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Abstract
Random number generators (RNG) based on quantummechanics are captivating
due to their security and unpredictability compared to conventional generators, such
as pseudo-random number generators and hardware-random number generators.
This work analyzes evolutions in the extractable amount of randomness with
increasing the Hilbert space dimension, state preparation subspace, or measurement
subspace in a class of semi-device-independent quantum-RNG, where bounding the
states’ overlap is the core assumption, built on the prepare-and-measure scheme. We
further discuss the effect of these factors on the complexity and draw a conclusion on
the optimal scenario. We investigate the generic case of time-bin encoding scheme,
define various input (state preparation) and outcome (measurement) subspaces, and
discuss the optimal scenarios to obtain maximum entropy. Several input designs
were experimentally tested and analyzed for their conceivable outcome
arrangements. We evaluated their performance by considering the device’s
imperfections, particularly the after-pulsing effect and dark counts of the detectors.
Finally, we demonstrate that this approach can boost the system entropy, resulting in
more extractable randomness.

1 Introduction
Randomness is indispensable for simulation, gambling, and numerous cryptographic ap-
plications, e.g., quantum key distribution (QKD) [1, 2], where the protocol’s security is
guaranteed by random selections of the encoding and measurement bases [3]. Tradi-
tional randomness generators rely on deterministic processes, which are, in principle, pre-
dictable. However, unlike the deterministic evolution of classical systems, quantum me-
chanics grants the ability to generate genuine randomness based on the quantum measure-
ment outcome that is entirely unpredictable [4, 5]. A random number generator (RNG),
in general, should deliver unpredictable and secure random numbers by exploiting effec-
tive instruments aiming to make it performant, high rate, and commercially affordable.
Quantum RNG (QRNG) can be an outstanding choice in satisfying the needs for security,
practicality, and affordability; nevertheless, any imperfection in the physical realization
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may cause information leakage which an eavesdropper could use to predict the QRNG’s
outcome [6, 7].

Nowadays, QRNGs are commercially available, symbolizing one of the most success-
ful developments of quantum technologies. In Device-dependent (DD) QRNGs, the user
must trust the device’s performance. This type of QRNG requires a detailed understand-
ing of the functioning of the in-use devices to constrain the output’s randomness [8–11].
Although DD QRNGs randomness is guaranteed by quantum theory, any gap between
theoretical and real-world implementation, such as experimental errors, device imperfec-
tions, or dishonest producers, may enable an adversary to predict the QRNG’s outcomes
and thus endanger the system’s security [12–16]. At the same time, in device-independent
(DI) protocols, one can certify randomness without relying on assumptions about the de-
vice’s performance. These protocols utilize the non-local property of quantum theory to
guarantee the output’s randomness. DI QRNGs are, therefore, highly secure, and thus no
assumptions on the eavesdropper are made. Implementing DI QRNGs, nevertheless, can
be demanding as it involves conducting a loophole-free Bell test, which is a challenging
experimental task with a typically low generation rate [17].

Contrary to DD and DI QRNGs, semi-device independent QRNGs are based on proto-
cols that allow for high-rate generation, acceptable security, and simplicity in implementa-
tion [18–21]. In this class, the performance is boosted by taking a few assumptions on the
working principle of the experimental apparatus, e.g., trusting the measurement [22, 23]
or the preparation device [19, 24] or weaker hypothesis like bounding the energy or the
overlap [25, 26] of the generated states, while guaranteeing the security by accounting for
all possible attack attempts within our assumptions [27].

This work studies a class of semi-DI QRNGs founded on the basis of restraining the
states’ overlap by employing a time-bin encoding scheme and single-photon detection.
The overlap bound guarantees that the prepared states are non-orthogonal and hence, no
measurement can perfectly distinguish them [26, 28]. While the inability of predicting the
outcome of measurement by the user is the source of randomness, the indistinguishability
of the state is the source of security, from the perspective of the measurement apparatus.
The entropy and extractable randomness are optimized, and compared, with the help of
semi-definite programming (SDP). We discuss the improvement in entropy and random-
ness generation rate with increasing the number of time-bin or input states.

The main contribution of this work is to investigate the impact of increasing or adjust-
ing the number of time bins on the extractable amount of randomness and the system’s
generation rate with the security assumption. We found an upper bound on the number of
input-output for a general number of time bins and showed that the system’s entropy im-
proves with a increasing number of time bins. We also discuss the experimental challenges
from both state preparation and measurement points of view. Similarly, we demonstrate
that the generation rate increases by optimally dispersing the weak coherent state (WCS)
in time-bin configurations, which can significantly enhance this approach’s performance
for practical applications.

