
decoheres at a faster effective rate T∗

2 which can still be determined by using the Wiener-
Khinchin theorem. By assuming the system precesses at an average frequency ω̄L, we can
perform the same fitting procedure as C(t) ∝ e–t/T∗

2 cos(ω̄Lt). The faster decay is shown in
Fig. 2(b), where we observe a change by a factor of 2. A stronger gradient could be achieved
by either moving the coil closer to the cell, applying a higher current to the coils, or altering
the coil geometry. This allows continuous changes to the T2, provided the entire spin noise
spectrum remains in the positive frequency domain. Since increasing the 1/T2 spreads the
signal in the frequency domain this worsens the SNR, as shown on Fig. 1(b).
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2.2 Bit generation
We use the digitized polarimeter signal to generate a bitstream of N integers valued either
0 or 1 (bits). A perfect random bit has equal probability to be 0 or 1 and is not correlated
to any other bit; such bits are identically and independently distributed (IID), as well as
uniformly distributed. In this case, an entropy source will have a non-biased output B = 0,
where we define the bias as

B =
N(1) – N(0)
N(1) + N(0)

, (3)

where N(i) represents the number of bits valued i in the entire bitstream. We now present
two different methods of generating bits from a digitized spin noise signal – here dubbed
protocols. We first define a threshold � that the signal has to cross before any random
numbers can be generated. This is done to ensure robustness of the QRNG (i.e. the gen-
erated noise comes from the quantum system in question and not from electronic or shot
noise).

To fix a suitable threshold � we must find the variance of the signal in the absence of
spin noise fluctuations. To do this, we shift the spin noise spectrum outside of the working
frequency range by applying a high magnetic field (νL > 5 MHz), so that only the electronic
and photon shot noise remain. The time signal is then measured until 106 samples are
collected, from which we calculate the variance σ 2. The threshold � is chosen as a multiple
of σ , usually � = 5σ . Finally, the spin noise is shifted back to νL ≈ 450 kHz and the bit
generation can proceed. An example of this is pictured on Fig. 1(c).

2.2.1 Protocol 1: threshold hitting
The threshold hitting protocol is a simple approach of bit generation that was explored
in Ref. [10]. One generates bits according to whether a threshold was crossed in the posi-
tive or the negative direction. An additional waiting step is implemented. The generation
algorithm is as follows:

1. Wait until a threshold � (–�) is exceeded in the positive (negative) direction.
2. Record a 1 (0) if the amplitude is higher (lower) than (–)�.
3. Wait MT2, where M ∈R.
4. Back to 1.

The third step is crucial to avoid bit correlations, as the time correlator for this Ornstein-
Uhlenbeck [25] process is C(t) ∝ e–t/T2 cos(ωLt). Therefore waiting MT2 between bit de-
tections exponentially removes correlations from the bitstream. Usually M = 10 to limit
correlations to e–10 ≈ 10–5. If we define an event as one execution of the algorithm above,
we can say that one event generates close to 1 bit of entropy (this is further discussed later).
Using this protocol we achieve bitrates of up to 50 kHz, however this approach is heavily
limited by the T2.

2.2.2 Protocol 2: times above threshold
Here the random variable in question is the time the signal spends above (or below) the
threshold � (or –�). This time is given by two crossings (events), and we will show it gives
more bits of entropy per event than protocol 1. The protocol is given as follows:

1. Wait until a threshold � or –� is exceeded at t1.
2. Wait until the same threshold is crossed a second time at t2.
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3. Record the time above (under) threshold as t = t2 – t1.
4. Back to step 1.

Instead of looking at the variance of the signal in time the entropy comes from the phase
jitter of the signal, analogous to a temporal mode optical QRNG [7]. This approach is
limited in principle by the inverse of the sampling rate δt = 10 ns of our digitizer, since
phase information is lost between the samples.1 This means that the times above thresh-
old will have an uncertainty up to one sample period (10 ns) which is not produced by
the quantum system. This non-quantum source of randomness should be excluded in the
extraction process.

