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Abstract
Quantum circuit optimization is an inevitable task with the current noisy quantum
backends. This task is considered non-trivial due to the varying circuits’ complexities
in addition to hardware-specific noise, topology, and limited connectivity. The
currently available methods either rely on heuristics for circuit optimization tasks or
reinforcement learning with complex unscalable neural networks such as
transformers. In this paper, we are concerned with optimizing the initial
logical-to-physical mapping selection. Specifically, we investigate whether a
reinforcement learning agent with simple scalable neural network is capable of
finding a near-optimal logical-to-physical mapping, that would decrease as much as
possible additional CNOT gates, only from a fixed-length feature vector. To answer this
question, we train a Maskable Proximal Policy Optimization agent to progressively
take steps towards a near-optimal logical-to-physical mapping on a 20-qubit
hardware architecture. Our results show that our agent coupled with a simple routing
evaluation is capable of outperforming other available reinforcement learning and
heuristics approaches on 12 out of 19 test benchmarks, achieving geometric mean
improvements of 2.2% and 15% over the best available related work and two
heuristics approaches, respectively. Additionally, our neural network model scales
linearly as the number of qubits increases.

Keywords: Quantum computing; Controlled-NOT reduction; Proximal Policy
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1 Introduction
With the current rapid development in the quantum computing area, we are in the Noisy
Intermediate-Scale Quantum (NISQ) era [1]. NISQ refers to noisy backends having total
number of qubits up to few hundreds. While IBM has recently proposed a quantum chip
with more than 1000 qubits [2], these qubits are still error prone and IBM is now shifting
to designing fewer error-corrected qubits using a recent promising error-correcting codes
[3].

In general, noise affects the reliability of executing a logical quantum circuit on a spe-
cific physical quantum processor, limiting the circuit size. Moreover, quantum processors
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impose hardware-constraints on two-qubit gates applied to non-connected qubits. These
result in additional ‘swapping’ gates, further affecting reliability.

Noise can be handled through both error correcting codes [3] and circuit optimization
[4–9]. Error correcting code utilises many physical qubits for each logical bit to decrease
the effective qubit error, at the expense of decreasing the available qubits. Circuit opti-
mization utilizes many techniques to decrease the gate count of the circuit thus improving
circuit fidelity. These optimization techniques include circuit depth reduction [4, 10, 11],
gate cancellation and optimization [4, 12], and an initial logical-to-physical mapping se-
lection [6, 7, 13] and routing [7, 9, 14–17]. Among which the initial mapping and routing
are the most important problems.

This paper considers the initial mapping problem as there is limited research work, espe-
cially in utilizing reinforcement learning (RL) [13] for selecting a near-optimal logical-to-
physical mapping, despite its importance. Additionally, reinforcement learning has been
successful in several applications achieving human-level performance such as robotics
[18], atari games [19], alpha-go [20], and alpha-zero [21]. Thus in this paper, we are con-
cerned with utilizing reinforcement learning for selecting an optimal initial logical-to-
physical mapping that would effectively reduce the number of additional two-qubit gates
of a circuit to satisfy hardware constraints. This is accounted for by calculating the num-
ber of additional controlled-NOT (CNOT) gates, as it is the only two-qubit gate supported
by IBM backends, after routing. Additional two-qubit gate optimization would decrease
hardware-specific noise resulting from link errors connecting two qubits. Thus, two-qubit
gates usually have higher error rates [22, 23] than single-qubit gates. This would also de-
crease qubit decoherence since we are decreasing additional depth.

1.1 Background
Logical quantum circuit is a quantum computation model consisting of a set of stages,
where each stage consists of gates operating on distinct qubits. To execute a logical cir-
cuit on a specific hardware, the quantum compiler rewrites the circuit by transforming it
using multiple passes, known as the transpilation process. According to Qiskit software
[24], there are six passes, shown in Fig. 1: virtual optimization, gates decomposition, ini-
tial logical-to-physical placement, routing, translating to basis gates, and physical circuit
optimization.

Virtual optimization optimizes the logical circuit itself before applying any hardware
constraints. Gate decomposition decomposes three or more qubit gates into two-qubit

Figure 1 IBM Qiskit Transpiler Passes
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Figure 2 Coupling Map for IBMQX20

gates. Initial logical-to-physical mapping permutes logical qubits while fixing physical
ones. According to Qiskit [24], selecting a logical-to-physical mapping is crucial in re-
ducing both additional gates and noise due to hardware constraints. Routing transforms
the circuit by adding additional gates to satisfy limited hardware connectivity represented
by the coupling map as shown for a 20-qubit hardware in Fig. 2. Nodes in the coupling map
represent the physical qubits indices and edges represent the connectivity among qubits.
Any two-qubit gate can only be executed if they are directly connected. This is achieved by
adding swap or bridge gates which eventually increase the circuit gates. Finally, physical
circuit optimization applies gate optimizations after the additional gates that were added
by the routing stage.

Optimal initial mapping refers to the permutation of logical qubits that would have
the least possible number of additional CNOTs for a given circuit after routing. As the
number of qubits increases, obtaining an optimal initial mapping is of factorial complexity
with respect to the number of qubits. Thus, current research studies [7, 13, 25] aim to
select a near-optimal initial mapping that would decrease as much as possible additional
CNOT gates. This would lead to the reduction of additional gate-specific errors, cross-talk
among gates, circuit depth and qubit decoherence. This stresses the need for an intelligent
approach capable of approximating the mapping between circuits’ encodings and their
initial mappings.

