
David et al. EPJ Quantum Technology           (2024) 11:14 
https://doi.org/10.1140/epjqt/s40507-024-00224-2

R E S E A R C H Open Access

Digital simulation of convex mixtures of
Markovian and non-Markovian single qubit
Pauli channels on NISQ devices
I.J. David1,2, I. Sinayskiy1,2* and F. Petruccione1,2,3

*Correspondence:
sinayskiy@ukzn.ac.za
1School of Chemistry and Physics,
University of KwaZulu-Natal, Durban
4001, South Africa
2National Institute for Theoretical
and Computational Sciences
(NITheCS), Stellenbosch, South
Africa
Full list of author information is
available at the end of the article

Abstract
Quantum algorithms for simulating quantum systems provide a clear and provable
advantage over classical algorithms in fault-tolerant settings. There is also interest in
quantum algorithms and their implementation in Noisy Intermediate Scale Quantum
(NISQ) settings. In these settings, various noise sources and errors must be accounted
for when executing any experiments. Recently, NISQ devices have been verified as
versatile testbeds for simulating open quantum systems and have been used to
simulate simple quantum channels. Our goal is to solve the more complicated
problem of simulating convex mixtures of single qubit Pauli channels on NISQ
devices. We consider two specific cases: mixtures of Markovian channels that result in
a non-Markovian channel (M + M = nM) and mixtures of non-Markovian channels
that result in a Markovian channel (nM + nM = M). For the first case, we consider
mixtures of Markovian single qubit Pauli channels; for the second case, we consider
mixtures of Non-Markovian single qubit depolarising channels, which is a special case
of the single qubit Pauli channel. We show that efficient circuits, which account for
the topology of currently available devices and current levels of decoherence, can be
constructed by heuristic approaches that reduce the number of CNOT gates used in
our circuit. We also present a strategy for regularising the process matrix so that the
process tomography yields a completely positive and trace-preserving (CPTP)
channel.
Key points
• This work simulates the convex mixtures of single qubit Markovian and
non-Markovian quantum channels on NISQ devices provided by the IMBQE.

• The circuits used to implement the channels take into account the topolgy of the
quantum device used as well as the number of CNOT gates used.

• We present a strategy for regularising the process matrix to ensure the quantum
process tomography yields a CPTP channel. Something that is not correctly
implemented in Qiskit.

• A method is outlined for finding mixtures of non-Markovian depolarising
channels that yield a Markovian depolarising channel. It is also shown that, one
cannot convexly mix two Markovian depolarising channels that leads to a
non-Markovian depolarising channel.
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1 Introduction
Simulating large, complex quantum systems with classical computers is a computationally
challenging problem. The computational resources required to perform these simulations
would scale exponentially with the number of quantum particles, and these simulations
would quickly become classically intractable. For this reason, Quantum Simulation, the
simulation of quantum systems with quantum computers, has been proposed [1, 2]. The
computational resources required to use quantum computers would scale only polynomi-
ally with the number of quantum particles. Since this discovery, quantum simulation has
become one of the main motivations for developing quantum computers [3].

Researchers have developed many algorithms to simulate quantum systems using quan-
tum computers [4–13]. However, these algorithms are best suited for fault-tolerant set-
tings. In these settings, quantum computers would provide a clear advantage over classi-
cal computers in the simulation of quantum systems. However, despite the advancements
made in quantum hardware, much more work needs to be done to reach fault-tolerant
settings. This, and the growing accessibility of Noisy Intermediate Scale Quantum (NISQ)
computers through the cloud from platforms such as the IBM Quantum Experience (IB-
MQE), has inspired interest in the use of NISQ devices for simulating quantum systems
[14–17].

In these settings, the simulations are restricted by the size of the systems, various error
rates and noise sources. Despite this, even currently available quantum computers provide
versatile test beds for various theories in quantum physics [18–20].

A majority of recent work has been devoted to the simulation of closed quantum systems
in the NISQ era [14–17]. However, there has been less work done in the simulation of open
quantum systems in the NISQ era [20–22]. Open quantum systems [23, 24], are systems
that are allowed to interact with their environment and to simulate them we need to be
able to simulate their evolution on a quantum computer.

A master equation describes the dynamics of an open quantum system. The solution
of this master equation is a dynamical map, also known as a quantum channel, which de-
scribes the evolution of an open quantum system. Under certain assumptions, such as the
Born-Markov approximation, the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
of the master equation can be derived [25, 26]. The GKSL form of the master equation de-
scribes Markovian dynamics, where all memory effects are neglected. Non-Markovian dy-
namics differs from Markovian dynamics in that it allows information to flow back into the
system from the environment and does not neglect memory effects [27]. While everyone
agrees that the time-independent GKSL generator with non-negative damping constants
describes the quantum Markov process, there are several approaches to defining the non-
Markovianity in quantum physics [28–31]. This makes the study of non-Markovianity in
quantum physics a highly non-trivial problem.

There has been much interest in the study of the non-Markovian dynamics of an
open quantum system [28–30, 32–37]. There are many different descriptions of non-
Markovianity [28, 29, 37] however, in this work, we make use of CP divisibility [29] to
characterise a channel as Markovian or non-Markovian. We say that a channel is Marko-
vian if it is CP-divisible and non-Markovian if it is CP-indivisible.

Recently, simulations of open quantum systems have been used to understand non-
Markovian dynamics further [20, 38]. There is a need for more algorithms for simulating
open quantum systems with NISQ devices and more experiments to test existing algo-
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rithms [20]. This would demonstrate that NISQ devices can be used for more practical
problems, taking us further toward using quantum computers as practical computing de-
vices.

Recently, there has been much interest in studying the mixtures of quantum channels
and how mixing channels with specific properties leads to a new channel with counterin-
tuitive and surprising properties [39–41]. In [41], the author studies mixtures of commu-
tative, unital and Markovian quantum channels, and they show that Markovianity can be
recovered by mixing a certain number of phase covariant channels. The work done in [39]
calculates the number of negative decay rates that qudit channels can have while still being
physically legitimate quantum channels. The author of [40] provides connections between
the non-Markovianity degree of general phase damping qubit maps and their legitimate
mixtures. Necessary and sufficient conditions for Pauli maps to satisfy divisibility criteria
are formulated. In [39], mixtures of Pauli channels are studied, but a prescription for how
to design these mixtures of channels for simulations and experimental demonstrations is
not provided. In this work, we will provide a prescription for designing mixtures of depo-
larising channels to mix two non-Markovian depolarising channels and yield a Markovian
channel. We also show that it is impossible to mix two Markovian depolarising channels
and obtain a non-Markovian channel. Of interest to us is the work done by [38], where
they study mixtures of Markovian channels that lead to Non-Markovian channels and
vice versa.

In this work, we use NISQ devices, provided by the IBMQE through the cloud, to sim-
ulate the mixtures of Markovian quantum channels that yield a Non-Markovian channel
(M + M = nM) and the mixtures of Non-Markovian channels that yield a Markovian chan-
nel (nM + nM = M). We will also use the Python package Qiskit to interact with the NISQ
devices [42]. For the case of M + M = nM, we consider mixtures of Pauli channels because
of their relevance to bit-flip and phase-flip error encountered on quantum devices, while
for the case of nM + nM = M, we consider mixtures of depolarising channels because of
the common occurrence of depolarising noise on quantum devices.

Each mixture was then simulated on a NISQ device. We show that efficient circuits that
account for the topology of currently available devices and current levels of decoherence
can be constructed by carefully considering device properties when applying the unitary
dilation, such as Stinespring dilation [43]. These NISQ device motivated circuit construc-
tions provide an improvement in the quality of the results obtained in simulations.

