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Abstract
Sub-wavelength arrays of atoms exhibit remarkable optical properties, analogous to
those of phased array antennas, such as collimated directional emission or nearly
perfect reflection of light near the collective resonance frequency. We propose to use
a single-sheet sub-wavelength array of atoms as a switchable mirror to achieve a
coherent interface between propagating optical photons and microwave photons in
a superconducting coplanar waveguide resonator. In the proposed setup, the atomic
array is located near the surface of the integrated superconducting chip containing
the microwave cavity and optical waveguide. A driving laser couples the excited
atomic state to Rydberg states with strong microwave transition. Then the presence
or absence of a microwave photon in the superconducting cavity makes the atomic
array transparent or reflective to the incoming optical pulses of proper frequency and
finite bandwidth.

1 Introduction
Systems which hybridize modules with different quantum mechanical functionalities, alias
hybrid quantum systems [1–3], have the potential to combine the merits of these func-
tionalities and thereby become key to diverse quantum technologies, particularly in the
domain of quantum information processing and communication. A critical objective in
the development of hybrid quantum systems is to realize quantum transducers between
microwave and optical or telecom wavelength radiation [4]. Indeed, coherent interfaces
between microwave and optical radiation are required for interconnecting superconduct-
ing circuits [5–8], which are the best platform for quantum information processing operat-
ing in the microwave domain, via optical photons, which are the best carriers of quantum
information over long distances [9, 10]. Different physical platforms are being explored to
this end, including opto-mechanical [11–14] and electro-optical [15, 16] systems, and Ry-
dberg transitions in semiconductor [17] and atomic [18–24] media that rely on coherent
wave-mixing in the presence of auxiliary laser (and microwave) fields.

Here we consider an alternative approach, that does not rely on wave mixing, to
hybridize superconducting microwave and optical elements with cold trapped atoms
and achieve an efficient interface between microwave and optical photons. The present
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scheme follows a pathway of great topical interest: the interaction of light with regular
arrays of strongly interacting atoms [25–37], governed by the cooperative Dicke effect
[38] modified by the resonant dipole-dipole exchange interactions between the atoms
[39–41]. Subwavelength arrays of atoms possess cooperative resonances corresponding
to sub- or super-radiant optical modes and can serve as, e.g., perfect optical mirrors
[25, 28, 29, 31–33] or tailored, highly-efficient photon emitters into the desired spatial
modes [27, 30]. Upon exciting the atoms to the strongly interacting Rydberg states by ad-
ditional lasers, highly nonlinear interactions between single photons in such systems can
also be achieved [35, 37]. Here, by combining the nearly perfect reflection of optical pho-
tons from a subwavelength atomic array, electromagnetically induced transparency (EIT)
[42] that renders the array fully transparent, and strong coupling of Rydberg atomic tran-
sition to microwave radiation which switches on and off the EIT, we realize a coherent
interface between the optical and microwave fields.

2 Array of two-level atoms interacting with a probe field
We first revisit the collective radiative properties of spatially-periodic arrays of atoms, tak-
ing into account the temporal and spatial profiles of an incident probe field near-resonant
with an atomic transition.

2.1 Dynamics of the atoms
Consider an ensemble of N atoms interacting with a probe field Ep(r, t) on the transi-
tion |g〉 → |e〉 with detuning �p = ωp – ωe, where ωp is the carrier frequency of the probe
and ωe is the atomic transition frequency, see Fig. 1(a). The atoms are trapped in a two-
dimensional lattice with a subwavelength period, s < λe = 2πc/ωe, see Fig. 1(b). Upon elim-
inating the free-space radiation modes interacting with the atoms using the Born-Markov
approximation [39–41], we obtain the master equation that governs the dynamics of the
density operator ρ̂ of the atomic system,

∂tρ̂ = –
i
�

[H , ρ̂] + L[ρ̂], (1)

where H = Haf + HRDDI is the Hermitian Hamiltonian of the system and L[ρ] is the Lind-
blad operator describing the collective atomic decay, as detailed below.