This protocol generates a non-uniform distribution as shown in Fig. 3(a). To generate
bits from this distribution we represent each integer value using 8 bits and take L least
significant bits (LSB). This is because each successive bit is distributed more unevenly, as
shown on Fig. 3(b). Major imbalances in the output bitstream should be avoided in order
to retain an acceptably low bias, therefore last three bits are discarded (additionally, the
first LSB should be discarded due to its non-quantum nature as noted in the previous
paragraph). If we now instead define an event as one execution of the second algorithm,
an event now generates at most L bits of entropy. The blocks of length L – 1 are joined
into a bitstream. However, the blocks can be expected to remain correlated and therefore

Figure 3 Protocol 2 (a) Examples of distributions of times above threshold for different thresholds. The
discerning features are a zero-probability at t = 0 due to band-pass filtering, a peak at t > 0 due to Larmor
precession, and the short-time tail that evolves from concave to convex for increasing threshold values. (b)
Distribution of bits generated from random times above a threshold � = 1.44σ . The dark bars represent the
probability for a bit to equal 0, and the light the probability for a bit to be equal to 1. One can see that each
successive bit has a higher bias, so L least significant bits are taken from each integer in order to avoid large
biases in the output bitstream

1We additionally performed measurements of the electronic jitter and found a value of approximately 10 ns, exactly cor-
responding to the inverse of the sampling rate.



Koterle et al. EPJ Quantum Technology           (2024) 11:11 Page 8 of 16

produce a sequence that is not ideally random. The next section deals with tackling this
issue.

3 Entropy
The randomness of a RNG is quantified by its entropy output. Generally, instead of Shan-
non entropy, the more conservative min-entropy is used, giving the lower bound of ran-
domness. In this use case, we are interested in maximizing the min-entropy generated per
bit,

Hmin

N
= –

1
N

log
(

max
x∈{0,1}N

Prob(X = x)
)

, (4)

where N is the length of the bitstream. Empirically, this can be estimated using a variety
of tests. In our case, we use the methods given in the NIST SP800-90B special publication
[26], which defines entropy estimation procedures for IID (identically and independently
distributed) and non-IID sources. Entropy estimation for IID sources of random num-
bers is much simpler compared to estimation for non-IID sources, and the claim that the
source is IID can also be tested, as defined in Ref. [26]. Using the IID entropy estimation
techniques on a non-IID source will overestimate the entropy, while non-IID testing on
IID sources will underestimate the entropy. This is hinted at in Table 1. In any case, if the
estimated min-entropy is not satisfactory (sufficiently close to 1 bit of entropy per bit) then
an extraction algorithm must be used on the output of the entropy source.

For protocol 1 with high waiting times MT2 between bit generations, the resulting bit-
streams can have sufficiently low correlation, and when extra care is put in the balanc-
ing the bias can be B ≈ 10–5–10–3, which makes it possible to use protocol 1 with no
extraction.2 Protocol 2 typically has a larger bias B ≈ 10–2 in the output bitstream than
protocol 1. Futhermore, converting non-uniformly distributed integers into series of bits
introduces short range correlations on the order of L (this is discussed later).

The extraction method we use is the Toeplitz hashing algorithm, which works in the
following way. Take a randomly generated Toeplitz matrix T with dimensions dim(T ) =
(a, b). Now take b bits from the bitstream to generate a vector x of length b and multiply it
y = T x to generate a new vector y of length a. This can be repeated using all the bits from
the bitstream to generate a compressed bitstream with more entropy per bit if b > a.

The dimensions of T are chosen according to how much compression b/a is needed. In
our case, we generate random bits for 10 s using protocol 2 (L = 7) at a rate of 1.41 Mbit/s.

Table 1 Comparison of SP800-90B testing for protocols 1 and 2 (no extraction). From protocol 1 we
see that the non-IID entropy is underestimated if the IID assumption is true. On the contrary, we can
see from protocol 2 that the min-entropy is greatly overestimated in IID testing if the IID claim is false;
non-IID testing has to be done to get an accurate min-entropy initial claim before extraction.
Protocol 1 entropy is estimated from one sample of size 0.4× 106 bits, where for protocol 2, 10
samples of 1.4× 106 bits were used

Protocol IID assumption IID entropy Non-IID entropy

1 True 0.984 0.723
2 False 0.9276± 0.0008 0.750± 0.005

2We note that to achieve higher bitrates using protocol 1 it is more practical to use a lower M value and a higher compression
ratio.
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Table 2 The result of compressing a 1.41 Mbit/s bitstream with differently sized Toeplitz extractors T
with compression ratios CR. The bistream was generated using protocol 2 with L = 6 and with the
first LSB bit removed, which gives a biased output with correlations present on the order of L bits.
The min-entropy per bit was determined after extraction by splitting the bitstream in 10 equally
sized samples of approximately 106 bits and then using either non-IID or IID tests, depending on
whether the IID assumption holds for the given bitstream

dim(T ) CR Non-IID entropy IID entropy

(921,1024) 1.11 0.86± 0.02 /
(757,1024) 1.35 / 0.9954± 0.0009
(682,1024) 1.5 / 0.995± 0.001