The channel that resulted from the simulation was then reconstructed. Previous at-
tempts at simulating convex mixtures employed Maximum Likelihood Estimation (MLE)
[38] to reconstruct the channel. This has since been shown, experimentally, to be unideal.
In this work, we reconstruct the channel by solving a convex optimisation problem with
problem-specific constraints [44]. With this approach, a CPTP channel is obtained. The
simulation was then verified by characterising the reconstructed channel as either Marko-
vian or Non-Markovian using the CP-divisibility criteria [29]. We also show that the re-
constructed channels have high fidelity to the theoretical channel and have Choi matrices
with the required trace norm of one. This indicates that the channels simulated are physi-
cal. The rest of this paper is outlined as follows. In Sect. 2, we introduce some background
information and theory related to quantum channels and their generators, and we also
present the theoretical design of the quantum channels to be simulated for both cases
M + M = nM and nM + nM = M. In Sect. 3, we discuss the simulation of the channels
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on the NISQ device. We discuss the quantum circuits designed to simulate the quantum
channels in Sect. 3 A. In Sect. 3 B, we outline the method for process tomography and the
convex optimisation technique we use to reconstruct a CPTP map. Section 4 will describe
the method to characterise the simulated channels as Markovian or non-Markovian using
the CP-divisibility criteria. The results from the simulation will be presented in detail in
Sect. 5. Lastly, in Sect. 6, we make some concluding remarks and discuss possible exten-
sions of this work.

2 Preliminaries
The evolution of an isolated (closed) quantum system is described by the von-Neumann
equation,

ρ̇S(t) = –i
[
HS,ρS(t)

]
(1)

where HS is the Hamiltonian of the system and ρS(t) is the density matrix of the system at
some time t ≥ 0. Formally, the solution to equation (1) is a unitary transformation,

ρS(t) = U(t)ρS(0)U†(t), (2)

where U(t) = exp(–itHS). If the system is not isolated and is allowed to interact with some
environment then the system and environment together undergo unitary evolution as an
isolated system. To describe the dynamics of the system we need to “trace out” the en-
vironmental degrees of freedom obtaining the evolution of the open quantum system.
Without loss of generality one can assume that the total state ρtot(t), at t = 0, of the system
and environment is a product state i.e.

ρtot(0) = ρE(0) ⊗ ρS(0), (3)

where ρE is the density matrix of the environment and ρS is the density matrix of the
system. The total unitary evolution Utot(t) of the system and environment is given by,
Utot(t) = exp(–itHtot) where Htot is the Hamiltonian of the system and environment and is,

Htot = HS + HE + HI (4)

where HS is the system Hamiltonian, HE is the Hamiltonian of the environment and HI

is the Hamiltonian describing the interaction between the system and environment. The
total system and environment undergo unitary evolution i.e. ρtot(t) = Utot(t)ρtot(0)U†

tot(t),
to obtain the dynamics of just the system we must trace out the environment using the
partial trace so that,

ρS(t) = trE
(
Utot(t)ρtot(0)U†

tot(t)
)

(5)

Equation (5) allows us to describe the effective dynamics of the system using a dynamical
map �t where,

�tρS(0) = trE
(
Utot(t)ρtot(0)U†

tot(t)
)

(6)
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The dynamical map �t where t ≥ 0 and �0 = 1 are a family of single parameter com-
pletely positive and trace preserving (CPTP) maps. From this point on since we are only
interested in the dynamics of the system we can drop the subscript and represent the state
of the system at some time t ≥ 0, with just ρ(t) so that, if ρ(0) is the initial state of the
system then ρ(t) = �tρ(0) [23].

A dynamical map is also referred to as a quantum channel. These shall be used inter-
changeably throughout this work. One can assume that the map �t , in most practical
cases, satisfies the time-local master equation,

d
dt

ρ(t) = L(t)ρ(t) ⇔ d
dt

�t = L(t)�t , (7)

where L(t) is the time-local generator and has the known form,

L(t)ρ = –i
[
Ĥ(t),ρ

]
+

∑

k

γk(t)
(

V̂k(t)ρV̂ †
k (t) –

1
2
{

V̂ †
k (t)V̂k(t),ρ

}
)

, (8)

where Ĥ(t) is the time-dependent Hamiltonian, γk(t) and V̂k(t) are the time-dependent
decay rates and noise operators respectively. The form of the generator in (2) is very gen-
eral and gives both Markovian and non-Markovian dynamics. It is widely accepted that
the famous Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form of the generator cor-
responds to Markovian dynamics [25, 26]. The GKSL form of the generator is,

Lρ = –i[Ĥ ,ρ] +
∑

k

γk

(
V̂kρV̂ †

k –
1
2
{

V̂ †
k V̂k ,ρ

}
)

. (9)

Since the GKSL form of the generator corresponds to Markovian dynamics, all memory
effects are neglected. A crucial part of this work will involve classifying the simulated dy-
namical maps �t as either Markovian or non-Markovian. As stated above, we shall use the
CP divisibility criteria to classify a dynamical map as Markovian or non-Markovian [29],
which shall be outlined in more detail in the next section. Another approach in studying
the Markovianity of a dynamical map is to model the total system and environment dy-
namics, this work does not take this approach, but one could look at [30, 31] for more
information. The aim of this work can be stated formally as follows. For two channels �

(1)
t

and �
(2)
t we are interested in classifying the total channel:

�
(T)
t = η�

(1)
t + (1 – η)�(2)

t (10)

where η ∈ [0, 1]. We consider the following two cases:
(i) �

(1)
t , �(2)

t are Markovian and �
(T)
t is non-Markovian, which we shall refer to as (M +

M = nM).
(ii) �

(1)
t , �

(2)
t are non-Markovian and �

(T)
t is Markovian, which shall be referred to as

(nM + nM = M).
These two cases above arise from the non-convex geometry of the set of Markovian and

non-Markovian channels [32]. Past works that have studied this non-convex geometry
have provided examples of mixtures of Markovian channels leading to a non-Markovian
channel, and vice versa [34, 45–49].
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3 Design of single qubit channels to simulate
Since we are only focused on single qubit channels, our channel of interest in this work
will be the single qubit Pauli channel. These are the simplest non-trivial channels that we
can use for our simulations. The single qubit Pauli channel is of the form,

�tρ =
3∑

α=0

pα(t)σαρσα , (11)

where σ0 = 1 and pα(t) is a time dependent probability distribution such that p0(0) = 1
and pi(0) = 0 for i ∈ {1, 2, 3} and

∑3
i=0 pi(t) = 1 for all t ≥ 0. This channel was studied ex-

tensively in [36]. It should also be noted that this channel also falls into a larger class of
channels called random unitary channels [35]. In this work, we consider a subset of single
qubit channels by focusing on single qubit Pauli channels; the reason we consider these
channels is that the Pauli channel in equation (11) is the most general unital stochastic
single qubit quantum channel [36, 50]. This means that it is the most general single qubit
channel that preserves the identity operator and the most general single qubit channel
with a Kraus operator, which is proportional to the identity; this is what it means for a
channel to be a stochastic channel [51]. Also, since the space of stochastic channels is
manifestly convex [51], taking convex mixtures of single qubit Pauli channels will again
be a stochastic channel. Therefore, simulating efficiently on a NISQ device, a single qubit
Pauli channel provides insight into a broad class of single qubit channels, which is why we
only consider single qubit Pauli channels.