1.2 Problem statement
In this paper, we only aim to optimize the number of gates regardless of hardware error
rates due to the limited availability of open-access quantum backends. However, the same
approach may be generalized to any cost function such as maximizing state fidelity by
selecting qubits with minimum error rates. Specifically, the mathematical formulation of
our problem can be defined as shown in Eq. (1),

j∗ = argmin
j

C(m, j) (1)

where j∗ is the index to the mapping having minimum CNOT count, j is a running index
for all permutations of logical qubits that is of factorial complexity with respect to the
number of qubits and C(m, j) is the total count of CNOTs after mapping a given circuit
m to the permutation of logical qubits j. This can be easily solved by exhaustive search
in the case of small number of qubits. For example, when we have a 5-qubit circuit, there
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are only 120 combinations. However, as the number of qubits increases, finding an opti-
mal mapping is considered an NP-hard problem [26]. Thus, deep reinforcement learning
can be beneficial for initial near-optimal logical-to-physical mapping where it approxi-
mates similar states (circuits) using neural networks and effectively learns from environ-
ment interactions. This would provide the routing pass with an optimal initial mapping
to start from that would eventually further reduce the number of additional CNOTs than
when starting with a random non-optimal mapping. Additionally, selecting an initial near-
optimal logical-to-physical mapping would optimize CNOT gate count required to satisfy
the limited connectivity of hardware. As applying a CNOT gate to non-adjacent qubits due
to limited connectivity would result in additional CNOT gates resulting from the decom-
position of additional swap and bridge gates, which increase both depth and hardware-
specific errors. This eventually reduces additional hardware-specific errors as two-qubit
gates usually have higher error rates than single-qubit gates.

1.3 Contributions and paper outline
Some available methods rely mainly on heuristics (as detailed in Sect. 2) to optimize
each circuit separately from the beginning. Another line of research utilized reinforce-
ment learning [13] along with transformer neural network to approximate similar cir-
cuits to the same initial mappings. However, these approaches suffer from being time
consuming and unscalable. Additionally, available circuit encoding approaches [13] gen-
erally rely on the depth of the circuit, that is, as the size of the circuit increases in terms
of the number of qubits and depth, the feature vector length also increases, hindering
the scalability of the approach as the transformer neural network is infeasible for long
sequences.

In the current research, we utilize reinforcement learning along with simple neural net-
work and fixed-length feature vector that will lead towards more efficient and scalable
approach to find a near-optimal logical-to-physical mapping. Additionally, we extract sta-
tistical features from the circuit based on the interaction patterns between any two qubits,
referred to as edges feature vector in the rest of the paper. Specifically, we consider the
question: Can a reinforcement learning agent learn to select a near-optimal logical-to-
physical mapping given edges feature vector? This would provide a scalable approach for
circuit representation as the number of qubits and the circuit depth increase. This would
also improve execution time as the reinforcement learning agent will approximate simi-
lar circuits to the same initial mappings instead of optimizing each circuit separately as
in heuristics approaches. Additionally, it will better guide available qubit routing algo-
rithms.

The results demonstrate that our reinforcement learning agent coupled with a simple
routing evaluation is capable of generalizing to test benchmarks outperforming state-of-
the-art approaches [9, 13, 25] in 12 out of 19 test benchmarks on a 20-qubit hardware
architecture, shown in Fig. 2. Even for the remaining 7 circuits our method was either
comparable with or ranked the second best achieving minimum number of CNOTs in 6
circuits among the three other related works. This emphasizes that our feature vector, al-
lows scalability given its fixed-length to deeper circuits, is capable of outperforming other
complex representations from related work [13] without constraining the circuit depth
while fixing the number of qubits. So that our feature vector representation works for all
qubits up to the maximum number of qubits supported by the hardware.
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In summary, our contributions are as follows:
1. Proposing a generic reinforcement learning agent, that is not circuit-specific, for a

20-qubit hardware architecture capable of selecting a near-optimal initial mapping
that further reduces the number of additional gates over the best available related
work approaches.

2. Developing a fixed-length feature vector whose length is independent of the circuit
depth relying only on all possible two-qubit combinations.

3. Demonstrating the generalizability and scalability of our agent to unseen benchmark
circuits.

The rest of this paper is organized as follows. Section 2 surveys available state-of-the-art
approaches. Section 3 presents the dataset collection, describes the reinforcement learn-
ing algorithm used, presents the reward scheme, and explains the experimental design.
Section 4 compares and analyzes the performance of our RL agent in comparison to state-
of-the-art work on test benchmarks. Finally, Sect. 5 summarizes the paper and provides
future work directions.

2 Related work
In this section, we discuss available state-of-the-art research work regarding circuit opti-
mizations. This is also summarized in Table 1.