2 Methods
2.1 Protocol
The QRNG protocol introduced here is based on the prepare-and-measure scenario,
where the prepared states’ overlap is bounded while no other assumptions are required
on the rest of the setup [25, 29, 30].
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2.1.1 Preparation and measurement stages
Quantum mechanics does not allow any measurement to distinguish non-orthogonal
states perfectly [31]. This feature can be used to generate random numbers without trust-
ing the measurement apparatus. Here, we address a general case of non-orthogonal states
in a time-bin encoding with n bins and m distributed weak coherent pulses |α〉. The states
|ψi〉,

|ψi〉 = |0〉n–m|α〉⊗m = |0〉 ⊗ |α〉 ⊗ · · · ⊗ |α〉 ⊗ |0〉, (1)

are formed by permuting the m WCSs in the n bins where the rest are filled with vacuum
states (VS). The states |ψi〉 are required to respect an overlap condition that satisfies the
protocol’s assumption:

∣
∣ 〈ψi| |ψj〉

∣
∣ ≥ δ, ∀i �= j, (2)

where δ is the overlap bound. The non-zero overlap guarantees the inability to distinguish
the states by performing any measurement, hence, allowing to generate secure random-
ness from the ambiguity therein [31]. A simple illustration of state formation in time-bin
encoding can be found in [25].

In this scenario, the general case is defined by allowing the number of time-bins n to in-
crease without any limits as well as the number of WCSs m, where 1 ≤ m < n. We denote a
configuration of n time-bins and m WCSs with (n, m)-configuration. The number of states
in a (n, m)-configuration is given by the binomial coefficient, Cm

n = n!/(m!(n – m)!), formed
by all possible combinations of placing m WCSs in n time-bins. However, not all groups
of states in a configuration respect the overlap bound, Eq. (2). A careful examination of
combinations shows that in an (n, m)-configuration, there are subsets of states with spe-
cific overlaps. Each subset is then divided into groups of states that are equivalent w.r.t. the
overlap value. Figure 1 shows the (4, 2)-configuration and its subsets with different overlap
values. To be noted that while the four groups of subset I are not closed w.r.t. each other,
adding any elements of another group to any of them violates the overlap bound.

It is easy to show that the number of subsets is equal to

⎧

⎨

⎩

m if 2m – n ≤ 0

n – m if 2m – n > 0.

Consequently, a (n, m)-configuration can have a total overlap value of the form

| 〈ψi| |ψj〉 | = 〈0|0〉n–2m+s〈0|α〉2(m–s)〈α|α〉s

= 〈0|α〉2(m–s),
(3)

where s is the number of coinciding 〈α|α〉 WCSs. We denote an (n, m)-configuration with
s coinciding WCSs as nm,s with n > m ≥ s.

In the following, we will only consider the case of equality in Eq. (2). We denote with
B(n, m, s) the maximum number of states in any subset S of the (n, m)-configuration such
that all elements in S have the same value of s pairwise, with s defined as in Eq. (3). It
is of relevance to know B for any configuration as it defines the number of inputs and
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Figure 1 Possible input-output configurations with four time-bin case. Inputs: Sets I, II, and III show input
configurations where one, two, and three weak coherent states are positioned in time-bins, respectively.
Subsets I and II are subsections of set II where the overlap is mixed. Outputs: 16 possible outcome
configurations for four time-bin case, where some are theoretically impossible, e.g., obtaining four detection
events, while real-world errors such as the detector’s dark counts make it probable

possible outputs in our prepare-and-measure QRNG protocol. This question is closely
related to constant weight binary codes. To see this, we can identify bins that contain a
WCS with ‘1’ and bins that contain the vacuum state with ‘0’, such that we identify each
state in a (n, m)-configuration with a binary vector of length n and weight m. Each subset
S can then be directly identified with a code of length n, Hamming distance d, and weight
m, where Hamming distance and s are related as d = 2(m – s). Equation (3) can then be
written as | 〈ψi| |ψj〉 | = 〈0|α〉d . In the context of constant weight binary codes, there exists
the well-known but open question of determining the maximum number of codewords
A(n, m, dmin), where dmin refers to the minimum distance of the code. B(n, m, s) can be
upper-bounded by A(n, m, 2(m – s)) which in turn can be upper-bounded by different the-
oretical bounds [32–34]. Lower bounds to A, typically by explicit construction [35, 36],
cannot be applied to B as the codes can contain state-pairs with d > dmin which translates
to a violation of Eq. (2) since δ = 〈0|α〉d . Increasing d reduces the overlap value and there-
fore reduces the ambiguity in their measurement. Instead, we show here an explicit lower
bound C by simple construction: For 2m – n ≤ 0, all codewords share s ‘1’s at the same
positions. Distribute the remaining m – s ones in the remaining n – s slots so that there is
no coinciding ones, and fill the R = n – 	 n–s

m–s
(m – s) – s leftover columns with zeros.