To make a statement about whether the Pauli channel is Markovian or not, we need to
analyze the decay rates of the time local generator L(t) of the Pauli channel in equation
(11). From the time-local master equation (7), we see that L(t) = �̇t�

–1
t , this tells us that

we need to compute �–1
t to calculate the generator [33]. Let us note that:

�t(σα) = λα(t)σα (12)

where the time-dependent eigenvalues are,

λα(t) =
3∑

β=0

Hαβpβ (t) (13)

with λ0(t) = 1 and Hαβ being the Hadamard matrix defined as:

H =

⎛

⎜⎜⎜
⎝

1 1 1 1
1 1 –1 –1
1 –1 1 –1
1 –1 –1 1

⎞

⎟⎟⎟
⎠

. (14)

We should note that λ0(t) = 1 and |λk(t)| ≤ 1 for k = 1, 2, 3. Now it is clear that:

L(t)σα = μα(t)σα (15)
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where μα(t) = λ̇α (t)
λα (t) and in particular μ0(t) = 0 since λ0(t) = 1. Now by introducing the

decay rate γα(t) we get the local generator as:

L(t)ρ =
3∑

α=0

γα(t)σαρσα (16)

where the decay rates γα(t) are defined as,

γα(t) =
1
4

3∑

β=0

Hαβμβ (t). (17)

By observing that
∑3

α=0 γα = 0, we arrive at the standard form for the generator of the Pauli
channel [33] as,

L(t)ρ =
3∑

k=1

γk(t)(σkρσk – ρ). (18)

Hence we get the expression for γk(t) as:

γk(t) =
1
4

3∑

β=0

Hkβ

{ ∑3
ν=0 Hβν ṗν(t)

∑3
σ=0 Hβσ pσ (t)

}
, (19)

for k = 1, 2, 3. We use the following result from [33, 35, 36]. The Pauli channel (11) is
Markovian (i.e �t is divisible) if and only if γk(t) ≥ 0 for all t ≥ 0 and for k = 1, 2, 3. This
tells us that if the decay rates of the generator of a channel are non-negative, then that
channel is Markovian, and any deviation from this leads to the channel becoming non-
Markovian. We know that from the time local generator L(t) we can get the channel �t

from the relation,

�t = T e
∫ t

0 dτL(τ ) (20)

where T is the chronological time ordering operator. Now we note that a linear combi-
nations of Markovian generators L1(t) and L2(t) i.e. α1L1(t) + α2L2(t) with α1,α2 ≥ 0, is
also a Markovian generator. Hence Markovian generators form a convex set in the space of
admissible generators. The same is not true on the channel level, since for two Markovian
channels �

(1)
t and �

(2)
t it is not always the case that their convex linear combination will

be Markovian, i.e. η�
(1)
t + (1 – η)�(2)

t , η ∈ [0, 1], is not necessarily Markovian [34]. We can
now consider the two cases of convex mixing of channels outlined above, i.e. M + M = nM
and nM + nM = M. We shall find Pauli channels that satisfy these two cases.

3.1 Markovian channel addition (M + M = nM)
The goal is to find two Markovian channels that, when convexly combined, yield a non-
Markovian channel. We shall use the channels from [38] that demonstrate this. We start
by defining the following two channels,

�
(1)
t ρ = p(t)ρ +

(
1 – p(t)

)
σ1ρσ1 (21)
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�
(2)
t ρ = p(t)ρ +

(
1 – p(t)

)
σ2ρσ2 (22)

where the probability p(t) = 1+e–t

2 . Using equations (19) and (18) above, we can find the
generators of these channels. We find that for channels �

(1)
t = etL1 and �

(2)
t = etL2 the

generators are given by:

L1ρ =
1
2

(σ1ρσ1 – ρ), L2ρ =
1
2

(σ2ρσ2 – ρ). (23)

Since the decay rates in both these generators are non-negative for all t ≥ 0, the channels
in equations (21) and (22) are Markovian. We can now consider the convex combination
of these channels in the following way:

�
(T)
t ρ =

1
2
�

(1)
t ρ +

1
2
�

(2)
t ρ =

1 + e–t

2
ρ +

1 – e–t

4
(σ1ρσ1 + σ2ρσ2) (24)

where �
(T)
t is the total channel. Now for this total channel, the generator is:

LT (t)ρ =
1
4

(σ1ρσ1 – ρ) +
1
4

(σ2ρσ2 – ρ) –
tanh(t/2)

4
(σ3ρσ3 – ρ) (25)

Since the decay rate γ3(t) < 0 in equation (25), the total channel is non-Markovian more
so this channel is eternally non-Markovian [33, 34].

3.2 Non-Markovian channel addition (nM + nM = M)
To design channels for the non-Markovian channel addition, we need to consider a special
case of the Pauli channel in equation (11), i.e. the depolarizing channel [20]. We can obtain
the depolarizing channel from equation (11) by parameterizing the probabilities pα(t) as
follows:

�tρ =
(

1 –
3p(t)

4

)
ρ +

p(t)
4

3∑

α=1

σαρσα (26)

where 0 ≤ p(t) ≤ 1 for all times t ≥ 0. Now from the fact that �0 = 1 we see that p(0) = 0.
The decay rates for the depolarizing channel can now be calculated using equation (19),

γk(t) =
ṗ(t)

4(1 – p(t))
(27)

for k = 1, 2, 3. From equation (27), we can tighten the bounds on p(t), i.e. 0 ≤ p(t) < 1. Now
the form of the decay rate in equation (27) tells us that for the channel to be Markovian, the
function p(t) should satisfy ṗ(t) ≥ 0 for all t ≥ 0 and for the channel to be non-Markovian
there should exist some time t′ ≥ 0 such that ṗ(t′) ≤ 0.

Now let us consider the following two individual channels:

�
(1)
t ρ =

(
1 –

3q(t)
4

)
ρ +

q(t)
4

3∑

α=1

σαρσα

�
(2)
t ρ =

(
1 –

3r(t)
4

)
ρ +

r(t)
4

3∑

α=1

σαρσα . (28)
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The decay rates for both the individual channels in equation (28) are:

γ
(1)
k (t) =

q̇(t)
4(1 – q(t))

, γ
(2)
k (t) =

ṙ(t)
4(1 – r(t))

(29)

for k = 1,2,3. Taking a convex combination of the individual channels in equation (28), we
obtain the total channel:

�
(T)
t ρ = η�

(1)
t ρ + (1 – η)�(2)

t ρ

=
(

1 –
3
4

w(t)
)

ρ +
w(t)

4

3∑

α=1

σαρσα (30)

where η ∈ [0, 1] and w(t) = ηq(t) + (1 –η)r(t). Now the decay rates for the total channel are:

γ
(T)
k (t) =

ẇ(t)
4(1 – w(t))

=
ηq̇(t) + (1 – η)ṙ(t)

4(1 – [ηq(t) + (1 – η)r(t)])
(31)

It is clear from equation (31) that it is possible for there to exist times t′ and t′′ such that
q̇(t′) < 0 and ṙ(t′′) < 0 and w(t) ≥ 0 for all times t. This tells us that it is possible to use
the depolarizing channel in equation (26) to show that we can convexly mix two non-
Markovian channels to get a total Markovian channel.

As a consequence of our calculations we can also see that it is impossible to have mix-
tures of two Markovian depolarising channels that yield a Non-Markovian depolarising
channel. To see this consider the decay rates in equation (29), for the channels �

(1)
t and

�
(2)
t to be markovian we require that q̇(t) ≥ 0 and ṙ(t) ≥ 0 for all times t ≥ 0. However

if this is true then the decay rates for total channel �
(T)
t in equation (31) will always be

positive since, ηq̇(t) + (1 – η)ṙ(t) ≥ 0 for all t ≥ 0. This tells us that mixing two Markovian
depolarising channels always yields a Markovian depolarising channel. This result is use-
ful as depolarising channels are the most commonly used noise models when studying the
robustness of quantum algorithms [52, 53] to noise.