Some research work did not consider the noise inherent in qubits and gates but mainly
focused on reducing the number of gates and decreasing circuit depth given the backend’s
coupling map [5–9, 11, 14, 25]. Li et al. [7] introduced swap-based bidirectional heuristic
search algorithm (SABRE). They proposed a routing and an initial layout selection meth-
ods. For the initial layout selection method, they scan the circuit bidirectionally (forward
and backward) to reach the updated initial mapping. Cheng et al. [9] proposed both place-
ment and routing methods. For the placement method, they utilized a nearest neighbor
approach where they calculate the degree of activity (DoA) which is the total number of
CNOT gates applied to each qubit. This is then sorted in descending order prioritizing
qubits having more interactions to be placed first. One limitation is that their proposed
nearest neighbor approach relies on the hardware being a 2D grid architecture, which is
not usually the case as mentioned in [27]. Zhu et al. [25] proposed a heuristic approach
for initial mapping selection. Specifically, they rely on an interaction graph of the quan-
tum circuit that only considers the first occurrence of each two-qubit interactions. Edges
of the interaction graph are weighted with the stage number at which the first occurrence
took place. Our proposed feature representation is similar in the usage of the interaction
graph; however, we extract statistical features from the whole circuit, not just the first oc-
currence of a two-qubit interaction. They consider an expansion from the center where

Table 1 Summary of related work approaches for initial logical-to-physical mapping selection

Reference Proposed Limitations

[5–9, 11, 14, 25] -Noise unaware heuristics -Circuit-specific lacking generalization and
scalability

[22, 28–31] –Noise aware heuristics –Computationally expensive

[13] –Transformer neural network for the
Reinforce agent

–Inability to handle very long sequences due to the
usage of transformer neural network model
–Transformers are known for being computationally
expensive and non-scalable
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they map the former qubit of the first two-qubit gate to the center of the physical qubit
in the coupling map. Then, they adopt a breadth-first search for selecting the next logi-
cal qubit based on the gate occurrence index to be mapped to available candidate neigh-
bors. Fu et al. [11] proposed a combined heuristics approach for mapping and routing for
depth reduction optimization. Specifically, they utilize a sliding window to divide the cir-
cuit to sub circuits where they rely on A∗ search approach for depth optimization for each
sub circuit. However, their approach is non-scalable having an exponential complexity of
O(poly(d) exp(poly(Sd))), where d is the circuit depth and Sd is the window size. All the
mentioned heuristic approaches are circuit-specific lacking generalization and scalability.

Other researchers improved on the previous noise-unaware methods [22, 28–31]. Niu
et al. [29] adjusted the work by [7] to take into account hardware-specific noise. They pro-
posed hardware-aware simulated annealing (HSA) method for initial mapping selection
and hardware-aware heuristic mapping (HA) method for routing gates. Zhu et al. [15]
were also inspired by the use of qubit routing to update the qubit initial placement in ad-
dition to the bidirectional scanning of a circuit proposed by [7]. Specifically, they relied
on a reduced-form of a circuit in addition to appending its inverse to it that is then fed to
their initial placement algorithm. Their algorithm relies on a noisy simulator to evaluate
a given circuit with an initial mapping. Their initial placement algorithm has a worst case
complexity of O(I · J · |V |6), where I is the outer loop number of iterations that provide
a random starting mapping, J is the inner loop number of iterations required to update
the given random starting mapping using qubit routing algorithm, and |V | is the number
of physical qubits. To benefit from different initial mappings generated from their ini-
tial placement algorithm, they propose a multi-agent qubit routing such that each agent
starts from a different mapping of the same circuit. Tannu et al. [30] proposed variation-
aware qubit movement and variation-aware qubit allocation. For the variation-aware qubit
movement, their proposed method relies on Dijkstra’s algorithm to calculate the distance
between pairs of qubits such that paths with maximum failure rates, based on calibration
data, are avoided. For the variation-aware qubit allocation, the initial mapping is assigned
by allocating the most used qubits’ pairs to high reliability links. Dury et al. [31] proposed
a qubit allocation approach based on simulated annealing. Although these approaches
consider hardware-noise, they are computationally expensive.

Other studies aimed to utilize reinforcement learning. Huang et al. [13] proposed rein-
forcement learning for initial logical-to-physical mapping in addition to a heuristics ap-
proach for qubit routing that utilizes A∗ search. For the initial placement, they formulated
the problem as sequence-to-sequence mapping where they utilized a transformer neu-
ral network for the Reinforce agent, a policy gradient reinforcement learning approach.
Specifically, their input is a gate sequence, the enumeration of each two-qubit gate based
on the layer it is executed in, and a layer sequence, the layer number such that it contains
non-overlapping two-qubit gates. One limitation of their work is that they rely on the
transformer neural network model due to its inability to handle very long sequences. The
authors did not mention the number of neural network parameters used but transformers
are known for being computationally expensive and non-scalable.

3 Models and methods
In this section, we first detail the dataset collection process that is composed of both
benchmarks and random circuit generation. Second, we describe the reinforcement learn-
ing proximal policy optimization algorithm approach in addition to explaining its variant
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that we employed in this paper. Third, we explain our reward scheme that we used during
training our reinforcement learning agent. Fourth, we demonstrate the actor-critic neural
network that was used to guide the agent by providing the actions’ probability distribution
and the value of the current state. Finally, we describe the methodology used.

3.1 Dataset collection
Our dataset consists of a combination of random circuits and benchmark circuits. For
the random circuits, we generated circuits with qubits up to 20 qubits. Each circuit has
a random depth of up to 1000. The random circuit consists of random IBM basis gates,
gates supported by the hardware, that can be broadly divided into single qubit gates and
two qubit gates. Single qubit gates are gates that can be executed directly on a qubit as
they do not rely on the availability of connections between qubits, but are affected by
noise from the gate itself in addition to noise inherent in the qubit it is executed on. These
gates include identity, rotation Z, square-root NOT, and NOT. Two qubit gates are affected
by both the availability of connections between the two involved qubits and the noise
inherent in the link connection resulting from executing that gate. For the IBM quantum
backend, the controlled NOT gate is the only two qubit gate supported as a basis gate
such that a swap gate can be decomposed into its equivalence using three controlled NOT
(CNOT) gates.

