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Abstract
Quantum circuits for multiplication and division are necessary for scientific
computing on quantum computers. Clifford + T circuits are widely used in
fault-tolerant realizations. T gates are more expensive than other gates in Clifford + T
circuits. But neglecting the cost of CNOT gates may lead to a significant
underestimation. Moreover, the small number of qubits available in existing quantum
devices is another constraint on quantum circuits. As a result, reducing T-count,
T-depth, CNOT-count, CNOT-depth, and circuit width has become the important
optimization goal. We use 3-bit Hermitian gates to design basic arithmetic operations.
Then, we present a special multiplier and a divider using basic arithmetic operations,
where ‘special’ means that one of the two operands of multiplication is non-zero.
Next, we use new rules to optimize the Clifford + T circuits of the special multiplier
and divider in terms of T-count, T-depth, CNOT-count, CNOT-depth, and circuit width.
Comparative analysis shows that the proposed multiplier and divider have lower
T-count, T-depth, CNOT-count, and CNOT-depth than the current works. For instance,
the proposed 32-bit divider achieves improvement ratios of 40.41 percent, 31.64
percent, 45.27 percent, and 65.93 percent in terms of T-count, T-depth, CNOT-count,
and CNOT-depth compared to the best current work. Further, the circuit widths of the
proposed n-bit multiplier and divider are 3n. I.e., our multiplier and divider reach the
minimum width of multipliers and dividers, keeping an operand unchanged.

Keywords: Quantummultiplier; Quantum divider; Quantum arithmetic operators;
Clifford + T circuits

1 Introduction
One of the most significant challenges in quantum computing is the realization of quan-
tum computers [1]. The quantum circuit model is a realistic quantum computer model
[2] and promotes the efficient implementation of quantum algorithms such as quantum
image processing [3, 4], quantum transforms [5, 6], and quantum amplitude estimation [7].

Quantum circuits for arithmetic operations as the vital part of a quantum computer’s re-
versible arithmetic logic unit can be realized by quantum gates [8, 9]. For instance, Nooral-
lahzadeh et al. used elementary quantum gates in the NCV (NOT, CNOT, Controlled-
V, and Controlled-V+) library to design quantum multipliers [10–12]. These multipliers
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have the low quantum cost, garbage output, and constant input. The fault-tolerant imple-
mentation of quantum gates is needed for robust quantum computing in the presence of
noise. Clifford + T circuits are widely accepted solutions to fault-tolerant implementation
[13, 14]. An instruction set {H , S, S†, CNOT , T , T†} can be used to implement quantum
gates [15].

The T gates are more expensive than other gates in terms of space and time cost due to
their increased tolerance to noise errors [16, 17]. Since the CNOT gate is the only double-
qubit gate in the Clifford + T gate set, neglecting the cost of the CNOT gates may lead
to a significant underestimation [18, 19]. Therefore, the number of T gates (T-count), the
maximum number of T gates in any circuit path (T-depth), CNOT-count, and CNOT-
depth are the main performance indicators of Clifford + T circuits.

Toffoli, Fredkin, Peres, and TR gates are typical for the design of quantum arithmetic op-
erations [20–22]. Clifford + T circuits with T-depth 3 and T-count 7 for Toffoli, Fredkin,
Peres, and TR gates have been proposed without ancillae [17, 18, 23]. Their CNOT-counts
are 7, 9, 6, and 6, respectively. Compared with Peres and TR gates, the Hermitian Toffoli
gate has a better symmetry performance. Four 3-bit Hermitian gates were presented in
[24], whose T-depth, T-count, and CNOT-count are 3, 7, and 6. Therefore, these Hermi-
tian gates in [24] have better symmetry than Peres or TR gates and the smaller CNOT-
count than the Toffoli gate. So, we use these Hermitian gates to design the divider and
special multiplier in this paper.

In the past decade, quantum circuit designs for arithmetic operators, including adders,
modular adders, and comparators, were actively studied [23, 25–33]. Some arithmetic op-
erations have O(log n) T-depth but require lots of ancillae. For example, an n-bit adder
with the minimal T-count 4n – 4 was proposed in [30]. But the adder needs 2n – 2 mea-
surements and n – 1 ancillae. In addition, arithmetic operators with the minimum circuit
width (0 ancillae) were designed in [23, 32].

Thapliyal et al. used ancillae to realize n-bit multipliers with two unchanged operands,
so their circuit width is 4n + 1 [34, 35]. To reduce the T-count and circuit width, Li et al.
utilized Peres and TR gates to design the multiplier with two unchanged operands and the
circuit width 4n [23]. Two multipliers with an unchanged operand and the circuit width
3n + 1 were implemented using approximate Toffoli, Peres, and TR gates [36]. They have
smaller T-counts, T-depths, and circuit widths than other multipliers proposed in [23, 34,
35]. A quantum divider based on quantum Fourier transform was designed with the circuit
width 4n [37]. Thapliyal et al. replaced Toffoli gates with the complex quantum Fourier
transform to realize two divisions with fewer qubits [38]. The two dividers have circuit
widths 3n + 3 and 3n + 2. To further reduce circuit width, Li et al. designed a divider with
the circuit width 3n [36]. The above multipliers and dividers do not consider optimizing
CNOT-count and CNOT-depth.