The goal now would be to pick functions q(t) and r(t) such that �
(1)
t and �

(2)
t are non-

Markovian and the total channel �
(T)
t is Markovian. We observe that if we parameterize

q(t) and r(t) as:

q(t) = a(t) + b(t)

r(t) = a(t) – b(t) (32)

Furthermore, setting η = 1
2 in equation (30), then using the bounds on q(t) and r(t), we

get b(t) ≤ a(t) < 1 – b(t). Taking into consideration all the constraints outlined above, we
choose the functions a(t) and b(t) as follows:

a(t) =
0.5

1 + exp(–4(t – 2))
+

0.48
1 + exp(–4.5(t – 6))

b(t) = 0.49 exp
(
–(t – 4)6). (33)

Refer to Fig. 1 for the plots of the functions given in equation (33) above. From equa-
tion (29), we see that the decay rates for the individual channels �

(1)
t and �

(2)
t are non-

Markovian. This is because for some time interval q̇ < 0 and for some other interval of
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Figure 1 This is a plot of the functions q(t) and r(t)
for the time interval t ∈ [0, 9]. Both these functions
satisfy the constraints that 0 ≤ q(t), r(t) < 1 and the
functions are numerically close enough to zero that
we can write: q(0) ≈ 0 and r(0) ≈ 0

Figure 2 This plot shows the derivatives of q(t) and r(t), we see that for some times both q̇(t) and ṙ(t) are
negative which will lead to the decay rates in the generators of the individual channels to become negative.
This implies that the individual channels are both non-Markovian

Figure 3 Plot showing the function w(t) which
parameterizes the total channel �(T )

t , one can easily
see that w(t) satisfies all the constraints above. This
plot also shows ẇ(t), and it is clear that ẇ(t) ≥ 0 for
all times t, which tells us that the decay rates of the
total channel are all greater than or equal to zero
which implies that the total channel �(T )

t is
Markovian

time ṙ < 0 making the decay rates negative, leading to the channels being non-Markovian.
Figure 2 shows the plots of q̇(t) and ṙ(t), which shows that both are negative for some
times. The total channel �

(T)
t is parameterized by the function w(t) and it is clear from

Fig. 3 that ẇ(t) ≥ 0 for all times t ≥ 0, so the total channel �
(T)
t is Markovian. Refer to

Appendix A for more intuition about how the functions q(t) and r(t) were chosen. Hence
we have found an example of the convex sum of two non-Markovian channels �

(1)
t and

�
(2)
t yielding a Markovian total channel �

(T)
t .

4 Simulation of quantum channels on a NISQ device
The simulation of the channels from the previous section on a NISQ device requires a
twofold method. First, one needs to construct quantum circuits that implement the ac-
tion of the quantum channel on a single qubit. Then we should perform a quantum pro-
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cess tomography (QPT) to reconstruct the quantum channel. The tomography will yield
a non-physical quantum channel. Hence convex optimization must be used to construct
the closest possible physical quantum channel to the channel obtained from the QPT. The
following sub-sections shall detail the method above.

4.1 Quantum circuits for simulation of the channels on a NISQ device
To simulate the quantum channels in Sect. 3, we must construct a quantum circuit that
implements the channel. Usually, this is done by naively using the Stinespring representa-
tion of the channel [43], but this naive application of the Stinespring dilation may lead to
a complicated quantum circuit unsuitable for the NISQ setting. To solve this problem we
use the Stinespring representation in a way that takes into account the properties of the
NISQ device, when we construct circuits for the channels. To design quantum circuits for
our channels from Sect. 2 that are appropriate for the NISQ setting, we take advantage of
the fact that in both cases (i.e. M + M = nM and nM + nM = M), the channels that were
designed implement a Pauli operator with some probability. We can easily design circuits
that can implement the channels by using ancilla qubits. This approach is inspired by [20]
and allows us to construct NISQ-appropriate quantum circuits.

4.1.1 Circuits for Markovian channel addition
To implement the Markovian channel �

(1)
t with probability p(t) we use the circuit shown

in Fig. 4 below. In the circuit the gate Ry(θ ) is a rotation gate and its matrix representation
is,

Ry(θ ) =

(
cos( θ

2 ) – sin( θ
2 )

sin( θ
2 ) cos( θ

2 )

)

, (34)

where θ is the angle of rotation. The circuit is understood as follows it will apply the gate
σ1 = X to the input state ρin with probability | sin(θ/2)|2 and it will leave the state un-
changed with probability | cos(θ/2)|2 (i.e. when the ancilla is in the state |0〉 do not change
the state ρin and when the ancilla is in state |1〉 apply the X gate to the input state ρin).
From this, we can get the value of the angles in terms of the probability p(t) as:

θ = 2arccos
(√

p(t)
)

= 2arccos
(√

1 + e–t

2

)
(35)

Since the angle θ is written in terms of p(t) the circuit in Fig. 4 will leave ρin unchanged
with probability p(t) and it will apply σ1 to ρin with probability 1 – p(t). Hence the cir-
cuit implements the channel �

(1)
t . Similarly, we can design a circuit that implements �

(2)
t

by using the same ideas used to design the previous circuit. Figure 5 shows the quan-
tum circuit that implements the channel �

(2)
t where the Y gate is applied to the in-

put state with probability p(t). The angle θ is obtained using equation (35). Now that

Figure 4 Quantum circuit implementing the
Markovian channel �(1)

t for probability p(t)
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Figure 5 Quantum circuit implementing the Markovian
channel �(2)

t for probability p(t)

Figure 6 Quantum circuit implementing the total non-Markovian channel �(T )
t for probability p(t)

we have designed circuits that implement the individual Markovian channels, we design
a circuit that implements the total non-Markovian channel �

(T)
t . In designing this cir-

cuit, we keep in mind that we want to leave the input state ρin unchanged with prob-
ability p(t) and apply the noise operators σ1 and σ2 to the input state with probability
1–p(t)

2 . Refer to Fig. 6 for the quantum circuit that implements the total channel. This
circuit implements the channel by first preparing the two ancilla qubits in the state:
cos(θ1/2)|00〉 – sin(θ1/2) sin(θ2/2)|01〉 – sin(θ1/2) cos(θ2/2)|11〉 now using the ancilla qubits
the circuit will apply X to the input state if the ancillae are in the state |01〉, it will apply
Y to the input state when the ancillae are in the state |11〉 (NB: the circuit applies XZ to
the input state which is the same as applying Y up to a phase). The circuit leaves the input
state unchanged when the ancillas are in the state |00〉. From the state of the ancillae, we
can determine the angles θ1 and θ2:

θ1 = 2arccos
(√

p(t)
)
, θ2 =

π

2
(36)

Now that we have the angles in terms of p(t), we have found the circuit that implements
the channel �

(T)
t .

4.1.2 Circuits for non-Markovian channel addition
To implement the channels that we have designed for the non-Markovian channel addi-
tion, we need a circuit that can implement the depolarizing channel that is parameterized
by some function p(t) (Refer to equation (26)). We use the circuit simulating the depolar-
izing channel in [20] to do this. Refer to Fig. 7 for the circuit that simulates the depolarising
channel. The three ancillea qubits are prepared in the state (cos(θ/2) |0〉 + sin(θ/2) |1〉)⊗3

are used as control qubits for the controlled-X, controlled-Y and controlled-Z gates, so
that the gates X, Y and Z are all applied to the input state ρin with probability sin2(θ/2). To
use this circuit to implement the depolarising channel in equation (26) the rotation angle
θ needs to be in terms of the probability p(t) so that each gate is applied with probabil-
ity p(t)/4. We observe that applying X and then Z to ρin but not Y , is equivalent to just
applying Y to ρin and so on. The resulting equation that relates the probability p(t) to θ is,

sin2
(

θ

2

)
cos4

(
θ

2

)
+ cos2

(
θ

2

)
sin4

(
θ

2

)
=

p(t)
4

. (37)
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Figure 7 circuit implementing the depolarizing channel for a single system qubit, for the probability p(t). The
angle θ is determined by the formula θ (t) = 1

2 arccos(1 – 2p(t))

Solving this equation for θ in terms of p(t) we get,

θ (t) =
1
2

arccos
(
1 – 2p(t)

)
, (38)

which will be the parameter in the Ry gate in then circuit in Fig. 7.