This results in C = 	 n–s
m–s
 different states. If instead 2m – n > 0, all codewords share

n + s – 2m zero positions and the remaining 2m – s slots are divided into sections with
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m – s zeros. B can therefore be lower-bounded by

B(n, m, s) ≥ C(n, m, s) =

⎧

⎪⎪⎨

⎪⎪⎩

1 if n + s – 2m < 0

	 n–s
m–s
 if 2m ≤ n

	 2m–s
m–s 
 if 2m > n

(4)

In the absence of noise or errors, the number of all possible outcomes, B, follows from
the click or no-click event when a state is sent. For an nm,s-configuration, the number of
distinct outcomes is obtained as

B = C
(

2m – 1
)

– 2m–s + 1. (5)

In the no-frills case, only one WCS is placed, m = 1, in each time-bin regardless of the
number of bins, see Fig. 1 (set I). There are always B = n + 1 possible outcomes in this
case – one for each input plus one for the no-click (indeterminate) event, which occurs
randomly, suggesting that the entropy should be minimal. Figure 1 (Set II and III) shows
the cases with m = 2 and m = 3, respectively. Note that the case with m = 2 WCSs has
two subsets with 1 and 2 coinciding WCSs with 4 equivalent groups for m = 2 and 3 for
m = 3. In the ideal situation, the number of outcomes follows Eq. (5). However, in a real
implementation, due to noise, dark counts, or after-pulsing, all B = 2n outcomes, shown
in Fig. 1 for n = 4 – Outputs, are probable although with negligible probability. These er-
rors and imperfections are viewed as classical side-information serving the adversary to
predict the measurement outcome. All sorts of probable classical side-information and
correlations (between preparation and measurement sides) are considered in the secu-
rity estimation. The user can monitor these correlations and stop the protocol in case of
observing considerable noise.

2.1.2 Security estimation
Despite the fact that the generation of random numbers in a QRNG is based on the intrin-
sic probabilistic nature of quantum mechanics, the raw data outcome is a mixture of the
sequences generated from deterministic classical sources and quantum processes. There-
fore, it is essential to estimate the amount of extractable randomness in a defined proto-
col and later use it to exclude the classical contribution. The quantity min-entropy (Hmin)
measures the maximum extractable randomness provided that an adversary can optimally
guess the generator’s outcome knowing the working principle of the devices. To account
for any side information, we used conditional min-entropy and considered only classical
side-information. Throughout this work, we assumed a trusty source with no quantum
correlation to the outside world.

The conditional min-entropy on the variable b conditioned on classical side-information
E reads [37]

Hmin(b|E) = – log2 Pguess(b|E), (6)

where Pguess is the maximum probability that an adversary can guess the measurement
outcome with a complete understanding of the devices’ working principle and classical
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noises. In a semi-DI framework, the guessing probability should be maximized over all
possible preparation and measurement strategies. Pguess reads:

Pguess = max
p(x),ψx ,Mς

b

{ I–1
∑

x=0

p(x)
∑

ς

max
b

[〈ψx|Mς

b |ψx〉
]

}

, (7)

where p(x) is the probability of transmitting input x, Mς

b = P(ς )�ς

b are weighted measure-
ment strategies over all positive operator valued measurements (POVM), and ς , known
by the adversary, represents the classical correlations between the measurement devices
and environment (e.g., adversary). Each POVM �

ς

b , labeled by ς , can be implemented
with probability P(ς ). I and B are the numbers of inputs and outcomes, respectively. As
shown in [38], the maximizations in Eq. (7) can be grouped as they occur for the same
value of b at given x, this would significantly ease up the optimization process. There-
fore the total number of possible measurement strategies for given input would be BI ,
thus ς ∈ {ς0, . . . ,ςI–1}, where ςs ∈ {0, . . . ., B – 1}. Following the same approach presented
in [25, 26, 39], Pguess for the balanced input case, p(x) = 1/I , can be written as:

Pguess =
1
I

max
{Mς

b ,ρ̂x}

I–1
∑

x=0

∑

ς

Tr
[

ρ̂xMς
ςx

]

, (8)

where ρ̂x = |ψx〉 〈ψx|, and Tr[ρ̂xMς

b ] = p(b|x) is the conditional probability of obtaining
outcome b given input x. Equation (8) suggests that Pguess depends on the state’s overlap
rather than input state ρ̂x. Besides, the optimization problem in Eq. (8) can be bounded to
a I-dimensional Hilbert space; for more detail, see [25, 26, 38].

The optimization problem in Pguess can be efficiently solved by casting it into semi-
definite programming (SDP), which is a numerical tool for solving complex optimization
problems.

Following the same argument presented in [25, 26, 38, 39], we can show that for the
protocol under study, strong duality holds which means both the primal and dual forms
of the SDP exist. By feeding the SDP with the experimental conditional probabilities P(b|x)
and defining the overlap bound, the SDP can numerically optimize Pguess. Afterward, the
conditional min-entropy, Eq. (6), can be calculated.

It should be noted that the security estimation is applicable for multiple input-output
(IO) cases. The number of inputs can vary from 2 to the number of available states in an
equivalence group in a nm,s-configuration. For example, one can choose to send only 2 out
of 4 states in set I in Fig. 1. The computational cost (CC) is associated with the number
of IO in the system and can affect the system’s overall generation rate. This is due to an
increment in the time it takes to execute the SDP, which in turn leads to a decrease in the
system’s overall efficiency. Thus, it is important to be mindful of the impact of increased
computational complexity when considering adding more IO to the system. Figure 2 shows
the CC as a function of the number of IO obtained on a personal computer.