Quantum algorithms may likely be implemented in these noisy intermediate-scale quan-
tum (NISQ) devices [39]. Some algorithms, such as a quantum convolutional neural net-
work, have been proposed for NISQ devices [40, 41]. The large circuit width blocks appli-
cations of algorithms in NISQ devices, so the small circuit width is crucial for algorithms
applied in NISQ devices. Since an n-bit divider with an unchanged operand needs at least
3n qubits to store the n-bit operand and 2n-bit result, we will use 3n qubits to realize a
multiplier and a divider, respectively. In this paper, we design some basic arithmetic op-
erations such as the modular adder and controlled modular adder. Then, we propose a
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Figure 1 Implementation circuits for (a) the Toffoli gate, (b) the Fredkin gate, (c) the Peres gate, and (d) an
inverse-Peres gate named TR. Note: The circuit of the Toffoli gate has an error in [36], so we have modified the
error in the dashed box 1 in (a)

special multiplier where ‘special’ means that one of the two operands of multiplication is
not equal to zero, such as the multiplication s = a × b with a �= 0. Since the division s/a is
the inverse operation of the special multiplication s = a×b, we can obtain a divider circuit
modifying the proposed special multiplier. Finally, the optimized Clifford + T circuits of
the divider and special multiplier are presented.

The rest of this paper is organized as follows. In Sect. 2, we review the background
knowledge. Section 3 presents basic arithmetic operations. In Sects. 4 and 5, we pro-
pose the special multiplier and divider. Comparative analysis and conclusions are drawn
in Sects. 6 and 7.

2 Background
For clarity, we briefly introduce 3-bit Hermitian gates in [24] and approximate Toffoli gates
in [36]. The matrix forms of six Clifford + T gates are defined by

H =
1√
2

[
1 1
1 –1

]
, X =

[
0 1
1 0

]
, S =

[
1 0
0 i

]
,

S† =

[
1 0
0 –i

]
, T =

[
1 0
0 eiπ/4

]
, T† =

[
1 0
0 e–iπ/4

]
.

We use the instruction set {H , X, S, S†, CNOT , T , T†} to realize the Clifford + T circuits
for arithmetic operations in this paper. For instance, the implementations for the Toffoli,
Fredkin, Peres, and TR gates are illustrated in Fig. 1 [15, 36].

Figure 1 reveals that Peres and TR gates consist of a Toffoli gate and a CNOT
gate, respectively. Similarly, four Hermitian gates are constructed with Toffoli and
CNOT gates [24]. The four Hermitian gates are denoted as LI1, LI2, LI3, and LI4 with
LI = {LI1, LI2, LI3, LI4}. Their Clifford + T circuits are presented in Fig. 2.

Figure 2 reveals that LI1 and LI2 gates are essentially the same. Since we swap the lines of
operands A and B, we can get LI from LI2 swaping the lines of operands A and B. Similarly,
we obtain the gate in Fig. 2(e) by swapping the lines of operands C and B for the LI2 gate.

The optimization rule for two LI2 gates is illustrated in Fig. 3.
The implementations for the Toffoli and approximate Toffoli gates are shown in

Fig. 4. Compared to the corresponding Toffoli gate in Fig. 4(a), the approximate Tof-
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Figure 2 Clifford + T circuits for (a) the LI1 gate, (b) the LI2 gate, (c) the LI3 gate, (d) the LI4 gate, and (e) the
variant of the LI2 gate

Figure 3 Rule 1 of two LI gates proposed in [36]. U is the combination of LI and Clifford gates

Figure 4 Clifford + T circuits for (a) the Toffoli gate, (b) the approximate Toffoli gate, and the variants of the
approximate Toffoli gate in (c) and (d)

foli gate in Fig. 4(b) differs in that it maps |111〉 to –|111〉 [36]. In addition, we give
Clifford + T circuits for two variants of the approximating Toffoli gate in Fig. 4(c) and
(d).



Fan and Li EPJ Quantum Technology           (2024) 11:13 Page 5 of 23

Figure 5 Quantum circuits for (a) the modular adder (MA) and (b) the modular subtractor (MS)

3 Designs of basic arithmetic operations
This section gives Clifford + T circuits for some basic arithmetic operations, including
the modular adder (MA), modular subtractor (MS), modular adder-subtractor (MAS),
modular subtractor-adder (MSA), controlled modular adder (CMA), controlled modular
subtractor (CMS), special modular adder (SMA), special modular subtractor (SMS), spe-
cial modular adder-subtractor (SMAS), and special modular subtractor-adder (SMSA).
MS, MSA, CMS, SMS, and SMSA are inverses of MA, MAS, CMA, SMA, and SMAS,
respectively.

3.1 Quantum circuits of basic arithmetic operations
We substitute LI2 gates for Peres and TR gates to realize the modular adder and subtractor
in [23]. Their circuits presented in Fig. 5 implement the following n-bit operations:

⎧⎨
⎩|s〉 = |(a + b) mod 2n〉,

|d〉 = |(b – a) mod 2n〉,
(1)

with |b〉 = |bn–1bn–2 . . . b0〉, |a〉 = |an–1an–2 . . . a0〉, |s〉 = |sn–1 . . . s0〉, |d〉 = |dn–1 . . . d0〉, bk , ak ,
sk , dk ∈ {0, 1}, and k ∈ {0, 1, . . . , n – 1}.