Benchmark circuits were collected from multiple sources: QASMBench [32], IBM QX-
Circuit [33] and Munich Quantum Toolkit Benchmark Library (MQT) [34]. Gates in these
circuits were decomposed into IBM basis gates. For benchmarks, we split circuits with
depths larger than 1000 into smaller circuits in order to speedup the transpilation process
during training. For benchmark training circuits, qubits were logically shuffled to enlarge
the dataset. The total training set having both random and benchmark circuits consists
of 84,400 circuits. We separate the same 19 benchmark circuits from training dataset as
used in [13] for testing in order to compare with them. These 19 circuits were not used in
training. These testing circuits were neither split nor shuffled. For the training and testing
datasets, we only consider CNOT gates as single qubit gates will not affect the routing
process.

3.2 Maskable Proximal Policy Optimization (Maskable PPO)
Maskable PPO [35] is a variant of the classical PPO [36] that masks invalid actions de-
pending on the state. Classical PPO is a policy gradient reinforcement learning algorithm,
which utilizes an actor-critic scheme, that updates the policy parameters to maximize the
expected return. The actor is used to provide a probability distribution over the available
actions while the critic provides an estimate of the expectation of rewards at a certain ob-
servation state. During training, PPO avoids large policy deviations by utilizing a clip ratio
ε that maintains the change between the old and new policies to be in the range [1–ε, 1+ε].
The main goal for the reinforcement learning agent is to maximize the expected cumula-
tive future rewards given a discounted factor of γ , ranging from 0 to 1, shown in Eq. (2),
where G(st , at) is the discounted cumulative rewards from time t of at certain state st , R is
the reward for a given state and action pair.

G(st , at) = R(st , at) + γ R(st+1, at+1) + γ 2R(st+2, at+2) + · · ·

=
∞∑

k=0

γ kR(st+k , at+k)
(2)
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The critic neural network is trained to estimate this discounted cumulative return given
a state. The difference between the actual discounted reward and the estimated discounted
reward by the value neural network is known as the advantage as shown in Eq. (3), where
A(st , at) is the advantage at a certain timestep t and certain state st , G(st , at) is the actual
discounted cumulative rewards from time t of certain state st , and V (st) is the critic’s state
value function (V ) estimate of the discounted reward for state st at timestep t.

A(st , at) = G(st , at) – V (st) (3)

This advantage demonstrates how effective the action the agent took was. Additionally,
a ratio term, shown in Eq. (4), is calculated between the new policy and the old policy for
an action given a state. This ratio term results in a value between 0 and 1 if the action for
a state is less probable than in the old policy and a value larger than 1 if the action for a
state is more probable than in the old policy.

rt(θ ) =
πθ (at|st)

πθold(at|st)
(4)

If the normalized advantage multiplied by the ratio term is more than 1 + ε or lower than
1 – ε, the policy gradient step gets clipped according to Eq. (5).

LClip(θ ) = Êt
[
min

(
rt(θ )A(st , at), clip

(
rt(θ ), 1 – ε, 1 + ε

)
A(st , at)

)]
(5)

This aids in preventing large updates to the policy as PPO learns from online samples so
large updates can cause policy instability between different batches.

In this paper, we are concerned with qubit assignment problem. Thus, Maskable PPO
would be of benefit as we fix a particular qubit at each step in an episode. This would
prevent action loops if we used classical PPO that allows choosing any action at any step
of an episode which would increase the number of steps required for each episode. Thus,
the usage of Maskable PPO would result in fixed number of steps per episode equal to
n – 1, where n is the number of qubits, allowing decreasing number of actions at each
step. We employ Maskable PPO where valid actions rely on the current timestep of the
agent. So, the action space is parameterized by the current timestep. Specifically, it can
be demonstrated on a 5-qubit circuits as shown in Fig. 3, where we have n – 1 timesteps
as depicted by the tree’s height. At each tree level, there is a set of valid actions, where
the action at certain tree level corresponds to certain logical qubit index. This is shown
in Eq. (6), where LQI is the logical qubit index, a is the current action, level represent the
current tree level number, n represents the number of qubits and k runs from 0 to the
current step number.

LQI(a, level) = a –

(level–1∑

k=0

(n – k)

)
+ level (6)

Initially, we start with the corresponding mapping or identity mapping. After that we fix
a qubit at each timestep by doing a swap between the logical qubit corresponding to the
physical qubit (P) at the current timestep or level and the logical qubit (L) at the intended
action (LLQI ). The total number of actions is n(n+1)

2 – 1, where n is the number of qubits.
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Figure 3 Action space example for 5-qubit

Figure 4 Swap and bridge gate decomposition into CNOTs

An example scenario, shown in Fig. 3 of the reinforcement learning agent is simplified
as follows:

1. Agent starts with identity mapping
Mapping = [L0 : P0, L1 : P1, L2 : P2, L3 : P3, L4 : P4], level = 0

2. Agent takes action 1 (swap logical qubit at P0 and L1 = L1–0+0)
Mapping = [L1 : P0, L0 : P1, L2 : P2, L3 : P3, L4 : P4], level = 1

3. Agent takes action 6 (swap logical qubit at P1 and L2 = L6–5+1)
Mapping = [L1 : P0, L2 : P1, L0 : P2, L3 : P3, L4 : P4], level = 2