Given a specific input, an outcome probability is a function of mean photon number per
pulse μ, detector efficiency ηdet, noise in the form of background light, dark count, and
after-pulsing. An approach to reduce the complexity of SDP is to group the outcomes,
from an adversary point of view. This will drastically reduce the complexity of SDP.
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Figure 2 Computational cost (CC), colour bar, as a function of the number of inputs and outputs. Note that
the CC is plotted on a logarithmic scale, expressing that CC increases exponentially with the number of IO

It can be explained in a n1,0-configuration where, in the absence of noise, there are
n + 1 different outcomes. The common outcome is the no-click one, and the others
are 1-click due to the WCS. In this case, a new variable (E ∈ {0, 1}) can be assigned to
the outcomes in which E = 0 corresponds to the no-click event, all ‘0’, while E is 1 for
b ∈ {100 · · ·0

︸ ︷︷ ︸

n

, 010 · · ·0, . . . , 0 · · ·01}.

Pguess = max
p(x),ρx

{ 2
∑

x=0

p(x)

×
1

∑

ς0,ς1,ς2=0

max
{

Tr
[

ρ̂xMς0,ς1,ς2
E=0

]

, 1 – Tr
[

ρ̂xMς0,ς1,ς2
E=0

]}

} (9)

For configurations with more WCSs more variables (corresponding to E) should be spec-
ified as there would be more indeterminate events.

The many-outcome approach is a computationally simplified, effective, and efficient
method of increasing entropy without significantly increasing CC. This is a result of com-
paring the computational cost with increasing the number of inputs versus the number of
outcomes which shows that the former increases faster, see Fig. 2. Hence, in an nm,s con-
figuration, an efficient strategy is to keep the number of inputs fixed and low and increase
the number of outcomes.

The many-outcome approach is studied for the continuous variable (CV) case in Ref.
[39] where the focus is on heterodyne and homodyne detectors with binary input. In the
time-bin encoding scheme, we can control the number of outcomes by adjusting the num-
ber of time-bins or the number of WCS in each configuration. It should be noted that the
overlap bound is not considered in this argument and should be added as criteria when
solving the SDP. As an example with dual input, it is shown in Fig. 3 that conditional en-
tropy rises when the number of outcomes increases.

As shown in Table 1-top, the overlap could be different from case to case; this causes the
optimal value of conditional min-entropy to take place at different mean-photon numbers;
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Figure 3 Optimal conditional min-entropy as a function of the number of outcomes with binary input. Inset:
Optimal mean-photon number (μ), i.e., the μ which delivers the maximum entropy, as a function of the
number of outcomes for states with different overlaps

Table 1 Many-input vs Many-outcome approach. Top:Many-outcomes approach with binary input;
Examples of many-outcome scenarios with two input states. Note that the overlap value differs in
each case. Bottom:Many-input approach with categorizing the outcomes. Note: x and – represent
detection and no-detection events, respectively

the inset of Fig. 3 shows the optimal mean-photon number as a function of outcomes
for different overlaps. Similarly, a many-input case can be introduced while keeping the
outcome minimal. Table 1-bottom shows examples of the possible setting of the many-
input approach.

2.1.3 Conditional probability
Given the inputs and the outputs, one can compute the input-output correlation by em-
ploying the conditional probability p(b|x), i.e., the probability of receiving outcome b given
input x:

p(b|x) =
∑

ς

pς Tr
[

ρ̂x�̂
ς

b
]

, (10)
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where ρ̂x are the prepared states, �̂
ς

b are the POVMs describing the measurement, ς the
classical variable provided to the adversary which describes the classical correlations be-
tween the experimental devices and the adversary.

The detector’s dark count rate (DCR) and ambient light are usually considered constant
(on average); as they are independent of the incident photon’s energy. However, the like-
lihood of obtaining an afterpulse click is directly related to the system’s repetition rate.
Some detection events may not be caused by a WCS but could be afterpulses of an earlier
detection event—the higher the system’s repetition rate, the higher the chance of an after-
pulse in the subsequent time-bins. Consequently, it is critical to consider the afterpulsing
effect for practical situations.

The probability of registering a detection event in the Tth bin is mainly subject to the
presence of a WCS in that bin and afterpulsing due to detections in the earlier bins. Assum-
ing that afterpulsing only happens due to a detection event in the immediate bin before,
the probability of detection in bin T can be written as:

PT
α (1) = 1 – e–ηdetL|α|2 + ε + PapPT–1

α (1)

= 1 – e–ηdetL|α|2

+ ε + Pap
(

1 – e–ηdetL|α|2 + ε + PapPT–2
α (1)

)

· · ·

=
1 – e–ηdetL|α|2 + ε

1 – Pap
.