4.2 Tomographic reconstruction of the channel
It is known that a quantum channel �t has a Kraus representation [54]:

�tρ =
∑

α

K̂αρK̂†
α (39)

where K̂α are the Kraus operators that satisfy
∑

α K̂†
αK̂α = 1. In this work, we will consider

the case of a single qubit channel then the Kraus operators are 2×2 matrices. If we choose
a complete basis for the Kraus operators of a single qubit channel as {σ0 = 1,σ1,σ2,σ3},
where σi are the usual Pauli matrices. Then we can expand the Kraus operators in terms
of this basis to get the process matrix representation of the quantum channel for a single
qubit:

�tρ =
3∑

m,n=0

χmnσmρσn. (40)

Here χmn is a positive and Hermitian 4 × 4 matrix called the process matrix and shall be
determined using a quantum process tomography [55, 56]. Now if we know the process
matrix, then we have a complete description of the channel �t .

To determine the elements of the process matrix, we need to choose a complete set of
input states. We choose the states

D =
{
|ψ1〉 = |0〉, |ψ2〉 = |1〉,

|ψ3〉 = |+〉 =
1√
2
(|0〉 + |1〉),

|ψ4〉 = |+y〉 =
1√
2
(|0〉 + i|1〉)

}
. (41)



David et al. EPJ Quantum Technology           (2024) 11:14 Page 14 of 26

The states from the set D form a complete set as the projectors constructed from each ket
vector in this set can be used to construct the density operator of any physical single qubit
state. The input states are sent through the channel, �t . We can prepare the initial state of
the qubit as each input state. Using quantum state tomography, we reconstruct the state
after each input state is passed through the channel [57]. Then the formulas from [55, 56]
are used to construct the χ matrix which allows us to reconstruct the channel �t .

To perform a QPT on a quantum computer, we use the circuits from Sects. 3.1.1 and
3.1.2, and then the system qubit is prepared in one of the input states above and passed
through the channel. We then perform the state tomography on the system qubit for each
input state and get the corresponding counts. Using the counts obtained from the tomo-
graphic circuits, we can construct the process matrix [55].

We use the counts obtained from the tomographic circuits to construct an initial process
matrix denoted by, χin. The matrix χin will not be positive and Hermitian. This is because
we can only make a finite number of measurements on the system qubit. To correct this,
we shall solve a convex optimization problem to find the closest possible process matrix,
denoted χc, to the ideal process matrix, which we denote as χid [44]. We shall use the
matrix χin as an initial condition when solving the optimization problem. To construct the
optimization problem, we first need to parameterize χc in terms of parameters that we can
optimize. We also define χc to be Hermitian and positive semi-definite for all parameter
values. We now parameterise χc as,

χc = χc(x1, x2, . . . , x16) = T†T (42)

where T = T(x1, x2, . . . , x16) is a 4×4 triangular matrix that is a function of 16 real variables
x1, x2, . . . , x16 and is shown below in matrix form:

T =

⎛

⎜⎜
⎜
⎝

x1 0 0 0
x5 + ix6 x2 0 0

x11 + ix12 x7 + ix8 x3 0
x15 + ix16 x13 + ix14 x9 + ix10 x4

⎞

⎟⎟
⎟
⎠

. (43)

It is evident from this parameterization that χc is positive semi-definite. Consider some
arbitrary four-dimensional vector |ψ〉 then,

〈ψ |T†T |ψ〉 ≥ 0. (44)

It is also evident that χc is Hermitian. To find χc with convex optimization, we need to
define an objective function that will be minimized with respect to constraints. We define
the objective function by the squared difference between the theoretical and experimental
probability distributions for each of the counts obtained from the process tomography.
The following projective measurement operators are defined from the set D above,

{
M1 = |ψ1〉〈ψ1|, M2 = |ψ2〉〈ψ2|, M3 = |ψ3〉〈ψ3|, M4 = |ψ4〉〈ψ4|

}
. (45)

Next, we consider the input state ρi = |ψi〉〈ψi| where |ψi〉 ∈ D. Then the theoretical
probability of being in the state |ψj〉 after the application of the channel �t to the initial
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state |ψi〉, denoted pthe
ij , is,

pthe
ij = Tr

[
Mj�t(ρi)

]
(46)

= Tr

[

Mj

( 4∑

m,n=1

(χc)mnσmρiσn

)]

(47)

=
4∑

m,n=1

(χc)mn Tr[Mjσmρiσn]. (48)

The experimentally obtained probability pexp
ij of being the initial state ρi and measuring in

the state |ψj〉 is,

pexp
ij =

nij

N
, (49)

where nij is the counts obtained from the circuit with input state |ψi〉 and output state |ψj〉
and N being the total number of counts. Now we can define the objective function as,

F (x1, . . . , x16) =
4∑

i,j=1

(
pexp

ij – pthe
ij

)2 (50)

=
4∑

i,j=1

(
nij

N
–

4∑

m,n=1

(χc)mn Tr[Mjσmρiσn]

)2

. (51)

We should also consider that the channel �t should be trace-preserving. This will be one
of the constraints we define for our optimization problem. From equation (40) we see that
for �t to be trace-preserving we must have that,

4∑

m,n=1

(χc)mnσnσm = 1. (52)

We can weaken this constraint by just requiring that �t be trace non-increasing, this leads
to,

4∑

m,n=1

(χc)mnσnσm ≤ 1. (53)

This constraint can be written as a positive semi-definite constraint i.e.

1 –
4∑

m,n=1

(χc)mnσnσm ≥ 0. (54)

We can now state the optimization problem that we want to solve that will yield a positive
semi-definite and Hermitian matrix χc that is the closest to χid,

min{x1,...,x16}F (x1, . . . , x16) (55)
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such that,

(

1 –
4∑

m,n=1

(χc)mnσnσm

)

≥ 0, (56)

χc(x1, . . . , x16) ≥ 0, (57)

where we obtain an initial set of parameters (x(in)
1 , . . . , x(in)

16 ) from χin. The solution to this
problem will yield the optimal values for x1, . . . , x16 so that χc is as close to χid as possible.
The following section will use the matrix χc for the characterization.

5 Characterization of the channel as Markovian or non-Markovian
From the previous section, we know that the state of the system at some time t ≥ 0 is given
in terms of the quantum channel �t as, ρ(t) = �tρ(0), where ρ(0) is the initial state of the
system at t = 0. We shall use the CP divisibility criteria to characterize the channel �t as
Markovian or non-Markovian. We start by writing the dynamical map �t in the following
way:

�t = Vt,s�s (58)

where Vt,s is called the intermediate map (IM) from time s to t. The maps Vt,s form a
family of two-parameter propagators. We say that �t is CP divisible if Vt,s is completely
positive (CP) for all t ≥ s ≥ 0. The goal is to check that the map Vt,s is CP. We will use the
techniques in [38]. From Sect. 3, we know that we can express a quantum channel in the
following representation:

�tρ =
3∑

m,n=0

χmnσmρσn, (59)

where χmn is a positive and Hermitian 4 × 4 matrix called the chi matrix, σ0 = 1 and σi for
i = 1, 2, 3 are the Pauli matrices. Knowing the chi matrices for two different time durations,
s and t, we can check whether the map Vt,s that evolves the system from time s to time t
is completely positive. To check this, we make use of the transfer matrices F(s) and F(t)
for the maps �s and �t , respectively. The transfer matrix F(t) of a map �t is a concrete
matrix representation of the map in a given orthonormal basis [58]. The transfer-matrix
approach is useful as it allows us to represent the density matrix ρ as a stacked vector
|ρ〉〉, now the evolution of the vector |ρ(0)〉〉 can be written as: |ρ(t)〉〉 = F(t)|ρ(0)〉〉 which
is nothing more than the action of the transfer matrix on the stacked vector [38]. The
elements of a transfer matrix F(t) are given explicitly as,