4. Agent takes action 10 (swap logical qubit at P2 and L3 = L10–9+2)
Mapping = [L1 : P0, L2 : P1, L3 : P2, L0 : P3, L4 : P4], level = 3

5. Agent takes action 13 (swap logical qubit at P3 and L4 = L13–12+3)
Mapping = [L1 : P0, L2 : P1, L3 : P2, L4 : P3, L0 : P4], level = 4

3.3 Reward
Our goal is to maximize the expected cumulative reward such that the agent takes steps
towards the mapping with the minimum additional CNOT gates. Additional CNOT gates
are the decomposition of higher level additional gates such as the Swap gate and Bridge
gate, shown in Fig. 4. The Swap gate is decomposed into three CNOT gates, where it swaps
two qubits in order to be able to perform a CNOT gate applied on non-adjacent qubits.
The Bridge gate performs the CNOT gate between non-adjacent qubits while keeping the
two qubits in their original position, where it can only be performed if the two qubits are
at a distance of 2 in the coupling map. It is decomposed into four CNOT gates.
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Algorithm 1 Reward Scheme
1: function Reward(LogicalCNOT, CorrespondingCount, Suboptimal, CNOTCount)

2: if
CNOTCount – LogicalCNOT

LogicalCNOT
< threshold then:

3: reward ← Const
4: Suboptimal ← CNOTCount
5: else if Suboptimal > CNOTCount then

6: reward ← Suboptimal
CNOTCount

+
CorrespondingCount

CNOTCount

7: Suboptimal ← CNOTCount
8: else if Suboptimal < CNOTCount then

9: reward ← –
CNOTCount
Suboptimal

10: else
11: reward ← 0
12: end if
13: return Suboptimal, reward
14: end function

For each step, our agent obtains an immediate reward. The immediate reward helps the
agent learn faster because if the agent will wait till the end of the episode, given all pos-
sible action combinations at each step in an episode, then it would take a long time for
the agent to receive a positive reward. The immediate reward scheme function, is shown
in Algorithm 1, that is invoked at each step in the episode. The function parameters are
the LogicalCNOT represents the number of CNOTs in the logical circuit before any map-
ping or routing, CorrespondingCount represents the number of CNOTs after mapping the
circuit to the corresponding mapping or identity mapping followed by routing to satisfy
the hardware constraints, and Suboptimal initially is equal to the CorrespondingCount but
after that it is updated to the least CNOT counts found until the current timestep. The
Suboptimal is used to represent the best found CNOT count values across the episode,
since finding the absolute optimal is of factorial complexity with respect to the number
of qubits. The CNOTCount is the additional number of CNOTs after mapping the logical
circuit to the mapping at the current step followed by the routing.

Lines 2–12 represent the reward given at each step in an episode. The CNOTCount
is compared with the increase rate in CNOTs over the LogicalCNOT ; if it is less than a
threshold, set to 0.5 based on trial and error to compromise between the agent receiving
a positive reward and an acceptable number of additional CNOT gates, then we give an
immediate reward represented by Const, set to 100 based on trial and error, otherwise it
is a small positive, a small negative or a zero reward. If the CNOTCount of the current
mapping is less than the counts of the best seen mapping (Suboptimal) for the circuit, we
give a positive reward consisting of the ratio between the Suboptimal and CNOTCount
that is added to the ratio of CorrespondingCount and CNOTCount. This is to quantify a
reward based on how much the current mapping is better than both the initial mapping
from the initial step and the best seen mapping till the current step. If the CNOTCount of
the current mapping is greater than the Suboptimal, a negative reward is given with a ratio
between the CNOTCount and the Suboptimal. If the CNOTCount is equal to Suboptimal,
but the percentage increase between the starting value represented as LogicalCNOT and
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Figure 5 3-Qubit edges encoding example

Figure 6 Actor Critic architecture (A: Actor, C: Critic)

the final value represented as CNOTCount is larger than the threshold, a reward of zero is
given to the agent.

3.4 Proposed model
Selecting an optimal logical-to-physical mapping given a feature vector is a non-trivial
task. Each circuit is considered a separate Markov Decision Process (MDP) so finding a
feature vector representation such that similar circuits can be closely approximated by a
neural network is essential. The best results were produced by extracting features from
the interaction graph, as mentioned in [37], such as counting the number of interactions
between two qubits along with the interquartile range of the difference vector between
successive CNOTs indices, as shown in Fig. 5. This representation is scalable as it has a
fixed-length.
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For the RL agent, the best approach we found was having different sets of actions at each
level of the tree, shown in Fig. 3, where we swap the qubit at the current tree level by the
qubit indexed by the taken action. This is semantically correct as each action performs the
same swap at each time it is taken since it is fixed per tree level.

Our model consists of three fully connected layers, shown in Fig. 6. The first fully con-
nected layer, having 512 neurons, is shared between the actor and the critic neural net-
works. After that, they are split into two neural networks, where each of the actor and
critic has two consecutive fully connected layers having 128 and 64 neurons, respectively.
This is then followed by an output layer. All activation functions are rectified linear units
(ReLU) except for the output layers. The mentioned hyperparameters were selected based
on trial and error.

For the actor, the output layer has a number of neurons equal to all available actions
so that the actor predicts the action accordingly after masking invalid ones. Specifically,
an action mask is applied to the action logits, raw outputs of the final layer in the neural
network before applying activation function, to set invalid actions to –∞. So that after
applying the softmax activation function, sampling of invalid actions will be 0.