(11)

where PT
α (1) is the probability of registering a detection when sending |α〉, ηdet and L are

detector efficiency and source-measurement loss, ε is for devices’ imperfections and clas-
sical noises, e.g., dark counts, background noise, etc., and Pap represents the afterpulse
probability due to a detection event at one bin distance which is the intrinsic character
of a single-photon avalanche diode (SPAD) that can be characterized experimentally. In
Eq. (11), we substituted PT–2

α (1) with its value and formed a geometric series to find the
result.

The rest of the probabilities can be expressed as

Pα(0) = 1 – Pα(1)

P∅(1) = Pap

(
1 – e–ηdetL|α|2 + ε

1 – Pap

)

+ ε

P∅(0) = 1 – P∅(1),

(12)

where Pα(1), P∅(1), ( Pα(0), P∅(0) ) represent the probability of registering a click (no-click
) event when states |α〉 and |0〉 are transmitted. Given Eqs. (11) and (12), we can compute
all the possible conditional probabilities for any input-output dimension.

2.1.4 Randomness generation rate
Besides security, the randomness generation rate is another key parameter of any QRNG.
We previously discussed the security estimation for the general case with multiple input-
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output in the presence of classical side information and noise and how it scales up. Here,
we consider the eventual generation rate in the time-bin protocol.

For a weak coherent pulse source with repetition rate f , the input-state generation, com-
prised of n time-bins, scales down as f /n. However, the extractable randomness is deter-
mined by Hmin, Eq. (6), and the number of states available in an equivalence group in a
nm,s-configuration. Hence, the rate can be written as,

R =
f
n

Hmin(nm,s,υ,ηdet,μoptimal), (13)

where Hmin(nm,s,υ,ηdet,μoptimal) is the maximum extractable entropy from that set consid-
ering optimal μ, all the sources of noise, and detector efficiency. As discussed in Sect. 2.1.2,
a general solution for Hmin considering all the parameters is not feasible to present and this
quantity needs to be calculated and optimized for each case.

It should be noted that we assume f being below the detector’s dead-time to avoid miss-
ing a signal. Additionally, the analysis considers all the possible inputs and outcomes. The
investigation would become more straightforward in the case of the many-input or many-
outcome approaches.

2.2 Experimental implementation
This section investigates the experimental implementation and some practical consider-
ations of this protocol. According to the protocol, the detection apparatus is considered
a black box with no assumption on its performance. However, state generation must re-
spect an overlap criteria, Eq. (2), which translates in two conditions; limited mean photon
number μ per WCS and WCS positioning in an n-time-bin state.

Figure 4 shows a schematic representation of the setup. The n-time-bin state is gen-
erated by carving a 1550 nm continuous wave laser (CW) into pulses with 120 ps pulse
width and a repetition rate of 31.25 MHz. Two cascaded intensity modulators, shown as
one in the setup, guarantee high extinction ratio and perfect state generation. The rep-
etition rate is chosen such that it matches the detector’s dead-time and to minimize the
chance of no-detection events. A field programmable gate array (FPGA) generates the
electrical signal to drive the intensity modulators and to synchronize the measurement
apparatus. To verify the overlap criteria, WCS placement is controlled such that the fi-
nal state matches a subset, see Fig. 1. A 99:1 beamsplitter separates the signal with the

Figure 4 Schematic of the QRNG setup. A continuous wave laser (CW) is carved to form a train of pulses
according to the protocol selected by the user. A combination of an attenuator (att.) and a 99:1 beamsplitter
bring the power to single photon level where the 99% output is monitored constantly with a power meter
(PM) to certify the overlap condition. The single photons are then sent to a detector (SNSPD) for
measurement. The polarization controller (PC) adjusts the polarization to maximize efficiency. The detection
events are registered with a time-to-digital converter (TDC). State generation and measurement are governed
and synchronized with the field programmable gate array (FPGA)
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99% arm redirected to a power meter (PM). A variable optical attenuator (VOA) then sets
the mean photon number to μoptimal extracted from the security estimation process. The
quantum states are then sent and measured with a superconducting nanowire single pho-
ton detector (SNSPD) with 30 ns dead-time, 80 Hz DCR, and 83% detection efficiency.
The detection events are then registered with a time-to-digital converter (TDC) with 1 ps
resolution and are analyzed for randomness extraction.

It is worth noting that in the time-bin encoding, detector’s dead-time is the main limiting
factor for high repetition rate state generation.

3 Results & discussion
This section presents the theoretical and experimental min-entropy of different configu-
rations, intending to validate the theoretical estimations. Foremost, the input-output cor-
relation P(b|x) is estimated by performing several measurements with various overlaps
and gathering the detector’s outcomes b for given input x. The extractable amount of ran-
domness is evaluated by inserting the input-output correlation and states’ overlap into the
SDP, which numerically computes the min-entropy.

We consider the simplest case: supplying one bin with a WCS and filling the rest of the
bins with VS. Possible outcome configurations increase by raising the number of inputs,
leading to a different input-output correlation and entropy. As shown in Fig. 5, the amount
of extractable randomness conditioned on the classical side-information increases for the
cases with a higher number of inputs.