Fα,β (t) = Tr
[
G†

α�tGβ

]
(60)

where {Gα} are a set of orthonormal operators with respect to the Hilbert-Schmidt inner
product [58]. We choose the set {Gα} to be the standard matrix basis of M2(C), i.e. {G1 =
|0〉〈0|, G2 = |0〉〈1|, G3 = |1〉〈0|, G4 = |1〉〈1|}, where {|0〉, |1〉} are the standard computational
basis vectors of the single qubit. If we know the χ matrix for some time t, we can use this to
calculate �tGβ and hence calculate F(t). Now using equation (58) and writing it in terms
of transfer matrices, we arrive at F(t) = F(t, s)F(s). This tells us that if we have the transfer
matrix for two times s and t, we can get the transfer matrix of the intermediate map, i.e.
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F(t, s) = F(t)F–1(s). For a given transfer matrix F(t) we can obtain the Choi matrix W (t).
For a single qubit, this can be written as:

W (t) =
1
2

4∑

α,β=1

Fα,β(t)(Gβ ⊗ Gα) (61)

This is derived by applying �t to a single qubit of the maximally entangled state |β00〉 =
1√
2 (|00〉 + |11〉), hence W (t) = (1⊗�t)|β00〉〈β00|. By the Choi-Jamiolkowski isomorphism,

a dynamical map �t is completely positive if and only if the corresponding Choi matrix
of the map is positive [59, 60]. This tells us that the map �t is CP if all the eigenvalues of
the Choi matrix W (t) are non-negative. So for two times s and t such that t ≥ s ≥ 0, if the
eigenvalues of the Choi matrix W (t, s), of the intermediate map Vt,s, are non-negative then
the intermediate map is completely positive and by our definition of CP divisibility, this
tells us that the dynamical map �t = Vt,s�s is Markovian. Any deviation from this leads to
non-Markovian dynamics.

6 Results and discussion
This research aimed to demonstrate that more complex open quantum systems can be ef-
ficiently simulated on NISQ devices. In particular, we aimed to show that we can simulate
convex mixtures of Markovian and Non-Markovian quantum channels on NISQ devices.
In this section, we present quantum circuits based on the circuits in Sect. 4.2 that account
for the topology of the NISQ devices they will be run on. We also present the results of the
simulations and evaluate the quality of the results using three metrics: fidelity of the pro-
cess matrix (discussed in Sect. 6.2), trace norm of the Choi matrix (discussed in Sect. 6.3)
and the minimum eigenvalue of W (t, s) in Sect. 6.4.

6.1 Implementation of quantum circuits
For our experiments, the circuits are executed using the NISQ device provided by IBM
Quantum Experience (IBMQE). Figure 8 gives an overview of the steps used to construct
the quantum circuits, perform the tomography, and reconstruct the channel. The seven-
qubit device called ibm_perth was used. Figure 9 gives a diagrammatic representation of
the qubits in the quantum computer as well as the connections between the qubits. The

Figure 8 A flow chart summarising the experimental procedure used
in the simulation and reconstruction of the channels for both cases
M + M = nM and nM + nM = M
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Figure 9 The topology of the NISQ computer used for the
experiments. We made use of the seven qubit device ibm
perth for both cases M + M = nM and nM + nM = M. The circles
represent the qubits, and the lines represent the connectivity
between the qubits. For example, qubits three and five are
connected, meaning one can perform a CNOT between them
directly. The qubits that are coloured in red are used for the
experiments, while the blue qubits are not. For the case M +
M = nM, we use qubits one to three; for the case nM + nM = M,
we use qubits zero to three

Figure 10 Quantum circuit implementing the total non-Markovian channel �(T )
t for probability p(t) with the

addition of a swap gate to mitigate controlled operations between unconnected qubits

connectivity of the qubits plays an essential role in constructing the circuits for the quan-
tum channels. This is because, on all NISQ devices, the quality of the results depends on
the number of controlled not gates (CNOTs) used. One should note that this is not the
only factor but is most important to us in our simulations. The NISQ devices can only
implement a small number of CNOTs before the qubit interactions, noise, and decoher-
ence affect the results. Moreover, the implementation of CNOTs between qubits that are
not directly connected requires a SWAP gate to swap the state of the qubits so that the
CNOTs can be implemented between directly connected qubits, and then the states are
swapped back, which is done automatically by the quantum computer. This leads to prob-
lems as SWAP gates are equivalent to three CNOTs, significantly increasing the number
of CNOTs.

We have mitigated this issue by looking at the circuits designed in Sect. 3 and making
some additions whenever we implement controlled operations between qubits that are not
directly connected. Rather than letting the quantum computer perform SWAP operations,
we manually add the SWAP gate to minimise the number of SWAPs needed, minimising
the number of CNOTs used.

For the M + M = nM case, we use qubits one to three in Fig. 9. Qubit two is the sys-
tem qubit, and qubits one and three correspond to the environment. For the Markovian
channels �

(1)
t and �

(2)
t there are no controlled operations between unconnected qubits.

However, for the non-Markovian total channel �
(T)
t , we see that we require a controlled

operation between qubits three and two.
Figure 10 shows the new quantum circuit for the non-Markovian channel �

(T)
t with the

additional SWAP gate.
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For the case nM + nM = M, we use qubits one as the system and qubits zero, two and
three as the environment. Since there will be no controlled operations between uncon-
nected qubits for the simulation of the channels in the non-Markovian channel addition
case, we do not need to modify the circuits from Sect. 3 with additional SWAP gates.

Once the circuits are executed, a process tomography is performed on the channels for
each time step �t = 0.1s in the interval t ∈ [0, 3.9] for the Markovian channel addition (M +
M = nM), and the time interval t ∈ [0, 8.9] for the non-Markovian channel addition (nM +
nM = M). The counts obtained from the results of these circuits are used to generate the
process matrices χin(t) for each time step. By adding Gaussian fluctuations, 100 process
matrices for each time step were generated. Now, using convex optimisation, as outlined
in Sect. 4, the closest possible process matrices χc(t) to the ideal process matrices χid(t)
were obtained.

We then pick an intermediate time s such that t ≥ s ≥ 0 and for each pair (t, s), 10,000
process matrices are obtained. These are used in the analysis to compute the three metrics.
After optimisation, the first metric, the fidelity for the process matrices, measures how
close these process matrices are to the ideal. The second metric, the trace norm of the
Choi matrix of the channels at each time step, allows us to check if the simulated channels
are trace-preserving. The last metric we considered is the minimum eigenvalue of the
Choi matrix of the intermediate map W (t, s), which allows us to characterise the channel
as either Markovian or Non-Markovian. These three metrics allow us to verify that the
channels simulated are physical and satisfy the case of convexly mixing two Markovian
channels to yield a non-Markovian channel and vice versa.

6.2 Fidelity of the process matrices
In both cases, we compute the process fidelity of the process matrix for each time t after
optimisation, using the following formula [38, 61]:

Fp(χ ,χid) =
Tr[(√χχid

√
χ)1/2]2

Tr[χ ] Tr[χid]
. (62)

We note that Fp ∈ [0, 1] when Fp = 1 this tells us that the process matrix is the same as the
ideal, i.e. χ = χid and when Fp = 0 the process matrix is far from the ideal process matrix
χid. We shall compute the process fidelities for the channels �

(1)
t , �

(2)
t , �

(T)
t for both the

cases of Markovian channel addition and non-Markovian channel and plot them for each
time step.