Compared to MA, MS consists of the same gates with the inverted order. It reveals that
the inverse of basic arithmetic operations based on LI gates can be realized by inverting
the circuit order of the corresponding arithmetic operations. We use LI2 gates to design
quantum circuits for the modular adder-subtractor (MAS) and the controlled modular
adder (CMA) in Fig. 6, which implement

⎧⎨
⎩h = (b + (–1)ea) mod 2n,

t = (b + ea) mod 2n,
(2)

with |h〉 = |hn–1 . . . h0〉, |t〉 = |tn–1 . . . t0〉, hk , tk , e ∈ {0, 1}, and k ∈ {0, 1, . . . , n – 1}.
When an–1an–2 . . . a1a0 is equal to 0an–2 . . . a1a0 for MA and MAS in Fig. 5 and Fig. 6, we

can omit the most significant bit of 0an–2 . . . a1a0 and design the special modular adder
(SMA) and special modular adder-subtractor (SMAS) to reduce circuit width. For in-
stance, SMA can realize |(bn–1bn–2 . . . b0 + an–2 . . . a0) mod 2n〉 with 2n – 1 qubits. Their
4-bit examples are proposed in Fig. 7.
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Figure 6 Quantum circuits for (a) the modular adder-subtractor (MAS) and (b) the controlled modular adder
(CMA). Due to Xn = I for the even number n and Xn = X for the odd number n, the circuit in box 1 consists of
�n/2� + 1 CONT gates, where �.� is a round-up symbol

Figure 7 Quantum circuits for (a) the special modular adder (SMA) and (b) the special modular
adder-subtractor (SMAS)

Compared to basic arithmetic operations based on Peres and TR gates in [23], the above
arithmetic operations have an advantage: these arithmetic operations and their inverse
can be realized using the same gates. Compared to basic arithmetic operations based on
Toffoli gates in [32, 36, 38], the above arithmetic operations have fewer CNOT-count. For
instance, the n-bit CMA in Fig. 6(b) can reduce approximately 2.5n CONT gates compared
with the controlled modular adders based on Toffoli gates.

3.2 Optimized Clifford + T circuits for basic arithmetic operations
We present four rules for LI gates in Fig. 8 to optimize Clifford + T circuits. T-count,
T-depth, CNOT-count, and CNOT-depth are selected as optimization goals. Rule 2 is
given in Fig. 8(a) to optimize CNOT gates. Rules 3 and 4 are obtained by modifying rule
1 in Fig. 3. Rule 5 shows that the Clifford + T circuit in box 2 is for the circuit in box 1.
Furthermore, for each iteration of the circuit in box 2, the gate in the box will be multiplied
by T†. Therefore, the gate in box 3 becomes (T†)n after n + 2 times iterate the circuit in
box 2. We obtain (T†)n ∈ {T†, S†, S†T†, Z, ZT†, ZS†, T , I} for any integer n using (T†)2 = S†,
(T†)3 = S†T†, (T†)4 = Z, (T†)5 = ZT†, (T†)6 = ZS†, (T†)7 = T , and (T†)8 = I , where the
matrix forms of the Clifford gates I and Z are I =

[ 1 0
0 1

]
, Z =

[ 1 0
0 –1

]
.

We can use rules 3, 4, and 5 to optimize Clifford + T circuits for basic arithmetic op-
erations. For instance, the optimized Clifford + T circuits for the 4-bit SMA,4-bit SMSA,
and 3-bit CMA are presented in Fig. 9 and Fig. 10.
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Figure 8 Three rules for LI gates including (a) rule 2, (b) rule 3, (c) rule 4, and (d) rule 5

Figure 9 Optimized Clifford + T circuits for the 4-bit SMA and SMSA

Circuits in dashed boxes are iterative circuits of SMA, SMSA, and CMA. Increasing
by 1-bit for SMA will increase 8 T-counts, 2 T-depths, 13 CNOT-counts, and 6 CNOT-
depths. Therefore, the n-bit SMA has 8(n – 3) + 8 + 7 = 8n – 9 T-counts, 2(n – 3) + 5 = 2n – 1
T-depth, 13(n – 3) + 17 = 13n – 22 CNOT-counts, and 6(n – 3) + 10 = 6n – 8 CNOT-
depths. Similarly, we can calculate performance indexes for other basic arithmetic opera-
tions listed in Table 1.

4 The design of the special multiplier
In this section, we design a special multiplier using LI and approximate Toffoli gates.
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Figure 10 The 3-bit CMA and its optimized Clifford + T circuit

Table 1 Performance indexes for n-bit basic arithmetic operations. HS-count denotes the total
number of H and S gates

Operations T-count T-depth CNOT-count CNOT-depth HS-count Width

MA, MS 8n – 9 2n – 1 13n – 21 6n – 7 4n – 6 2n
SMA, SMS 8n – 9 2n – 1 13n – 22 6n – 8 4n – 6 2n – 1
MAS, MSA 8n – 9 2n – 1 15n – 23 6n – 5 4n – 6 2n + 1
SMAS, SMSA 8n – 9 2n – 1 15n – 24 6n – 6 4n – 6 2n
CMA, CMS ≤ 14n – 7 3n + 1 20n – 18 12n – 10 ≤ 6n – 3 2n + 1

4.1 The circuit for the special multiplier optimizing CNOT gates
The special multiplication s = ab can be expressed by

s = ba =
n–1∑
k=0

bk2ka (3)

with |b〉 = |bn–1bn–2 . . . b0〉, |a〉 = |0an–1an–2 . . . a0〉, and a �= 0.
Since a + b = (a + b) mod 2n+1 holds for any two n-bit positive integers, an n-bit addition

can be realized by (n + 1)-bit modular adders. It is the reason that the n-bit integer a in (3)
is expressed as 0an–1an–2 . . . a0.