For the critic, the output layer is composed of only one neuron with linear activation
function, where it estimates the expected discounted summation of returns for a specific
state.

The input to the actor-critic model is the edges vector, as demonstrated for a three-qubit
circuit in Fig. 5. Every group of gates that operate on distinct qubits construct a stage such
that the maximum number of stages represents the depth of the circuit. Our feature vector
consists of the aggregation of CNOT gates on a certain edge in addition to the interquartile
range of the difference vector between successor CNOTs based on its stage number. The
edges feature vector has a length corresponding to all two-edge combinations multiplied
by 2 as we consider two statistical features (CNOT counts per edge, interquartile range),
resulting in a feature vector length of 2

(q
2
)
, such that if we have 20-qubit circuit, the length

of the corresponding edges vector is 380.
The CNOT Counts Per Edge statistical feature is based on summing the number of inter-

actions between each two qubits. The interquartile range is calculated by first finding the
stage indices in which two-qubit interactions occurred between each pair of qubits, con-
structing the CNOT Stage Per Edge Vector. Then, we get the difference between successor
CNOTs stages for each pair of qubits resulting in the Difference Vector, from which we
estimate the interquartile range. The final Edges Feature Vector is constructed by merging
both CNOT Counts Per Edge Vector and Interquartile range Vector row-wise.

3.5 Experimental design
We generated random circuits using the IBM Qiskit software [24]. We did not only rely on
benchmark circuits so as to avoid bias to certain class of circuits. We trained our Maskable
PPO agent using Stable-baselines3 [38] on our custom environment for a 20-qubit hard-
ware, shown in Fig. 2. Specifically, the observation space consists of positive continuous
values represented in the edges feature vector, as shown in Fig. 5. Thus the observation
space shape has a vector length of 2

(q
2
)
, where q is the number of qubits, representing all

possible two-qubit combinations for two statistical features.
The observation state is the edges encoding of a given circuit permuted to a given map-

ping constructing the edges feature vector. Initially and at the beginning of each episode,
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the observation state is reset to the edges feature vector for the circuit at the identity map-
ping. After that the state gets updated based on the action taken that changes the mapping
permutation resulting in the change of the circuit’s edges feature vector. This would result
in a scalable input representation that would only rely on the possible edges combinations
without being constrained by the depth of the circuit. So, for 20 qubits, we have 209 pos-
sible actions. We utilize a learning rate of 0.0001 and a discount factor of 0.99. Since we
are fixing a qubit at each tree level, the steps per episode is equal to n – 1, where n is the
number of qubits. So, the steps per episode is fixed to 19 for a 20-qubit circuit.

For testing, we start by the initial state of the logical circuit. At each timestep, the agent
predicts an action based on the state and on valid actions at the current timestep; thus up-
dating the current state to a new one. We map and route the circuit corresponding to the
new state to get the total number of CNOTs after satisfying the hardware constraints. The
routing pass is the most time-consuming task in our reinforcement learning approach;
however, we plan as future work to speed up the routing pass by utilizing neural networks
to approximate its cost. The maximum number of steps is n – 1, where n is the number
of qubits. Each of the n – 1 steps represents a logical-to-physical qubits permutation for a
given circuit among which we choose the permutation having the minimum total number
of CNOTs. Since we formulate the problem as infinite horizon, our agent during train-
ing will favor long-term solutions. During decision making in the testing phase, we are
no longer optimizing our model and we have a source of error from the usage of neural
networks. Thus, our decision is based on the mapping having the minimum number of
additional gates across the episode. This is represented in Eq. (7), where the near-optimal
initial logical-to-physical mapping is the mapping having minimum number of CNOTs
after routing among the n – 1 possible mappings in an episode, where k is a running index
to mappings that the agent take across an episode, C is the total number of CNOTs after
mapping a given circuit m to permutation of logical qubits k followed by routing, and j∗
is the index to the mapping having minimum number of CNOTs among the n – 1 possible
mappings which corresponds to the maximum steps per episode.

j∗ = argmin
k

C(m, k) (7)

4 Results and discussion
4.1 Results
To evaluate the performance of our agent, we compare the additional number of CNOTs
with Cheng et al. [9], Zhu et al. [25], and Huang et al. [13]. We also calculate the geometric
mean of the ratio, shown in equation (8), between each approach with each of the related
work [9, 13, 25] approaches. Equation (8) calculates the geometric mean across the 19
benchmark test circuits, k is the index to the benchmark test dataset running from 0 to
18, between the ratio of the number of additional gates between approaches i and j.

GeoMean(approachi, approachj) =
18∏

k=0

approachj[k]
approachi[k]

(8)

The geometric mean is used to better illustrate the global effect of an approach over an-
other as we are dealing with ratios. We also compute the average number of additional
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Table 2 Comparison for feature vector length for benchmark test circuits

Benchmark Number of logical CNOTs Feature Vector Length

Huang et al. [13] RL

clip_206 14,772 14,772 380
cm85a_209 4986 4986 380
cycle10_2_110 2648 2648 380
dist_223 16,624 16,624 380
hwb6_56 2952 2952 380
hwb7_59 10,681 10,681 380
hwb8_113 30,372 30,372 380
mlp4_245 8232 8232 380
radd_250 1405 1405 380
rd73_252 2319 2319 380
rd84_253 5960 5960 380
root_255 7493 7493 380
sao2_257 16,864 16,864 380
sym10_262 28,084 28,084 380
sym9_148 9408 9408 380
sym9_193 15,232 15,232 380
Urf1_278 26,692 26,692 380
Urf2_277 10,066 10,066 380
Urf5_280 23,764 23,764 380

gates for [9, 13, 25] in comparison with our work. We calculate for each benchmark cir-
cuit the percentage of improvement over the best of related work [13] in terms of the total
number of CNOTs after routing a given circuit from a given initial mapping.