In Fig. 11, we plot the process fidelities for the Markovian channel addition (M + M =
nM). We see that in Fig. 11 (a) and (b) the fidelities for the channel �

(1)
t and �

(2)
t are very

close to 1. This tells us that our χ matrices are very close to the ideal case after MLE.
In Fig. 11 (c), we see that the fidelities for the total channel �

(T)
t while not as high as the

other two channels are still relatively good enough for our experiment. It should be noted
that the fidelity is lower in this case due to decoherence and dissipation in the quantum
computer.

We plot the process fidelities for the channels in Fig. 12. We see that for Fig. 12 (a) and
Fig. 12 (b) the fidelities for the individual channels are high and have a value of one for large
parts of the time interval, indicating that the quality of the χ matrices is good. In Fig. 12
(c), the fidelity of the total channel is very good, although at time t = 1.8 s, the fidelity is
low. This tells us that the χ matrices for the total channel will be close to ideal. For most of
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Figure 11 The process fidelities for the χ matrices of the implemented channels after MLE for times from 0
to 3.9 seconds with time step 0.1 seconds. (a) and (b) show the fidelities for the Markovian channels �(1)

t and
�(2)

t respectively. (c) shows the fidelity for the total non-Markovian channel �(T )
t

Figure 12 The process fidelities for the χ matrices of the implemented channels after MLE for times from 0
to 8.9 seconds with time step 0.1 seconds. (a) and (b) show the fidelities for the non-Markovian channels �(1)

t
and �(2)

t respectively, the fidelities for these channels are good as for �(1)
t the fidelity is 1 for a large part of

the time interval, for �(2)
t the fidelities do fluctuate but are also very good. (c) shows the fidelity for the total

Markovian channel �(T )
t

the interval but at t = 1.8 s, the χ matrix will be far from the ideal matrix. These fidelities
are high enough such that the accuracy for the χ matrices used in our analysis is high.

6.3 Trace norm of Choi matrix
The trace norm for the Choi matrix at each time step t can be used to check if the simulated
channel was trace-preserving. We calculate the Choi matrix W (t) for each time step by
using equations (60)–(61) from Sect. 4. Once we have found the Choi matrices W (t) we
find the trace norm,

∥∥W (t)
∥∥

1 = Tr
[√

W (t)†W (t)
]
. (63)

We know that for any quantum channel �t to be trace preserving it must satisfy,

∥∥W (t)
∥∥

1 = 1 ∀t ≥ 0. (64)

The trace norm for the channels in both cases, M + M = nM and nM + nM = M, are
calculated and plotted in Fig. 13 and Fig. 14, respectively. We see that in Fig. 13 that the
trace norm of W (t) for the Markovian channel addition (M + M = nM) is a good enough
approximation of 1 for the simulated channel to be considered trace-preserving. It should
be noted that device noise and finite sampling are to blame for the deviations from 1. In
Fig. 14, we see that for the case of the non-Markovian channel addition (nM + nM = M),
the trace norm of W (t) is a better approximation of 1 as they cover the theoretical curve.
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Figure 13 (a)-(c) We plot the trace norm of the Choi matrices of the channels �(1)
t , �(2)

t and �(T )
t

respectively, for the Markovian channel addition (M + M = nM). For each case, the trace norm is a good
enough approximation of 1 to state that the simulated channels are trace-preserving. The deviation and
slightly long error bars result from device noise and decoherence

Figure 14 (a)-(c) We plot the trace norm of the Choi matrices of the channels �(1)
t , �(2)

t and �(T )
t

respectively, for the non-Markovian channel addition (nM + nM = M). The trace norm for these simulations
covers the theoretical value and is a good enough approximation to say that the simulated channels were
trace-preserving

The same reasons for the deviations in the Markovian channel addition also cause the
deviations seen here. In both cases, the trace norm is a good enough approximation to
consider the simulated channels trace-preserving.

6.4 Minimum eigenvalue of W(t, s)
Now, we use the characterisation method outlined in Sect. 4 to classify the channels. By
plotting the minimum eigenvalues of each Choi Matrix W (t, s) of the IM, we can easily
classify the corresponding channel as Markovian if all the minimum eigenvalues are non-
negative or Non-Markovian if any minimum eigenvalue is negative. This is according to
the CP-divisibility criteria.

First, we look at the minimum eigenvalues for the Markovian channel �
(1)
t (s = 0.5) in

Fig. 15 (a). We observe that the minimum eigenvalues are all negative. This differs from the
theoretical minimum eigenvalues, which are all zero. This discrepancy is expected since
it is difficult to measure zero in any experiment due to standard deviation. This discrep-
ancy can also be seen in Fig. 15 (b) between the theoretical and experimental minimum
eigenvalues for the Markovian channel �

(2)
t (s = 0.5). In both these cases, the minimum

eigenvalues are very small negative values and can be accepted as approximations of zero.
The minimum eigenvalues for the Non-Markovian channel �

(T)
t (s = 0.5), as shown in

Fig. 15 (c), show definitively that this channel is Non-Markovian as the minimum eigen-
values, within their standard deviation, are all negative. While the minimum eigenvalues
do fluctuate due to noise, the eigenvalues follow the behaviour of the theoretical curve.
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Figure 15 The plot (a) shows the minimum eigenvalues of the IM for the Markovian channel �(1)
t , it is clear

that the experimental results are a good enough approximation of the zero eigenvalue. (b) Shows the
minimum eigenvalues of the IM for the channel �(2)

t . The experimental results in this case are better than for
the first channel as the standard deviation is small for all the points. (c) shows the minimum eigenvalues of
the IM for the total non-Markovian channel �(T )

t , the points cover the theoretical curve, hence this channel is
definitively non-Markovian by the CP divisibility criteria [29]

Figure 16 The plot (a) shows the minimum eigenvalues of the IM for the non-Markovian channel �(1)
t , it is

clear that the experimental results are in agreement with the theoretical minimum eigenvalues of the IM. (b)
Shows the minimum eigenvalues of the IM for the channel �(2)

t , the experimental results in this case deviate
from the theoretical curve but this channel is still non-Markovian by CP divisibility. (c) shows the minimum
eigenvalues of the IM for the total Markovian channel �(T )

t , the points cover the theoretical curve and the
initial points, although negative, are still a good enough approximation of zero, this is a problem face when
the minimum eigenvalue is zero. Hence, this channel is Markovian by the CP divisibility criteria [29]

Next, we look at the minimum eigenvalues for the Non-Markovian channels �
(1)
t and

�
(2)
t (s = 3), shown in Fig. 16 (a) and (b). We see that the minimum eigenvalue for �

(1)
t

is negative in the time interval t = 51 s to t = 5.8 s and for �
(2)
t the minimum eigenvalue

is negative in the interval t = 3 s to t = 5.4 s. This shows that these channels are Non-
Markovian. We can also see that the minimum eigenvalues follow the theoretical curves.
While there are slight deviations from the curve, these deviations can be attributed to
noise from the experiment. Lastly, in Fig. 16 (c) we look at the minimum eigenvalues for the
Markovian channel �

(T)
t (s = 3). We see that the minimum eigenvalues between t = 0 and

t = 6 are negative when the theoretical eigenvalues are zero. Once again, this discrepancy
can be attributed to the difficulty of measuring zero in any experiment due to standard
deviation. The minimum eigenvalues in this time interval are very small negative values
and can be accepted as approximations of zero. Therefore, the channel can be classified as
Markovian.

In each case, we see that the minimum eigenvalues follow the theoretical curves and that
the channels can be successfully classified as either Markovian or Non-Markovian using
the CP-divisibility criteria.