Alternative forms of input configurations with more WCSs can also be considered. Pay-
ing attention to the 4-input case as an example, as shown in Fig. 1, instead of using the
typical input configurations (set I, II, and III), one can implement subsets I and II, which
require a ternary and binary initial seed rather than quartet one, downsizing the computa-
tional complexity, see Fig. 2. In Fig. 6, the conditional min-entropy is plotted as a function
of states’ overlap for subsets I and II. The dashed curve is the expected theoretical results
obtained for our experimental parameters which is in acceptable agreement with the ex-
perimental data taken from SNSPD with 83% detection efficiency and for various mean
photon numbers.

Figure 5 Conditional min-entropy as a function of states’ total overlap. The solid, dashed, and dotted curves
represent the theoretical predictions for 3, 4, and 5 input configurations, respectively. At the same time, the
blue and orange dots show the experimental data for 4 and 5 input cases measured with SPAD with 83 %
efficiency
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Figure 6 Conditional min-entropy as a function of states’ total overlap for Subsets I (A) and II (B) represented
in Fig. 1. In both figures, the dashed line shows the theoretical predictions, and the orange dots represent the
experimental data

The maximum conditional min-entropy for subsets I and II is 0.759 and 0.546, respec-
tively, which are remarkably higher compared to typical binary and ternary input con-
figurations at ∼ 0.2 and ∼ 0.25 obtained with detectors with 80% and higher than 90%
detection efficiencies, respectively [25, 26]. It should be noted that this higher rate en-
tropy is achievable without the need of adjusting the optical setup and can be done in the
signal preparation and post-processing stage. Furthermore, the randomness generation
rate scaled from 0.11 and 0.083 to 0.1897 and 0.136 which is a considerable improvement
achieved only by redefining the transmitted states.

Our research introduces significant improvements in QRNG, particularly in terms of
noise analysis, adaptability, and security:

• We provide a detailed noise assessment, improving the system’s real-world
applicability by accounting for practical operational challenges. This comprehensive
approach sets our work apart from existing studies that may overlook these critical
factors.

• Our protocol features adjustable input-output configurations, offering a more flexible
and scalable solution compared to previous models. This adaptability is crucial for
keeping pace with technological advancements in quantum systems.

• We enhance the security measures within our QRNG model without compromising
efficiency. This balance is achieved through systematic theoretical analysis, ensuring
our system is not only more secure but also remains practical for broader application
scenarios.

• The potential for chip integration demonstrates our protocol’s readiness for future
technological developments.

Overall, our work marks a substantial advancement in QRNG by addressing several fun-
damental limitations in existing models while maintaining practicality for users by empha-
sizing versatility and enhanced security. It extends beyond traditional binary or ternary
systems, utilizing a time-bin encoding approach that integrates often-neglected noise fac-
tors like afterpulsing probability. This consideration not only bolsters the security but also
adapts to various input-output configurations. While our current setup prioritizes theo-
retical validation over maximizing the generation rate, achieving the rate of about 9.01
Mbits/s, the rate can be improved using higher rate components.

Recognizing that finite data sizes in experimental setups might introduce security issues,
our analysis accounts for these finite-size effects. It is critical to incorporate these consid-
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erations to accurately calculate the conditional min-entropy, particularly in scenarios with
limited data availability. Appendix A presents our approach to this challenge, outlining the
mathematical adjustments made to the SDP objective function and their direct impact on
min-entropy estimations under finite-size conditions.

In prepare-and-measure schemes, one plausible adversarial strategy is for Eve to fake
measurement outcomes independent of the actual inputs. This type of attack could com-
promise the randomness of the output. Appendix B delves into this specific scenario,
studying its impact on our system, assessing that the protocol can detect and mitigate
such attacks, and ensuring the reliability and security of the generated randomness.

4 Randomness test
The initial outcomes from our QRNG, characterized by low min-entropy, are refined
through a Toeplitz hash function designed for randomness extraction [40]. This trans-
formation enhances the quality of the raw data into high-grade random numbers [41].
Figure 7 displays the results of subjecting these enhanced numbers to the NIST Statistical
Test Suite [42], with p-values for each test depicted. The suite’s tests comprehensively as-
sess the statistical randomness, and as indicated, all p-values surpass the significance level,
affirming that the randomness criteria are met. Note, however, that while the NIST suite’s
clearance is a fundamental requirement, it does not solely confirm the quantum nature of
the random numbers. Thus, the successful passage of these tests should be seen as meeting
a basic standard for any QRNG rather than as proof of inherent quantum randomness.