Since the related work using reinforcement learning [13] is not open sourced, it can not
be implemented faithfully. Therefore, we use the same test benchmarks along with the
same T|ket〉 compiler [39] using its default routing pass [40] to route the circuit given a
certain initial mapping assuming no optimizations. We also took the results on the test
benchmarks for the three related works [9, 13, 25] from [13].

Table 2 compares the feature vector length required for each of the benchmark circuits
between our reinforcement learning approach with that of huang et al. [13], as this is the
only related work approach utilizing neural networks. For all test benchmarks, our repre-
sentation is more efficient and scalable over the related work approach [13]. Specifically,
our reinforcement learning approach requires a fixed-length input of only 2

(q
2
)
, where q is

the number of qubits, that requires minor preprocessing time to extract the statistical fea-
tures; whereas, the feature vector representation by Huang et al. [13] has a variable-length
equal to the number of logical CNOTs in a circuit.

Table 3 shows that our RL agent outperforms the related works in 12 out of 19 bench-
mark circuits achieving minimum number of additional CNOT gates among related work
approaches [9, 13, 25], while utilizing a shorter feature vector length that is independent
of the circuit size. This signifies that the reduction of the input complexity did not affect
the agent’s capability in finding a good initial mapping. The worst performance for our
agent is for benchmark hwb6_56. This circuit has 7-qubit which is the least number of
qubits among test benchmark circuits. Since the training dataset consists of circuits with
high complexities, the neural network may overestimate circuits with low complexities as
detailed in Sect. 4.2 for a 9-qubit model comparison. As represented by our results, our
model tends to have better results as the complexity of the circuits increases. However, our
result for this benchmark is still comparable with the other heuristics approaches. For the
6 out of the 7 remaining benchmark circuits, our method serves as either comparable with
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Table 3 Benchmark test circuits for the 20-qubit model

Benchmark Logical CNOTs# � CNOTs after mapping and routing Improv %

Huang et al. [13] Cheng et al. [9] Zhu et al. [25] RL

clip_206 14,772 7959 9339 9444 7572 1.7
cm85a_209 4986 2706 3075 2907 2322 4.99
cycle10_2_110 2648 1293 1440 1611 1449 –3.99
dist_223 16,624 8082 10,668 10,569 7791 1.17
hwb6_56 2952 1143 1665 1740 1668 –12.82
hwb7_59 10,681 4950 5226 5619 5129 –1.14
hwb8_113 30,372 17,319 17,886 20,007 16,905 0.86
mlp4_245 8232 5511 4881 5862 4932 4.21
radd_250 1405 900 993 1065 834 2.86
rd73_252 2319 1323 1344 1272 1239 2.30
rd84_253 5960 3381 3912 3804 2940 4.72
root_255 7493 3531 4554 4164 3315 1.95
sao2_257 16,864 7812 11,268 9999 7527 1.15
sym10_262 28,084 13,833 16,899 17,079 14,340 –1.2
sym9_148 9408 3033 4200 3366 2306 5.55
sym9_193 15,232 8676 9252 9462 8496 0.75
Urf1_278 26,692 17,391 17,106 17,217 16,959 0.97
Urf2_277 10,066 6129 6168 6108 6805 –4.35
Urf5_280 23,764 13,791 15,261 15,201 13,845 –0.14

Geo. Mean 1 1.145 1.148 0.978
of Addit. Gates 0.873 1 1.002 0.854

0.870 0.997 1 0.852

Avg. # of 6777 7638.7 7710.3 6651.2
Addit. Gates ±5347.24 ±5753.6 ±5979.35 ±5330.34

or ranked the second best approach having a low number of CNOTs. Furthermore, our
method reduced the number of gates over the best available related work [13] achieving
a geometric mean of 2.2% and outperformed the other two heuristics approaches [9, 25]
achieving a geometric mean of 15%. Additionally, our method also achieved the least aver-
age number of additional CNOT gates among available related work, achieving an average
additional number of gates of 6651.2 ± 5330.34. This implies that our RL agent is scalable
and can perform well on large number of qubits with any depth given its fixed-length fea-
ture vector unlike the variable-length feature vector by Huang et al. [13] that increases
proportionally as the number of two-qubit gates increases. Also, Huang et al. [13] employ
a transformer neural network which is computationally expensive and unscalable due to
its inability to handle long sequences.

We further compare the time required for a given circuit between a heuristic approach
[9] and our RL approach with and without considering routing time, shown in Table 4,
for the 2-D grid shown in Fig. 2. The heuristic time approach is comparable to our RL
approach without considering routing time, which we aim to improve by employing a
neural network as future work. Cheng et al. [9] approach first constructs the adjacency
matrix by iterating over all two-qubit gates, represented by G. This is then utilized by the
nearest neighbor algorithm to place qubits based on available unoccupied neighbors in
addition to minimizing the interaction cost with placed qubits resulting in a cost of O(n3),
where n is the number of qubits. Thus, Cheng et al. [9] approach, given circuit encoding
and nearest neighbor algorithm, has a complexity of O(n3 + G).