Equation (3) is rewritten as

s = –b0a –
n–1∑
k=1

(–1)bk 2k–1a + 2n–1a (4)

with |b〉 = |bn–1bn–2 . . . b0〉, |a〉 = |0an–1an–2 . . . a0〉, b0 = 1 – b0, and a �= 0.
Special arithmetic operations in Fig. 7 and their inverses can be adopted for the operand

0an–1an–2 . . . a0. I.e., we can omit the most significant bit of 0an–1an–2 . . . a0 using special
arithmetic operations. Thus, we can use a CMS, (n – 1) SMSA, and an SMA to realize
the special multiplication in (4). The circuits for the 2-bit and 3-bit special multipliers
are shown in Fig. 11. Swap gates between basic arithmetic operations are used to shift
quantum lines. The output |s5s4s3s2s1s0〉 equals to |ba〉.

The CMS in Fig. 11 perfects the operation (0 – b̄0a) mod 2n, which can be rewritten by

(0 – b̄0a) mod 2n = (b0a – a) mod 2n, (5)
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Figure 11 The circuits for (a) a 2-bit special multiplier and (b) a 3-bit special multiplier. The outputs |s3s2s1s0〉
and |s5s4s3s2s1s0〉 equal to |ba〉, respectively

Figure 12 The circuits for the operation (0 – b̄0a) mod 2n with (a) n = 2 and (b) n = 3

with a = an–1 . . . a1a0 and an–1, . . . , a1, a0, b0 ∈ {0, 1}. The circuits for the operation (0 –
b̄0a) mod 2n with n = 2, 3 are presented in Fig. 12. We replace CMS in the first column
with circuits in the second column to realize (5). Since the LI2 gate changes |a1〉|0〉|a0〉
into |a1 ⊕ a0〉|0〉|a0〉, we substitute CNOT gates for LI2 gates to obtain circuits in the third
column. Finally, we give circuits based on LI and approximate Toffoli gates in the fourth
column. The circuit for (0 – b̄0a) mod 2n is presented in Fig. 13.

We give circuits in the left in Fig. 14(b) and the top in Fig. 14(c) by shifting lines directly to
replace Swap gates (see Fig. 14(a)), substituting circuits in Fig. 12 for CMS and eliminating
some CNOT gates. Then, we obtain the circuits optimizing CNOT gates in Fig. 14 for the
2-bit and 3-bit special multipliers using rule 3.

For clarity, we give the circuit for the 4-bit special multiplier in Fig. 15(a). The circuits
in the dashed boxes 1, 2, and 3 are named the first module of the multiplier (FMM), the
iterative module of the multiplier (IMM), and the last module of the multiplier (LMM),
respectively. Next, we use these modules to design the n-bit special multiplier in Fig. 15(b).

4.2 Clifford + T circuits for the special multiplier
We give the Clifford + T circuit for the 2-bit special multiplier in Fig. 16 using rules 3 and
4. The circuit in dashed box 1 is provided using the Clifford + T circuit for the approximate
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Figure 13 The n-bit circuit for the operation in (5). |tn–1 . . . t1t0〉 equals to |(b0a – a) mod 2n〉

Figure 14 The circuits optimizing CNOT gates for (a) shifting quantum lines to replace the Swap gate, (b) the
2-bit special multiplier and (c) the 3-bit special multiplier. Rule 3 shows that circuits in dashed boxes are
equivalent to LI4 gates

Toffoli gate in Fig. 4(b). The circuit in dashed box 2 is another implementation based on
Clifford + T gates for the LI4 gate.

Using rule 4, we present the Clifford + T circuit of FMM for the 4-bit special multiplier
in Fig. 17. The iterative circuit of FMM is given in the dashed box. Figure 17 reveals that
increasing by 1-bit for FMM increases 18 T-counts, 4 T-depths, 21 CNOT-count, and 9
CNOT-depth. Therefore, we obtain performance indexes of the FMM for the n-bit special
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Figure 15 The circuits optimizing CNOT gates for (a) the 4-bit special multiplier and (b) the n-bit special
multiplier

Figure 16 The Clifford + T circuit for the 2-bit special multiplier

Figure 17 The Clifford + T circuit of FMM for the 4-bit special multiplier

multiplier by calculating

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FMM’s T-count: 18(n – 2) + 23 = 18n – 13,

FMM’s T-depth: 4(n – 2) + 10 = 4n + 2,

FMM’s CNOT-count: 21(n – 2) + 27 = 21n – 15,

FMM’s CNOT-depth: 9(n – 2) + 16 = 9n – 2.

(6)

We propose Clifford + T circuits of the IMM and LMM for the 4-bit special multiplier
in Fig. 18 using rules 3 and 4. Analyzing iterative circuits in dashed boxes, we calculate the
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Table 2 Performance indexes the special multiplier and its modules with n ≥ 3

Operations T-count T-depth CNOT-count CNOT-depth H-count S-count Width

FMM 18n – 13 4n + 2 21n – 15 9n – 2 8n – 6 2n 2n + 2
IMM 8n – 1 2n + 1 11n – 3 4n + 4 4n – 2 0 2n + 2
LMM 8n – 1 2n + 1 13n – 7 5n + 2 4n – 2 0 2n + 1
2-bit multiplier 38 14 43 26 16 4 6
n-bit Multiplier 8n2+9n-12 2n2+3n+1 11n2+9n-16 4n2+10n-8 4n2+2n-4 2n 3n

Figure 18 Clifford + T circuits of IMM and LMM for the 4-bit special multiplier including (a) IMM and (b) LMM

performance indexes of the IMM and LMM as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

IMM’s T-count: 8(n – 2) + 15 = 8n – 1,

IMM’s T-depth: 2(n – 2) + 5 = 2n + 1,

IMM’s CNOT-count: 11(n – 2) + 19 = 11n – 3,

IMM’s CNOT-depth: 4(n – 2) + 12 = 4n + 4,

(7)

and
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LMM’s T-count: 8(n – 2) + 15 = 8n – 1,

LMM’s T-depth: 2(n – 2) + 5 = 2n + 1,

LMM’s CNOT-count: 13(n – 2) + 19 = 13n – 7,

LMM’s CNOT-depth: 5(n – 2) + 12 = 5n + 2.