The atom-field interaction Hamiltonian is given by

Haf =
N∑

j

{
�ωeσ̂

j
ee –

[
σ̂ (j)

eg ℘eg · Ep(rj)e–iωpt + H.c.
]}

, (2)

where σ̂
j
μν ≡ |μ〉j〈ν| is the projection (μ = ν) or transition (μ �= ν) operator for jth atom,

℘eg is the atomic transition dipole moment, and Ep(r) = êpφ(r)âp is the quantized probe
field with polarization êp in the spatial mode φ(r) with the photon annihilation operator
âp.

Next, the resonant dipole-dipole exchange interaction between the atoms i and j at po-
sitions ri and rj is described by

HRDDI = �

∑

j �=i

Vjiσ̂
(j)
eg σ̂ (i)

ge (3)
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Figure 1 (a) Level scheme of atoms interacting with the probe field Ep detuned by �p from the atomic
transition resonance, while the excited atomic state |e〉 decays to the ground state |g〉 with rate
�e = 2π × 6 MHz. (b) Two-dimensional array of atoms (black filled circles) with the lattice spacing s = 532 nm
smaller than the wavelength λe = 780 nm of the atomic transition |e〉 → |g〉. The atomic positions can
deviate from the equilibrium lattice positions (open gray circles). (c) Transmission (T, green), reflection (R, red)
and scattering (S, brown) spectra for an incoming coherent probe pulse (n̄p = 1) of duration τ = 2 μs
(Gaussian envelope) in a Gaussian spatial mode with waist w0 = 3λe = 2.34 μm focused at, and normal to, the
atomic layer in the xy plane. Inset shows the transmission, reflection and scattering of the probe field at the
collective resonance frequency �p =� (� = 0.172�e � 2π × 1 MHz) vs the (Gaussian) atomic position
uncertainly (standard deviations) σx = σy while σz = 0 (dashed lines), and σz while σx = σy = 0.01 μm (dotted
lines). The graph are obtained from Monte Carlo simulations of Eqs. (14a)–(14c) for the dissipative dynamics of
the stochastic atomic wavefunction averaged over 100-200 independent trajectories, in conjunction with
Eqs. (15a), (15b) and (16)

with

Vji = –
k2

e
�ε0

℘∗
eg · Re

[
G(rj, ri, ke)

] · ℘eg

=
3�e

4

{[
1 – (℘̂ · r̂ij)2]cos(kerij)

kerij
–

[
1 – 3(℘̂ · r̂ij)2]

[
sin(kerij)
(kerij)2 +

cos(kerij)
(kerij)3

]}
,

where G(r, r′, ke) is the diadic Green’s tensor for the free electromagnetic field [39, 40],
ke = ωe/c, ℘̂ ≡ ℘eg

℘eg
is the unit vector in the direction of the atomic dipole moment, r̂ij ≡ rij

rij

is the unit vector along the direction of the relative position vector rij = ri – rj between
atoms i and j, rij ≡ |rij| is the distance between the atoms, and �e = 1

4πε0

4k3
e |℘eg |2

3� is the
usual spontaneous decay rate of an atom in the excited state |e〉 [43, 44],
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Finally the Lindblad operator for the atomic decay is given by [39–41]

L[ρ̂] =
1
2

∑

ij

�ji
[
2σ̂ (j)

ge ρ̂σ̂ (i)
eg –

{
σ̂ (j)

eg σ̂ (i)
ge , ρ̂

}]
, (4)

where

�ji =
k2

e
�ε0

℘∗
eg · Im

[
G(rj, ri, ke)

] · ℘eg

=
3�e

2

{[
1 – (℘̂ · r̂ij)2] sin(kerij)

kerij
+

[
1 – 3(℘̂ · r̂ij)2]

[
cos(kerij)
(kerij)2 –

sin(kerij)
(kerij)3

]}
.