This produces approximately 14.1 Mb of random bits with an estimated min-entropy per
bit Hmin/N = 0.703 ± 0.001 using non-IID tests on 10 samples of 106 bits. We additionally
remove the first least significant (LSB) bit due to possible classical contributions which
can significantly impact the min-entropy of the bitstream. To minimize this effect we find
that it is also more suitable to take L = 6 least significant bits. This leads to an estimated
Hmin/N = 0.750 ± 0.005. Since blocks of L bits are correlated, we choose b = 1024 � L.
The second dimension is then given by a = �bHmin/N = 768.

A Toeplitz matrix of this size will guarantee that the output bitstream is practically IID
and unbiased. An example of this claim is shown in Table 2. We compress the above men-
tioned bitstream with differently sized Toeplitz matrices. Using insufficient compression
ratios leads to failure of the IID tests. Since the compression ratio for a = 682 exceeds ap-
proximately 1/0.75 = 1.333 the bitstream passes all IID tests and the output entropy per bit
is estimated as Hmin = 0.995 ± 0.001. Performing the extraction with a slighly lower com-
pression ratio of 1.35 makes it possible to reach the final bitrate of 1.04 Mbit/s of highly
entropic random numbers. We note that this bitrate is higher than 1/T2 = 500 kHz in this
particular test where no magnetic field gradient was applied.

On top of entropy estimation, batteries of statistical tests are usually done on the output
bitstreams in order to find statistical shortcomings of the entropy source. Some standard
testing suites we used are dieharder [1], TestU01 [2], and the NIST [3] tests, which were
all required to pass (and they did pass). We do not put much emphasis on such statisti-
cal testing, as it is always possible to successfully pass all standard tests using sufficient
compression even with badly flawed generators.

4 Stochastic modelling
We describe the spin state of the alkali vapour using a density matrix ρ which evolves ran-
domly in time. In the absence of coherent excitations, ρ is diagonal, since all off-diagonal
elements decay due to decoherence effects. In magnetic fields typically used, the alkali gas
remains close to unpolarized due to thermal effects (kT � gμBB, where g is the g-factor
and μB is the Bohr magneton) and, to a good approximation, the density matrix is maxi-
mally entropic, ρ ∝ 1.

The time evolution of ρ , however, is random. The mechanism of randomness generation
are collisions. Two processes can be distinguished. The first is spin exchange when two Cs
atoms collide, where the total spin S2 is conserved. Atoms with an initial angular momen-
tum state |m〉 evolve to |m+ j〉 with j = 0,±1 during a collision [10, 27]. Collisions with j = 0
cause fluctuations of diagonal elements of ρ , whereas collisions with j = ±1 cause relax-
ation. There exist other kinds of collisions between atoms, for example spin-destruction
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collisions, but their cross sections are typically orders of magnitude lower than those of
spin-exchange [28].

The second major randomness generating process are wall collisions. Reference vapour
cells are coated internally (e.g. paraffin) such that the polarization of an atom persists
through as many collisions as possible. However, due to lack of a cell coating in our exper-
iment, an atom’s polarization is essentially randomized upon collision with the cell wall
surface [20]. The interaction between the atoms of the wall and the valence alkali-metal
spin is comprised of a dipole-dipole interaction and a spin orbit-type coupling, and it is
a well-understood quantum process [29]. Because of the large reduction in T2 after the
coating is removed, we believe that this randomness generating process dominates over
Cs-Cs atomic collisions.

To model the evolution of the system it is easier to consider a stochastic picture rather
than to perform quantum-mechanical calculations. Consider a system of alkali metal
atoms with a transverse relaxation rate T2 in a magnetic field along the z axis with a
Larmor frequency ωL = 2πνL. Then the time evolution of the spin expectation value
〈s〉 = (〈sx〉, 〈sy〉)T is given by a stochastic differential equation [23]

d〈s〉 = –D〈s〉dt + F dη, (5)

where the matrices D and F are defined as

D =

(
1/T2 –ωL

ωL 1/T2

)

, F =
1

2
√

T2
1, (6)

and dη =
( dηx

dηy

)
is a two-dimensional Wiener process. This alternative model is exact when

the alkali gas is unpolarized, which is only approximately fulfilled given that kT/gμBB ≈
104 for typical values B = 10–2 T and T = 140 ◦C in our experiments. Knowing all the
system parameters, we can calculate the entropy per generated bit. To do this we calculate
stochastic properties of 〈s〉, apply the appropriate protocol, and then calculate what is
expected on the output of the polarimeter.