(8)

For clarity, we give performance indexes of the 2-bit special multiplier, n-bit special mul-
tiplier (n ≥ 3), and its modules in Table 2.

5 The design of the divider
In this section, we design a divider using LI and approximate Toffoli gates.

5.1 The circuit for the divider optimizing CNOT gates
The division s/a is the inverse operation of the special multiplication s = ba with a �= 0. We
obtain a divider by reversing the circuit order for the special multiplier in Fig. 11. There-
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Figure 19 The circuits for (a) a 2-bit divider and (b) a 3-bit divider. The outputs |q1q0〉 and |q2q1q0〉 are
quotients of the division |s/a〉; |r1r0〉 and |r2r1r0〉 are remainders of the division |s/a〉

Figure 20 The circuits realizing the special operation in (9) including (a) n = 3, (b) n = 4, and (c) n ≥ 4

fore, we can use an SMS, (n – 1) SMAS, and a CMA to realize the divider. For instance,
the 2-bit and 3-bit dividers are presented in Fig. 19.

The SMS in Fig. 19 perfects the following operation:

(sn–2 – a) mod 2n, (9)

with a = an–2 . . . a1a0 and an–2, . . . , a1, a0, sn–2 ∈ {0, 1}.
We design circuits in Fig. 20 for the special operation in (9) using approximate Toffoli

gates in Fig. 4(c) and (d).
Firstly, we substitute circuits in Fig. 20 for SMS and eliminate some CNOT gates. Then,

we use rule 2 to design circuits of the 2-bit and 3-bit dividers optimizing CNOT gates in
Fig. 21(a) and (b). Circuits in dashed boxes in Fig. 21(b) are named the first module of
the divider (FMD), the iterative module of the divider (IMD), and the last module of the
divider (LMD), respectively. Finally, we use the three modules to design the n-bit divider
in Fig. 21(c).
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Figure 21 The circuits optimizing CNOT gates for (a) the 2-bit divider, (b) the 3-bit divider, and (c) the n-bit
divider (n≥ 3)

Figure 22 The Clifford + T circuit for the 2-bit divider

Table 3 Performance indexes the divider and its modules with n ≥ 3

Operations T-count T-depth CNOT-count CNOT-depth H-count S-count X-count Width

FMD 4n n + 1 7n – 2 3n + 2 2n 2n 3 2n + 1
IMD 8n – 1 2n + 1 11n – 3 4n + 4 4n – 2 0 0 2n + 2
LMD 20n – 8 5n 26n – 14 14n – 4 8n – 4 0 0 2n + 2
2-bit divider 39 13 48 30 16 4 1 6
n-bit Divider 8n2+7n-6 2n2+3n-1 11n2+8n-10 4n2+13n-10 4n2 2n 3 3n

5.2 Clifford + T circuits for the divider
We use rule 5 and Clifford + T circuits for approximate Toffoli gates in Fig. 4 to design the
Clifford + T circuit of the 2-bit divider in Fig. 22. Clifford + T circuits in dashed boxes 1
and 2 in Fig. 22 correspond to circuits in dashed boxes 1 and 2 in Fig. 21(a).

Similarly, we propose the Clifford + T circuit for the FMD in Fig. 23(a) using approximate
Toffoli gates in Fig. 4. The Clifford + T circuit for the IMD is presented in Fig. 23(b) using
rule 5.
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Figure 23 Clifford + T circuits for (a) the FMD and (b) the IMD. Circuits in dashed boxes are iterative circuits of
the FMD and IMD, respectively

Figure 24 The Clifford + T circuit for the LMD. The circuit in dashed box 2 is the iterative circuit of the LMD.
For each iteration of the circuit in box 2, the gate in dashed box 1 will be multiplied by T†

We calculate performance indexes of the FMD and LMD by analyzing iterative circuits
in dashed boxes in Fig. 23:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FMD’s T-count: 4(n – 2) + 8 = 4n,

FMD’s T-depth: (n – 2) + 3 = n + 1,

FMD’s CNOT-count: 7(n – 2) + 12 = 7n – 2,

FMD’s CNOT-depth: 3(n – 2) + 8 = 3n + 2,

(10)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

IMD’s T-count: 8(n – 2) + 15 = 8n – 1,

IMD’s T-depth: 2(n – 2) + 5 = 2n + 1,

IMD’s CNOT-count: 11(n – 2) + 19 = 11n – 3,

IMD’s CNOT-depth: 4(n – 2) + 12 = 4n + 4.