5 Conclusion
In conclusion, we demonstrated a semi-DI QRNG based on the prepare-and-measure
scenario exploiting a time-bin encoding scheme and single-photon detection technique
investigating multiple input-output cases. Furthermore, the protocol is experimentally

Figure 7 The plot shows p-values from NIST statistical tests for the randomness of output from our QRNG.
Each test’s p-value exceeds the significance threshold, indicating successful passage. The significance level,
shown by the dashed red line conventionally set at 0.01 for NIST tests, represents the probability of rejecting a
true null hypothesis. In this context, our data is doubtful to have occurred by chance, thus confirming its
statistical randomness
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implemented using commercial-off-the-shelf components in a simple all-in-fibre optical
setup at telecom wavelength, allowing a straightforward tunable input configuration need-
less of an optical switch. We show that by holding the number of inputs(outcomes) fixed
(minimal), known as the many-outcome (many-inputs) approach, one can increase the
system entropy while keeping the computational complexity low. Additionally, a compre-
hensive study of time-bin encoding semi-DI QNRG is presented where, depending on the
needs, one can select appropriate time-bin settings.

Besides, we compared this protocol’s results with binary and ternary-input systems and
showed that our protocol is capable of generating more randomness with the same optical
setup. The proposed protocol features advanced security since it only demands bounding
the prepared states’ overlap; the rest of the setup is not required to be characterized and
can be classically correlated with the adversary. Alternatively, this protocol can be im-
plemented in a different wavelength where single photon avalanche diodes (SPADs) have
better detection efficiency, thus making this proposal chip-integrable. In a nutshell, the
semi-DI protocols’ main advantage is to ease up the implementation complexity and en-
hance the generation rate preserving a high level of security. This paper demonstrates
a semi-DI QRNG based on the overlap bound with an easy-to-implement experimental
setup which can produce random numbers at a high rate with robust security applicable
for various input-output configurations.

Appendix A: Finite-size effects
In this appendix, we describe the calculation of the conditional min-entropy that system-
atically accounts for the impacts of finite experimental data sizes. This enhanced approach
is essential in evaluating the security and reliability of the generated sequences, ensuring
a more robust and scientifically rigorous assessment.

The optimization process in guessing probability Eq. (8) is convex and can be numeri-
cally solved by transforming it into a semidefinite programming (SDP) version. The du-
ality is held for this optimization problem, indicating both primal and dual forms exist.
The primal form of an SDP directly addresses the original optimization problem, aiming
to maximize the objective function under certain constraints. In contrast, the dual form
derived from the primal simplifies the problem by providing bounds on the primal ob-
jective value. The dual form is preferred for its ability to provide an upper bound on the
guessing probability, as opposed to the lower bound offered by the primal form. The dual
form then can be written as

Pg = min
H� ,νbx

[

–
n–1
∑

x=0

d–1
∑

b=0

νbxp(b|x)

]

(A.1)

where scalar coefficient νbx is the Lagrange multipliers for each primal problem constraint.
We refer to Refs [25, 26, 39] for a detailed mathematical derivation for primal and dual cal-
culation. Using the dual form ensures conservative estimates that crucially do not overesti-
mate the min-entropy, thereby safeguarding the integrity of QRNG. Additionally, it offers
the flexibility of recalculating bounds without requiring exhaustive optimization in each
iteration, thereby streamlining real-time operations and optimizing the resources needed
for entropy estimation.
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We start by considering quantum measurement outcomes as independent Bernoulli
random variables, X1, X2, . . . , Xn, with the aggregate outcome given by their sum:

Sn =
n

∑

i=1

Xi (A.2)

The summation Sn represents the total count of a particular outcome across all measure-
ments, offering a cumulative perspective of the quantum measurement results. This aggre-
gate outcome necessitates the computation of its mean and variance, essential statistical
measures that contribute to the QRNG’s assessment:

μn = E[Sn], σ 2
n = Var(Sn) (A.3)

A lower bound on the mean, considering error tolerance ε, reads:

μL = μn –

√

σ 2
n

2
ln

(
1
ε

)

(A.4)

The confidence interval surrounding the mean, CI(Sn) is then given by:

CI(Sn) = [μn – δ,μn + δ] (A.5)

with δ as the margin of estimation error.
This model presents a robust foundation for evaluating the impact of finite-size effects

on the security and reliability of the system. For the estimation of conditional probabilities
p̃(b|x) = nb,x

nx
and their confidence interval is determined by the security parameter ε:

CI
(

p̃(b|x)
)

=
[

p̃(b|x) –

√

– ln(ε)
2nx

, p̃(b|x) +

√

– ln(ε)
2nx

]

. (A.6)

The introduction of finite-size effects into this formulation is achieved through adjust-
ments to the dual SDP objective function:

Pg ≥ min

[

–
n–1
∑

x=0

d–1
∑

b=0

(

νbxp̃(b|x) + |νbx|�(ε, n)
)

]

(A.7)

with �(ε, n) encapsulating the finite-size correction. Although not providing an exact
bound, Eq. (A.7) addresses the extreme scenarios encountered in single-shot measure-
ments. This approach ensures the equation’s relevance and effectiveness in finite-size
regimes, making it a versatile tool in quantum computation analysis.