4.1 Protocol 1
To find the entropy per bit in protocol 1 we must know the amplitude distribution of the
signal. We rewrite Eq. (5) as a Langevin equation for the variable s = 〈sx〉 + i〈sy〉:

ṡ = –iωLs –
1

T2
s + f (t) (7)

with the fluctuations f (t) defined by 〈f (t)〉 = 0 and 〈f (t)f (t′)〉 = 1
4T2

δ(t – t′). From this
the time evolution of the variances of sx and sy are found to be the same as a univariate
Ornstein-Uhlenbeck process:

σ 2
sy (t) =

1
8
(
1 – e– 2t

T2
)

=
t→∞

1
8

. (8)

We consider the stationary case t → ∞, as the sample is approximately unpolarized. Al-
ternatively, one can solve the stationary Fokker-Planck equation to obtain the same result.
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In order to predict the min-entropy we must know the variance (σ ′)2 = 4Nθ0σ
2
sy (see the

Appendix for the derivation) of the signal at the output of the polarimeter.
If we suppose that there are no correlations within the bistream (large waiting time M),

then the min-entropy of the bitstream depends only on the bias μ of the signal, which is the
mean of the signal’s amplitude distribution. This bias is the result of imperfect balancing
or drifting of the measurement system. One event generates Hmin = – log2(maxx={0,1} P(X =
x)) bits of entropy, where as shown in the Appendix,

max
x={0,1}

P(X = x) =
1
2

+
∣
∣
∣
∣

(μ/σ ′)√
2π – 2(�/σ ′)

∣
∣
∣
∣ + O

(
μ3), (9)

where (σ ′)2 is the variance of the polarimeter signal. For example, if μ/σ ′ = 10–4, and
�/σ ′ = 1.4, then per event we generate a minimum of – log2(P(X = 1)) ≈ 0.9990 bits of
entropy. This holds when successive bits are uncorrelated, i.e., as M approaches infinity.
In reality, serial correlations are present to some small degree.

4.2 Protocol 2
The problem of calculating the distribution of times above a threshold q for a Markov pro-
cess has been studied since the early 70s [30]. The challenge of evaluating q depends upon
the complexity of the infinitezimal propagator A that drives the stochastic process [31].
Although the problem is solved in Ref. [30] for the univariate Ornstein-Uhlenbeck pro-
cess, the bivariate case presented in this paper leads to a non-trivial differential equation.
We opted to numerically simulate this distribution using the stochastic model in Eq. (5)
to generate times above the different thresholds as shown in Fig. 4(a).3

The generated distributions can be used to estimate the entropy production of the exper-
imental system. We start with an experimentally observed distribution q with threshold
� binned in n bins. We then compute a distribution q′ from a simulated signal by using
the same experimental parameters ωL = 2πνL, T2, �, again using n bins. Because of un-
certainties of the experimental parameters, imperfections of the integrator, and deviations
from the quantum model, the two distributions might not match perfectly. An example of
the overlap between experimental and simulated histograms is demonstrated in Fig. 4(b).

Now, the min-entropies Hmin(q) = –log2 maxt q(t) are computed. The simulated curve
has a min-entropy of Hmin = 5.56 bits, while the experimental Hmin = 5.55 bits. In our case
we generate L (Hmin/N) bits of entropy from each block of L bits. If we consider the entirety
of the experimental distribution we must take all L = 8 LSB, and the estimated min-entropy
is found to be Hmin/N = 0.4735 ± 0.0007 (using 10 samples of 2.2 × 106 bits). One event
thus generates L(Hmin/N) = 3.788 bits of entropy, the rest is lost due to correlations.

This is clearly the first advantage over protocol 1, where each event (i.e., one execution of
the protocol 1 algorithm) generates at most 1 bit of entropy. By using a more sophisticated
extraction protocol, we can extract more entropy from the system per event as established
above.