(11)
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Table 4 Comparisons of basic arithmetic operators

Operators T-count T-depth CNOT-count CNOT-depth Width

Modular adder Proposed 8n – 9 2n – 1 13n – 21 6n – 7 2n
[23] 14n – 21 6n – 9 17n – 18 12n – 17 2n
[29] 14n – 21 6n – 6 19n – 28 14n – 19 2n + 1
[32] 14n – 14 6n – 6 17n – 18 13n – 12 2n
[36] 8n – 9 2n – 1 13n – 21 8n – 12 2n

Modular adder-subtractor Proposed 8n – 9 2n – 1 15n – 23 6n – 5 2n + 1
[33] 14n – 14 6n – 6 20n – 18 13n – 10 2n + 1
[36] 8n – 9 2n – 1 15n – 23 8n – 10 2n + 1

Controlled modular adder Proposed 14n – 7 3n + 1 20n – 18 12n – 10 2n + 1
[23] 21n – 14 9n – 6 23n – 20 18n – 13 2n + 1
[36] 14n – 7 3n + 1 20n – 17 12n – 9 2n + 1
[38] 21n – 14 9n – 6 25n – 20 20n – 14 2n + 1

The Clifford + T circuit for the LMD is presented in Fig. 24 using rule 5. From Fig. 24,
we give performance indexes of the LMD as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LMD’s T-count: ≤ 20(n – 2) + 32 = 20n – 8,

LMD’s T-depth: 5(n – 2) + 10 = 5n,

LMD’s CNOT-count: 26(n – 2) + 38 = 26n – 14,

LMD’s CNOT-depth: 14(n – 2) + 24 = 14n – 4.

(12)

Furthermore, we give performance indexes of the 2-bit divider, n-bit divider (n ≥ 3), and
its modules in Table 3.

6 Comparative analysis
6.1 Comparisons of basic arithmetic operators
The section Introduction shows that the adder has the best T-count 4n – 4 in [30]. But the
adder needs 2n – 2 measurements. It is thus not directly comparable with the T-count.
Considering the circuit width, T-count, T-depth, CNOT-count, and CNOT-depth, we
compare the proposed works with the rest basic arithmetic operators in [23, 29, 33, 36, 38].
The results are presented in Table 4. Table 4 shows that the proposed basic arithmetic
operators are superior to the others.

Objectively, compared with these operators in [36], the proposed basic arithmetic op-
erations have only a slight advantage regarding performance indexes. However, the pro-
posed basic arithmetic operators have a significant advantage: They are more convenient
for designs of the multiplier and divider. For instance, the proposed controlled modular
adder can be used to realize the LMD of the divider with excellent performance indexes
(see Fig. 24).

Note: Thapliyal et al. use the adder and subtractor in [32, 33] to an efficient divider in
[38]. We calculate the performance indexes of the divider in [38] because it is one of the
main comparison objects of the divider proposed in this paper. Therefore, we describe the
computation process of the adder and subtractor in [32, 33] as follows. Circuits of the 4-bit
adder and subtractor are shown in Fig. 25. The n-bit adder in Fig. 25(a) is modified to the
n-bit subtractor in Fig. 25(b) by adding 3n + 1 X gates. They consist of 4n – 5 CNOT, n – 1
Toffoli, and n Peres gates, respectively. The adder and subtractor can be modified into
the modular adder and subtractor by eliminating the high bit (see Fig. 25(c) and (d)). The
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Figure 25 The reversible 4-bit adder, subtractor, modular adder, and modular subtractor for (a) the adder in
[32], (b) the subtractor in [33], (c) the modular adder, and the modular subtractor

generated modular subtractor named Subtraction in [38] comprises 4n – 5 CNOT gates,
n – 1 Toffoli gates, and n – 1 Peres gates. Furthermore, Thapliyal develops a reversible
adder-subtractor in [33] by adding 3n + 1 CNOT gates to the n-bit adder in Fig. 25(a).
Similarly, a modular adder-subtractor is obtained by eliminating the high bit of the re-
versible adder-subtractor in [33]. Therefore, the n-bit modular adder-subtractor named
Ctrl-AddSub in [38] consists of 7n – 5 CNOT, n – 1 Toffoli, and n – 1 Peres gates. Clifford +
T circuits of Toffoli gates proposed in [15, 23, 36] have T-count 7, T-depth 3, CNOT-count
7, and CNOT-depth 6. The Clifford + T circuit of the Peres gate with T-count 7, T-depth
3, CNOT-count 6, and CNOT-depth 5 is proposed in [23]. The performance indexes of
Subtraction are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T-count: 7(n – 1) + 7(n – 1) = 14n – 14,

T-depth: 3(n – 1) + 3(n – 1) = 6n – 6,

CNOT-count: 4n – 5 + 7(n – 1) + 6(n – 1) = 17n – 18,

CNOT-depth: 2n – 1 + 6(n – 1) + 5(n – 1) = 13n – 12.

(13)

Similarly, the modular adder-subtractor (Ctrl-AddSub) has 14n – 14 T-counts, 6n – 6 T-
depths, 17n–18+3n = 20n–18 CNOT-counts, and 13n–12+2 = 13n–10 CNOT-depths.