David et al. EPJ Quantum Technology           (2024) 11:14 Page 23 of 26

7 Conclusion
We have successfully performed simulations of mixtures of two Markovian single qubit
Pauli channels that give rise to a non-Markovian single qubit Pauli channel and two non-
Markovian single qubit depolarising channels that give rise to a Markovian single qubit de-
polarising channel. The success of these simulations has been verified in three ways. Firstly,
we have shown by the CP-divisibility criteria that the channel reconstructed from the sim-
ulations of the M + M = nM mixtures and the nM + nM = M mixtures are non-Markovian
and Markovian, respectively. We have also shown that the reconstructed channels have
high fidelity to the theoretical channel. Lastly, we have shown that the Choi matrices have
a required trace norm of one, indicating that the simulated channels are physical. This
demonstrates the effectiveness of designing circuits with NISQ device topology in mind
and provides more accurate results, as the quantities we use to benchmark our simulation
are all excellent enough approximations of their theoretical values. This demonstrates that
using the least squared objective function [44] and convex optimization is a better choice
for reconstructing our channel than MLE. The success of these experiments shows that
a NISQ computer can be used to simulate more complex open quantum systems. How-
ever, future work is needed to verify that the strategies used here generalise to more gen-
eral quantum channels. In this work, we consider only single qubit Pauli channels. The
simulation of many qubit and non-Pauli channels is not considered here but will be ex-
amined in future work. We would like to see if our effective strategies in simulating single
qubit channels can aid in simulating single qubit non-Pauli channels and many qubit Pauli
and non-Pauli channels. Future work could look at applying the developed experimental
pipeline to different channels since the pipeline is not specific to the channels used in this
work. Other future work includes testing and comparing different objective functions for
optimization and changing the constraints. One could also look into using a semi-definite
program for the optimization part of the reconstruction.

Appendix A: Intuition for the choice of functions in the non-Markovian
channel addition

Choosing the functions q(t) and r(t) for the non-Markovian channel addition was a non-
trivial task. We shall provide some intuition on how these functions were chosen and the
logic behind these choices. The calculations in Sect. 2 give us the following conditions on
the functions q(t) and r(t):

0 ≤ q(t) < 1 and q(0) = 0,

0 ≤ r(t) < 1 and r(0) = 0. (A.1)

Now from Sect. 2 we have that for the channels �
(1)
t and �

(2)
t to be non-Markovian their

respective decay rates should be negative for some time interval. From equation (29), we
see that:

q̇
(
t′) < 0 for some t′ ≥ 0

ṙ
(
t′′) < 0 for some t′′ ≥ 0. (A.2)
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Equation (31) tells us that for the total channel �
(T)
t to be Markovian, we must have:

hq̇(t) + (1 – h)ṙ(t) ≥ 0 ∀t ≥ 0, (A.3)

where h ∈ [0, 1]. Now setting h = 1
2 as in Sect. 3, we get the decay rate for the total channel

as 1
2 (q̇(t) + ṙ(t)). The intuition behind how to choose q, r is as follows. We need to choose

the functions q(t), r(t) such that when q̇(t′) < 0 on some interval t′ ∈ [a, b], then ṙ(t′) > 0
for t′ ∈ [a, b] and vice versa. This ensures that the convex sum 1

2 (q̇(t) + ṙ(t)) ≥ 0 for all
times t and will satisfy the conditions of non-Markovianity for the individual channels,
i.e. equation (A.2). We shall parameterize the functions q(t) and r(t) as follows:

q(t) = a(t) + b(t)

r(t) = a(t) – b(t), (A.4)

and from equation (A.1) we see that a(0) = b(0) = 0 as well as,

b(t) ≤ a(t) < 1 – b(t). (A.5)

Taking the derivatives of q and r we get,

q̇(t) = ȧ(t) + ḃ(t)

ṙ(t) = ȧ(t) – ḃ(t), (A.6)

and taking their convex mixture yields,

1
2
(
q̇(t) + ṙ(t)

)
= ȧ(t). (A.7)

From equations (A.5)–(A.7) we have the conditions on the functions a(t) and b(t). We
note that since a(t) is bounded between the functions b(t) and 1 – b(t), if we choose b(t)
to have the shape of a Plank distribution where b(0) ≈ 0 then a(t) needs to satisfy a(0) ≈ 0
and equation (A.5). We choose a(t) as the sum of two sigmoid functions to satisfy the
conditions on a(t). Now that we have the general shape of both a(t) and b(t) by using
translation and scaling factors, we can transform the general shapes of these functions to
satisfy all the bounds in equations (A.5)–(A.7). Hence the choice of the functions a(t) and
b(t) in equation (33). This is the intuition behind the design of the non-Markovian chan-
nels in the (nM + nM = M) experiment. A similar approach can be followed for designing
other experiments.
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47. Megier N, Chruściński D, Piilo J, Strunz WT. Eternal non-Markovianity: from random unitary to Markov chain

realisations. Sci Rep. 2017;7(1):1–11.
48. Wudarski FA, Petruccione F. Robustness and fragility of Markovian dynamics in a qubit dephasing channel. Phys Rev

A. 2017;95(5):052130.
49. Shrikant U, Srikanth R, Banerjee S. Non-Markovian dephasing and depolarizing channels. Phys Rev A.

2018;98(3):032328.
50. King C, Ruskai MB. Minimal entropy of states emerging from noisy quantum channels. IEEE Trans Inf Theory.

2001;47(1):192–209.
51. Graydon MA, Skanes-Norman J, Wallman JJ. Designing stochastic channels. 2022. arXiv preprint arXiv:2201.07156.
52. Pillay S, Sinayskiy I, Jembere E, Petruccione F. A multi-class swap-test classifier. 2023. arXiv preprint arXiv:2302.02994.
53. Cross AW, Smith G, Smolin JA. Quantum learning robust against noise. Phys Rev A. 2015;92(1):012327.
54. Kraus K. General state changes in quantum theory. Ann Phys. 1971;64(2):311–35.
55. Chuang IL, Nielsen MA. Prescription for experimental determination of the dynamics of a quantum black box. J Mod

Opt. 1997;44(11–12):2455–67.
56. Nielsen M, Chuang I. Quantum computation and quantum information: 10th anniversary edition. Cambridge:

Cambridge University Press; 2010.
57. James DF, Kwiat PG, Munro WJ, White AG. On the measurement of qubits. In: Asymptotic theory of quantum

statistical inference: selected papers. Singapore: World Scientific; 2005. p. 509–38.
58. Wolf MM. Quantum channels & operations: guided tour. Lecture notes. vol. 5. 2012. Available at

http://www-m5.ma.tum.de/foswiki/pubM.
59. Choi M-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 1975;10(3):285–90.
60. Jamiołkowski A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep Math

Phys. 1972;3(4):275–8.
61. Jozsa R. Fidelity for mixed quantum states. J Mod Opt. 1994;41(12):2315–23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.2562110
http://arxiv.org/abs/2011.04053
http://arxiv.org/abs/2201.07156
http://arxiv.org/abs/2302.02994
http://www-m5.ma.tum.de/foswiki/pubM

	Digital simulation of convex mixtures of Markovian and non-Markovian single qubit Pauli channels on NISQ devices
	Abstract
	Keywords

	Introduction
	Preliminaries
	Design of single qubit channels to simulate
	Markovian channel addition (M + M = nM)
	Non-Markovian channel addition (nM + nM = M)

	Simulation of quantum channels on a NISQ device
	Quantum circuits for simulation of the channels on a NISQ device
	Circuits for Markovian channel addition
	Circuits for non-Markovian channel addition

	Tomographic reconstruction of the channel

	Characterization of the channel as Markovian or non-Markovian
	Results and discussion
	Implementation of quantum circuits
	Fidelity of the process matrices
	Trace norm of Choi matrix
	Minimum eigenvalue of W(t,s)

	Conclusion
	Appendix A: Intuition for the choice of functions in the non-Markovian channel addition
	Acknowledgements
	Funding
	Abbreviations
	Data availability
	Code availability
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