Another way to improve the bitrate is to increase the Larmor frequency νL while also
keeping νLδt constant. This makes for more events per second with adequate compen-
sation by sampling faster, which is required to keep the distribution as flat (maximally

3The numerical integration was done by a fixed step-size explicit 3-stage Milstein method for an Ito problem with strong
and weak order 1.0. The used parameters were dt = 10 ns, ωL = 2π × 450 kHz, and T2 = 2 μs. The 108 samples of the time
signal are computed according to Eq. (5) and then band-pass filtered around ωL .
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Figure 4 Simulations of protocol 2. (a) Distributions
of times above threshold for a simulated time signal
at different threshold values � . Here, a sample
denotes a timestep of the integrator.3 This captures
the experimental results, although the
experimental and simulated distributions do not
overlap completely due to uncertainty of the
experimental parameters. (b) The simulated signal
can be used to calculate the distribution q (using
the same ωL = 450 kHz, T2 = 2 μs, and threshold �

= 5σ ), which can be used to estimate the entropy
production of the experimental system

Figure 5 Decay of serial bit correlations for both protocols. The dashed green line represents the case where
C(t) = 1/Z

∑Z
i=1 XiXi+t = 0.5. Protocol 1 (with M = 0) has exponentially decaying correlations present in the

output bitstream that decays close to 0.5, based on the bias. Protocol 2 has a short-term correlation of length
L (here L = 5). An uptick at the 5th serial bit is seen for protocol 2, as the times above threshold remain
correlated, although, as shown, this correlation decays faster than that of protocol 1. Due to the larger biases
present in protocol 2, it can also be seen that the autocorrelation does not decay as close to 0.5 as that of
protocol 1

entropic) as possible. However, these events would be more correlated, so a higher com-
pression ratio would have to be used in the extraction process, thus it is hard to predict
the limit to this approach.

The second reason why protocol 2 is superior to protocol 1 can be seen from the se-
rial correlation of the generated bits. This is shown on Fig. 5, where bit autocorrelations
C(t) were computed using the Wiener-Khinchin theorem for bits generated using both
protocols (for a fair comparison M = 0 has to be taken) on the same experimental run.

For an unbiased IID source, each bit would have an autocorrelation C(t) of exactly 0.5 to
the previous bit. In this case, this is not true until we perform extraction, where the extrac-
tion ratio required is a direct consequence of the magnitude of correlations present. What
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Fig. 5 suggests is that the correlation between the bits generated using protocol 2 decays
faster than that of the bits generated using protocol 1 (with M = 0). Consequently, a lower
extraction ratio is required in order to have a satisfactory min-entropy using protocol 2.

5 Conclusion
We show an improvement of three orders of magnitude of the bit rate in spin noise QRNGs
by using several advances. First, we reduced T2 by using a heated uncoated cell. The relax-
ation rate is further continuously tunable using a gradient inducing coil. This allows a bit
generation rate of up to 50 kHz using previously known methods (protocol 1). Secondly,
we used a more efficient entropy extraction scheme (protocol 2). We show that bits gen-
erated using different protocols have correlations that decay at different rates, in this case
making protocol 2 superior to protocol 1, achieving bitrates of 1.04 Mb/s.

A spin noise QRNG could also be realized in solid-state systems. We propose two possi-
ble candidates for further research. The first is heavily doped (close to the metal-insulator
transition) GaAs heterostrocture, because data suggests a relatively high T2 ≈ ns at room
temperatures [14], while the band gap can be engineered by changing the heterostructure
geometry. Another alternative could be a n-doped CdTe quantum well, which can have up
to an order of magnitude slower relaxation rates at room temperatures [14].

By lowering the T2 to increase the bit rate or min-entropy, the signal-to-noise ratio
(SNR) is worsened as the spectrum broadens. The SNR can be improved using more in-
volved measurement systems (e.g., heterodyne detection improves SNR in low-shot-noise
scenarios [32]). The limiting factor in spin noise QRNG type experiments is photon shot
noise, as the electronic noise of the measurement electronics is orders of magnitude lower.
Shot noise squeezing could also improve SNR [33] by tackling this issue, although there
are known limits to this approach [34]. It seems that improvement in experimental tech-
niques is still required to capture live spin noise signals at faster relaxation rates without
lengthy time averaging. If, one day, semiconductor based spin noise QRNGs are realised,
the advances to bit generation and T2 tuning presented in this work directly apply.