6.2 Comparisons of multipliers and dividers
6.2.1 Method comparisons with previous works
The main contributions of this paper are to design the new multiplier and divider. There-
fore, we provide a description of the new contributions in this section. Compared to mul-
tipliers based on the measure-and-fixup approach [42, 43], our method for the multiplier
differs in that it does not require quantum measurements. Method comparisons with pre-
vious works [23, 35, 36] are presented in Table 5. Realization formulas of multipliers are

s = – b0a –
n–1∑
k=1

(–1)bk 2k–1a + 2n–1a, (14)
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Table 5 Method comparisons of multipliers with previous works. RF, UO, OO, and OR denote
realization formulas, unchanged operands, optimization objects, and optimization rules

Operators RF UO OO OR Realization of –b0a

Proposed Eq. (14) One T and CNOT gates Based on LI gates Circuit in Fig. 13
[23] Eq. (15) Two T gates – –
[35] Eq. (15) Two T gates – –
[36] Eq. (16) One T gates Based on approximate gates CMS

s =
n–1∑
k=0

bk2k–1a, (15)

and

s =
[
–b0 + (–1)b1

]
a + 2n–1a +

n–1∑
k=2

(–1)bk 2k–1a, (16)

where bk is equal to 1 – bk with k ∈ {1, 2, . . . , n – 1}.
Table 5 shows that the proposed method is different from methods in [23, 35] in terms

of realization formulas, unchanged operands, and optimization objects. From realization
formulas in Table 5, we obtain that methods in [23, 35] use n controlled modular adders to
implement multipliers, respectively. Our method adopts the circuit in Fig. 13, (n – 1) spe-
cial modular subtractor-adders, and a special modular adder to implement the multiplier.
Compared to the method in [36], our method used the different realization formula, opti-
mization objects, optimization rules, and realization of –b0a. According to the realization
formula in [36], the multiplier is implemented by a circuit named SM, (n – 1) modular
adder-subtractors, and a modular adder, where the SM consists of a controlled modular
subtractor and other gates to realize [–b0 + (–1)b1 ]a. The proposed multiplier reduces the
circuit width, T-count, T-depth, CNOT-count and CNOT-depth, because the method in
the paper uses the different realization formula, optimization objects, and optimization
rules.

Due to the Hermitian property of LI gates, we can reverse the circuit order for the special
multiplier to obtain the divider. The method for the divider in the paper is significantly
different from methods of dividers in [36, 38].

6.2.2 Performance comparisons of multipliers
Multipliers based on the measure-and-fixup approach have small T-counts. For instance,
T-counts of two multipliers in [42, 43] are 6n2 + O(n) and 8n2 – 4n, respectively. But, the
two multipliers also require O(n2) quantum measurements. We compare the proposed
multiplier against recent works without quantum measurements [23, 35, 36]. Two multi-
pliers are proposed in [36], but the second multiplier has better performance indexes than
the first multiplier. Therefore, we only compare the proposed multiplier with the second
multiplier in [36]. The results are presented in Table 6 and Table 7, which illustrate that
the proposed multiplier is superior to the others for the five performance indexes. For in-
stance, the CNOT-count of the proposed 32-bit multiplier achieves improvement ratios
of 50.20 percent, 54.35 percent, and 26.96 percent compared to the works presented in
[23, 35, 36], respectively. The caveat is that the proposed multiplier can only realize the
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Table 6 Comparisons of multipliers for n≥ 3

Operators T-count T-depth CNOT-count CNOT-depth Width

Proposed 8n2+9n-12 2n2+3n+1 11n2+9n-16 4n2+10n-8 3n
[23] 21n2-9n-5 9n2-3n-3 23n2-12n-4 18n2-48n+30 4n
[35] 21n2-14 9n2-3n-3 25n2-10n-8 20n2-10n 4n + 1
[36] 8n2+15n-8 2n2+4n 15n2+14n-15 8n2+11n-16 3n + 1

special multiplication ab with a �= 0. The other three multipliers do not have this limita-
tion. The proposed multiplier based on LI gates has another advantage: it can be easily
used to design dividers.

Note: Performance indexes of the multiplier in [36] are miscalculated. We recalculate
them as follows. The n-bit multiplier consists of an SM module, n – 1 modular adder-
subtractors ((n + 1)-bit), an (n + 1)-bit modular adder, and an Aswap module. Performance
indexes of the modular adder and modular adder-subtractor in [36] have been listed in
Table 4. The SM module has 20n – 9 T-counts, 5n – 1 T-depth, 33n – 23 CNOT-counts,
and 21n – 21 CNOT-depths. The Aswap module has 4n T-counts, 2 T-depths, 6n CNOT-
count, and 5 CNOT-depths. Performance indexes of the n-bit multiplier are calculated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T-count: 20n – 9 + [8(n + 1) – 9](n – 2) + 8(n + 1)

– 9 + 4n = 8n2 + 15n – 8,

T-depth: 5n – 1 + [2(n + 1) – 1](n – 2) + 2(n + 1) + 1

= 2n2 + 4n,

CNOT-count: 33n – 23 + [15(n + 1) – 23](n – 2)

+ 13(n + 1) – 21 + 6n = 15n2 + 14n – 15,

CNOT-depth: 21n – 21 + [8(n + 1) – 10](n – 2)

+ 8(n + 1) – 12 + 5 = 8n2 + 11n – 16.

6.2.3 Performance comparisons of dividers
We compare the proposed divider against recent works [36, 38]. Thapliyal et al. design
restoring and non-restoring dividers [38]. The non-restoring divider has a smaller T-count
and T-depth than the restoring divider, so we only compare the proposed divider with
the non-restoring divider. The results in Table 8 and Table 9 illustrate that the proposed
divider is superior to the others in terms of T-count, T-depth, CNOT-count, and CNOT-
depth. For instance, the proposed 32-bit divider achieves improvement ratios of 40.41
percent, 31.64 percent, 45.27 percent, and 65.93 percent in terms of T-count, T-depth,
CNOT-count, and CNOT-depth compared to the work presented in [36]. Meanwhile,
the proposed 32-bit divider reduces T-count by 45.54 percent, T-depth by 67.62 percent,
CNOT-count by 47.36 percent, and CNOT-count by 68.85 percent when compared with
the work in [38]. The n-bit division requires at least 3n qubits to store the quotient, re-
mainder, and operand; thus, the proposed divider has the minimum circuit width 3n for
the n-bit division keeping an operand unchanged.