Moreover, the concept of smooth conditional min-entropy extends over multiple
rounds, indexed as n, and is intricately related to the conditional min-entropy computed
for an individual round. This intricate relationship is presented in the [43, 44], where it is
expressed as:

Hε
min

(

ρ⊗n
XE |En) ≥ nHε/n

min(ρXE|E) ≥ nHmin(ρXE|E), (A.8)
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Figure 8 Conditional min-entropy as a function of sample size is presented for a system with 83% detection
efficiency, along with a security parameter, ε = 10–9 for the 4-inputs case, see Fig. 5

where ρXE is the classical-quantum state, encapsulating the classical random variable X
and its quantum counterpart ρx

E , which is associated with an adversary. Given that the
bound applies to a wide range of quantum-side information scenarios, it naturally extends
to our specific situation where we deal only with classical side information.

Figure 8 illustrates the entropy variation as a function of the experimental data size,
specifically for a system operating at 83% efficiency with an epsilon value of 1×10–9. This
graph effectively demonstrates that, beyond a certain sample size threshold, the impact of
finite size effects becomes negligible. In our experimental setup, this threshold is identified
at a minimum sample size of 5×1011, maintaining a security parameter of ε = 10–9, which
assures the accurate probability estimation and subsequent entropy computation.

Appendix B: Fake data attack
A vital element of our semi-DI QRNG framework is the implementation of an overlap
bound. The overlap directly influences the security of the randomness generation process,
as it dictates the degree of uncertainty that an adversary faces in predicting the outcomes
of quantum measurements. To better illustrate the fact see Fig. 9 (A). Consider measur-
ing a set of quantum states (i.e., coherent states in phase-space representation for better
visualization of the point) with high overlap and obtaining the measurement outcome in
the intersection area (shown by the cross). It is impossible to know whether the blue or
red circle was the transmitted state for the depicted measurement result.

The preparation and measurement devices may be classically correlated, but they are
not permitted to share quantum entanglement.

A potential security threat in the randomness generation process involves an adversary,
Eve, who might attempt to compromise the system by simulating the conditional proba-
bility distributions, P(b|x). This strategy involves Eve deliberately altering the outcomes
in a way that falsely appears to result from genuine quantum processes. In this scenario,
Eve would alter the outputs to resemble those produced by quantum randomness, posing
a challenge to the authenticity of the randomness generation.

The security estimation is designed to assess and validate the randomness of the out-
comes based on the observed correlations between the preparation inputs and measure-
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Figure 9 A) Illustration of binary quantum states with significant overlap, exemplified here by coherent states
in phase space. Depending on the input x, either the red or blue state is transmitted. Due to their high
overlap, measurements in the intersecting area yield uncertain information about the source, making it
impossible for measurement strategies to perfectly distinguish between these states. B) The plot displays
potential conditional probabilities with min-entropy values depicted through a colour scale. It demonstrates
that any correlation not meeting the set assumptions results in a min-entropy value of zero, indicating zero
extractable randomness

ment outcomes, given the states’ overlap. When an adversary attempts to simulate or repli-
cate the probability distributions, the protocol’s security estimation mechanism discerns
between authentic quantum randomness and fabricated outcomes by returning zero en-
tropy for the invalid data set.

The optimization process for computing min-entropy involves the conditional probabil-
ities P(b|x) and the overlap parameter into an SDP solver. This numerical optimizer then
searches over all feasible preparation and measurement strategies permitted by the over-
lap bound. For each strategy, it calculates the corresponding guessing probability – the
probability that an adversary could correctly guess the measurement outcome. The nega-
tive logarithm of the optimized guessing probability then gives the min-entropy. Deriving
an analytical solution for the min-entropy is highly complex due to the optimization across
a large strategy space. The SDP solver approach provides an efficient numerical method
that rigorously bounds the maximal guessing probability achievable within the physical
limits imposed. The computed min-entropy represents a certified lower bound on the ex-
tractable randomness in our semi-DI framework by minimizing this guessing probability
over all allowable quantum strategies respecting the overlap assumption. Figure 9 (B) rep-
resents the protocol’s capabilities, mapping the min-entropy against various conditional
probabilities P(b|x). The x-axis represents P(b|x = 0) and the y-axis P(b|x = 1), with the
min-entropy values depicted through an intuitive colour-coding scheme.

A pivotal observation from this plot is the predominance of zero entropy across a sig-
nificant portion of the probability distribution space, with non-zero entropy confined to
a narrowly defined region. This distinct pattern is a direct consequence of the specific
overlap bound which is also established in our protocol.

The narrow range of conditions that produce non-zero min-entropy is an effective fil-
ter against adversarial tampering. It sharply distinguishes authentic quantum randomness
from fabricated or intercepted data. For an adversary, mimicking the specific P(b|x) condi-
tions that yield valid quantum randomness is a significant challenge. Our semi-DI QRNG
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protocol, designed with a specific overlap bound and thorough security checks, effectively
counters attempts to simulate quantum randomness.
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