Appendix: Protocol 1 entropy estimate
To model the entropy exiting the polarimeter we have to propagate the probability distri-
bution function of the amplitudes, as given by Eq. (8), through the measurement system.
We pick the propagation axis for the laser y. At any given time, the Faraday rotation θ of
the laser is proportional to the polarization 〈sy〉 along the axis of propagation

θ = N θ0〈sy〉, θ0 =
λ2γ

2πAδ
, (10)

where N is the number of atoms in the laser beam volume in the cell, θ0 the Faraday
rotation due to one spin, λ the wavelength of the light, A the laser cross section, γ the
radiative width of the transition, and δ the detuning from the transition line. Upon exiting
the glass cell the laser light, imprinted with randomly fluctuating polarization, is split on
the PBS into two components given by the vector J

J =

[
cos(θ + π/4)
sin(θ + π/4)

]

. (11)
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The phase shift of π/4 is due to the balancing of the polarimeter. Although N = 1012, and
θ0 ∼ 10 nrad in our experiments, 〈sy〉 remains 0. On the other hand, fluctuations of the
Faraday rotation angle are given by σθ =

√
N θ0σsy where σsy = 1/8 are fluctuations of the

spin polarization in the y direction as shown in Eq. (8). As
√
N θ0 ≈ 10–3, the fluctuations

σθ remain small, which allows us to calculate the polarimeter output signal S by Taylor
expansion

S = cos(θ + π/4) – sin(θ + π/4) ≈ –2θ + O
(
θ3). (12)

This shows that the variance of the polarimeter signal, (σ ′)2, is the sum of two completely
correlated processes, therefore (σ ′)2 = 4N θ2

0 σ 2
sy . This shows the distribution of amplitudes

of the signal outputted from the polarimeter remains Gaussian, given that θ are small. Any
amplification of the signal (in the polarimeter, the SR650, or the Digilent Analog Discovery
Pro) additionally spreads this Gaussian, however, we do not elaborate on this further.

In protocol 1 with M → ∞ the outputted bits are uncorrelated. The only deviation from
ideal random numbers is then due to an imbalanced signal. Consider that the mean of the
signal μ drifts in time away from 0. At any given time, the probability the signal is above
or below a threshold is easily calculated

P(S > �) = 1 – Prob(S ≤ �) =
1
2

erfc

(
� – μ√

2σ ′

)

, (13)

and similarly P(S < –�) = 1
2 erfc( �+μ√

2σ ′ ). These two probabilities correspond to the proba-
bility to generate bit X ∈ {0, 1} at the output, given that |S| > �. For example, P(X = 1) =
P(S > � | |S| > �). This allows us to predict μ from the measured bias using Bayes’ theo-
rem

B =
P(X = 1) – P(X = 0)
P(X = 1) + P(X = 0)

=
P(S > �) – P(S < –�)
P(S > �) + P(S < –�)

. (14)

This also enables us to make a min-entropy claim for the output of the QRNG with
protocol 1 (and a large M) by expanding P(X = 1) or P(X = 0) as a Taylor series around
� ± μ. To second order in μ, the probability to generate a bit X = 1 is

P(X = 1) =
P(S > �)

P(|S| > �)
≈ 1

2
+

(μ/σ ′)
|√2π – 2(�/σ ′)| . (15)

Alternatively, for P(X = 0) one has to make the substitution μ → –μ. In this approximation
the bias equals

B ≈
√

2(μ/σ ′)
|√π –

√
2(�/σ ′)| . (16)

It is important to note the shortcomings of this analytical method. The issue with such
an expansion is that when � � σ the approximations cease to hold well, as the derivative
of P(X = 1), D, becomes underestimated to the extreme case where it is the inverse of the
correct value. This can partly be mended by taking the absolute value of the derivative of



Koterle et al. EPJ Quantum Technology           (2024) 11:11 Page 15 of 16

P(X = 1) after the expansion. For orders higher than O(μ), the derivative of P(X = 1) is
generally also a function of μ. In general we can write

P(X = 1) =
1
2

+
∣
∣D(μ,�,σ )

∣
∣μ. (17)

Additionally, as the values of μ in protocol 1 are small, we can also perform a Taylor ex-
pansion of D(μ,�,σ ) up to first order to obtain D(μ,�,σ ) = D(�,σ ) + O(μ2). Taking a
higher order expansion of P(X = 1) in Eq. (15) allows a better estimation of the gradient
D(μ,�,σ ), and leads to a better approximation. In practice, however, it is simpler and
more accurate to do this entropy evaluation numerically.
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