Note: Thapliyal et al. designed a non-restoring divider to realize the positive 2’s comple-
ment division [38]. An n-bit positive integer can be changed into the complement number
by adding a binary 0 before the high bit. Therefore, a complement operand of the n-bit
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Table 7 Comparisons of multipliers by increasing n from 4 to 32. C-count and C-depth denotes
CNOT-count and CNOT-depth, respectively

Operators T-count T-depth C-count C-depth Width

n = 4 Proposed 152 45 196 96 12
[23] 295 129 316 126 16
[35] 322 129 352 280 17
[36] 180 48 281 156 13

n = 8 Proposed 572 153 760 328 24
[23] 1267 549 1372 798 32
[35] 1330 549 1512 1200 33
[36] 2280 160 1057 584 25

n = 16 Proposed 2180 561 2944 1176 48
[23] 5227 2253 5692 3870 64
[35] 5362 2253 6232 4960 65
[36] 2280 576 4049 2208 49

n = 32 Proposed 8468 2145 11536 4408 96
[23] 21211 9117 23164 16926 128
[35] 21490 9117 25272 20160 129
[36] 8664 2176 15793 8528 97

Impr.(%) for n = 32 w.r.t. [23] 60.08 76.47 50.20 73.96 25
w.r.t. [35] 60.60 76.47 54.35 78.13 25.58
w.r.t. [36] 2.26 1.42 26.96 48.31 1.03

Table 8 Comparisons of dividers for n ≥ 3

Operators T-count T-depth CNOT-count CNOT-depth Width

Proposed 8n2+7n-6 2n2+3n-1 11n2+8n-10 4n2+13n-10 3n
[36] 14n2-7n+1 3n2+2n-1 21n2-15n+7 13n2-3n-1 3n
[38] 14n2+35n-14 6n2+15n-6 20n2+44n-21 13n2+36n-13 3n + 2

Table 9 Comparisons of dividers by increasing n from 4 to 32. C-count and C-depth denotes
CNOT-count and CNOT-depth, respectively

Operators T-count T-depth C-count C-depth Width

n = 4 Proposed 150 43 198 106 12
[36] 197 55 283 195 12
[38] 350 150 475 339 15

n = 8 Proposed 562 151 758 350 24
[36] 841 207 1231 807 24
[38] 1162 498 1611 1107 26

n = 16 Proposed 2154 559 2934 1222 48
[36] 3473 799 5143 3279 48
[38] 4130 1770 5803 3891 50

n = 32 Proposed 8410 2143 11510 4502 96
[36] 14113 3135 21031 13215 96
[38] 15442 6618 21867 14451 98

Impr.(%) for n = 32 w.r.t. [36] 40.41 31.64 45.27 65.93 0
w.r.t. [38] 45.54 67.62 47.36 68.85 2.04

positive integer division requires m = n + 1 bits. The n-bit divider consists of an m-bit
modular subtractor named Subtraction, (m – 1) m-bit modular adder-subtractor named
Ctrl-AddSub, and an (m – 1)-bit controlled modular adder named Ctrl-AddNOP [38].
Performance indexes of the three modules can be found in Table 4. Then, performance
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indexes of the n-bit divider are calculated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T-count:

14m – 14 + (14m – 14)(m – 1) + 21(m – 1) – 14

= 14m2 + 7m – 35

= 14n2 + 35n – 14,

T-depth:

6m – 6 + (6m – 6)(m – 1) + 9(m – 1) – 6

= 6m2 + 3m – 15

= 6n2 + 15n – 6,

CNOT-count:

17m – 18 + (20m – 18)(m – 1) + 25(m – 1) – 20

= 20m2 + 4m – 45

= 20n2 + 44n – 21,

CNOT-depth:

13m – 12 + (13m – 10)(m – 1) + 20(m – 1) – 14

= 13m2 + 10m – 36

= 13n2 + 36n – 13,

width: 3m – 1 = n + 2,

with m = n + 1.

7 Conclusions and future works
In this paper, we have proposed a special multiplier and a divider based on LI and ap-
proximate Toffoli gates. We designed circuits of basic arithmetic operations used in the
proposed multiplier and divider, such as the modular adder, modular adder-subtractor,
controlled modular adder, special modular adder, special modular adder-subtractor, and
their inverses. These basic arithmetic operations based on LI gates have the advantage
that their inverse can be realized by inverting the circuit order of the corresponding arith-
metic operations. We have proposed new rules of LI gates to design Clifford + T circuits
of the proposed multiplier and divider, optimizing T-count, T-depth, CNOT-count, and
CNOT-depth. Clifford + T circuits of the proposed multiplier and divider are superior to
existing multiplier and dividers in terms of T-count, T-depth, CNOT-count, and CNOT-
depth. Furthermore, circuit widths of the proposed n-bit multiplier and divider are 3n.
That is, our multiplier and divider have reached the minimum width of multipliers and
dividers, keeping an operand unchanged. As a future work, it will be interesting to ap-
ply the proposed multiplier and divider in quantum image processing, such as quantum
bilinear interpolation algorithm.
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