Our RL approach has fixed steps per episode, totalling n – 1, where n is the number of
qubits. At the first step in the episode, we encode the circuit by iterating over all gates re-
sulting in a cost of O(G), where G is the total number of two-qubit gates. For the remaining
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Table 4 Time comparison in seconds between heuristics approach and RL agent inference per
circuit

Benchmark Qubits # Logical Depth # Logical CNOTs# Time Per Circuit in Seconds

Cheng
et al. [9]

RL Without
Routing

RL With
Routing

clip_206 14 12,028 14,772 6.15 5.56 53.31
cm85a_209 14 4256 4986 1.94 1.96 20.05
cycle10_2_110 12 2276 2648 1.08 1.11 11.62
dist_223 13 13,274 16,624 6.77 6.61 56.55
hwb6_56 7 2559 2952 1.32 1.85 10.9
hwb7_59 8 9112 10,681 4.4 4.77 37.04
hwb8_113 9 26,041 30,372 12.38 11.21 108.66
mlp4_245 16 6930 8232 4.02 3.33 34.02
radd_250 13 1210 1405 0.64 0.55 5.9
rd73_252 10 1963 2319 1 0.77 8.4
rd84_253 12 4917 5960 2.69 2.46 22.09
root_255 13 5965 7493 3.02 3.33 26.39
sao2_257 14 13,209 16,864 7.6 6.24 56.19
sym10_262 12 23,736 28,084 12.9 11.59 102.45
sym9_148 10 8062 9408 4.02 3.66 28.84
sym9_193 11 12,849 15,232 6.11 5.63 50.17
Urf1_278 9 22,307 26,692 10.5 10.1 96.32
Urf2_277 8 8312 10,066 3.85 4.18 39.31
Urf5_280 9 19,888 23,764 9.25 9.43 94.7

steps in the episode, we update the state based on the predicted action by only swapping
two qubits in the encoding matrix resulting in a cost of O(4n). Consequently, the total cost
for our approach without routing is O(n2 + G) per episode. For the routing evaluation, we
route the circuit at each step in the episode using the default routing algorithm by T|ket〉
compiler [40], considerably faster than other compilers on large benchmarks, resulting in
a cost of O(n · G) per episode. Thus, our RL approach along with the routing time evalua-
tion is still considered scalable having a computational complexity of O(n2 + n · G)), where
n is the number of qubits, G is the total number of gates.

4.2 Scalability
To evaluate the scalability of our model, we compare the number of parameters required by
the reinforcement learning model between 9-qubit and 20-qubit hardware. As in the 20-
qubit dataset, our training dataset consists of a combination between random and bench-
mark circuits totalling 53,610. Our testing dataset consists of 6 out of the 19 benchmarks
mentioned in Table 3 that have qubits less than or equal 9-qubit. Similar to the coupling
map of the 20-qubit hardware in Fig. 2, we utilize a 3 by 3 subset, totalling 9-qubit, from
that coupling map. Additionally, we use the same neural network model as in Fig. 6. How-
ever, we utilize half the number of neurons in each of the three hidden layers. Specifically,
for the shared layer between the actor and the critic the number of neurons is 256. After
that each of the actor and critic has two consecutive fully connected layers having 64 and
32 neurons, respectively. Thus, the total number of parameters, excluding the input and
the output layers, required for the 9-qubit model is 37,056 parameters, while that of the
20-qubit model is 147,840 parameters. Thus, our neural network model scales linearly as
the number of qubits increases.

Table 5 represents the results for the six benchmarks achieving minimum number of
additional CNOT gates outperforming the results mentioned in Table 3. This clarifies that
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Table 5 Benchmark test circuits for the 9-qubit model

Benchmark Logical CNOTs# � CNOTs after mapping and routing

RL

hwb6_56 2952 819
hwb7_59 10,681 3486
hwb8_113 30,372 12,294
Urf1_278 26,692 13,227
Urf2_277 10,066 4056
Urf5_280 23,764 12,186

the 12.82% drop in performance in hwb6_56 benchmark circuit is due to the training
dataset of the 20-qubit model having high complexities.

5 Conclusion
In this paper, we utilized Maskable PPO reinforcement learning algorithm to train an agent
to find the optimal logical-to-physical mapping of quantum circuits. Specifically, we only
rely on the edges feature vector demonstrating its scalablility as it is depth independent.
Experimental results show that it is possible to train a generic reinforcement learning
agent coupled with simple routing evaluation capable of selecting a near-optimal mapping
outperforming the available heuristics and related reinforcement learning approach on 12
out of 19 test benchmarks, achieving a geometric mean improvement over the best avail-
able related work with 2.2% and an average additional CNOT gates of 6651.2 ± 5330.34.
We also outperformed two heuristics approaches achieving a geometric mean of 15%.
In addition, we demonstrated that our neural network model scales linearly as the num-
ber of qubits increases. Thus, our results demonstrate the advantage of our approach over
available related works in terms of the simple scalable neural network, compact circuit en-
coding, and fewer average additional CNOT gates. This would radically improve circuit
reliability as the reduction of additional CNOT gates would reduce additional noise in ad-
dition to decreasing the depth of a given circuit. As future work, we plan to investigate an
approach using either neural networks or heuristics to predict additional CNOT counts af-
ter routing given the logical circuit in order to speed up the routing evaluation complexity
of our approach. Additionally, we plan to investigate multi-agent reinforcement learning
to handle multi-objective optimizations such as reduction of additional gates and selecting
reliable links based on the backend’s noise.
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