Stochastic wavefunction approach The dissipative dynamics of the atomic system can
equivalently be simulated using the quantum Monte Carlo stochastic wavefunction ap-
proach [44, 45], in which the wavefunction of the system |�〉 evolves according to the
Schrödinger equation ∂t|�〉 = – i

�
H̃|�〉 with the effective Hamiltonian

H̃ = Haf + HRDDI –
i
2

∑

ij

�jiσ̂
(j)
eg σ̂ (i)

ge , (5)

where the imaginary term is inherited from the last term of the Lindblad operator (4).
Since the effective Hamiltonian is non-Hermitian, the norm of the wavefunction ||�(t)|| =√〈�(t)|�(t)〉 is not preserved and the evolution is interrupted by quantum jumps affected
by the first term of the Lindblad operator. We can diagonalize the matrix �ji =

∑
l P†

jl�lPli

to obtain the collective decay rates �l , and rewrite the Lindblad operator in the diagonal
form,

L[ρ̂] =
1
2

∑

l

�l
[
2�̂lρ̂�̂

†
l –

{
�̂

†
l �̂l, ρ̂

}]
, (6)

where the collective jump operators are �̂l =
∑

j Pljσ̂
(j)
ge [46]. The relative probabilities for

quantum jumps |�〉 → �̂l|�〉 on the collective decay channels l are then determined by
〈�|�̂†

l �̂l|�〉. The normalized wavefunction of the system at any time is given by |�̄(t)〉 =
|�(t)〉/||�(t)|| and the expectation value of any observable O of the system is obtained
by averaging over many, M 
 1, independently simulated trajectories, 〈O〉 = Tr[ρ̂O] =
1
M

∑M
m 〈�̄m|O|�̄m〉, while the density operator is given by ρ̂(t) = 1

M
∑M

m |�̄m(t)〉〈�̄m(t)|.

2.2 Dynamics of the field
Consider now the field radiated by the atoms,

Erad(r, t) =
k2

e
ε0

∑

j

G(rj, ri, ke) · ℘eg σ̂
j
ge
(
t – |r – rj|/c

)

=
℘egk2

e

4πε0

∑

j

e–iωe(t–|r–rj|/c)

|r – rj| σ̂ j
ge
(
t – |r – rj|/c

)
[I – r̂j ⊗ r̂j] · ℘̂, (7)
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where I is the unity tensor and r̂j ≡ r–rj
|r–rj| . In the far-field region, |r – rj| � r – (r · rj)/r =

r – r̂ · rj, for each polarization component êr,σ ⊥ r of the radiated field we have

E(σ )
rad(r, t) = (êr,σ · ℘̂)

℘egk2
e

4πε0

ei(ker–ωet)

r
∑

j

σ̂ j
gee–ike·rj ,

where ke ≡ ker̂.
In general, the total field in any position is given by the superposition of the incoming

field and the field radiated by the atoms,

Etot(r, t) = Ein(r, t) + Erad(r, t). (8)

But if we are concerned with the field in a specific spatial mode φ(r), corresponding to
the incident or reflected field mode, or defined, e.g., by the photon collection optics or a
detector, it is easier to calculate the total photon rate in that mode [34–37, 47]. Let the
field in the selected mode φ(r) with polarization ê be E(r) = êφ(r)â. Then, for the photon
rate (number of photons per unit time) emitted in that mode, 〈α̂†α̂〉 = c

L 〈â†â〉, we have

α̂ = α̂in +
iê∗ · ℘ge

�

√
�ω

2ε0Fc
∑

j

φ∗(rj)σ̂ j
ge, (9)

where F =
∫

dr2
⊥|φ(r)|2 and L is the quantization length. To be specific, consider the for-

ward Gaussian mode

φ(r) =

√
�ω

2ε0AL
ζ

q∗(z)
exp

[
ik

(
z +

x2 + y2

2q∗(z)

)]
, (10)

where A = πw2
0/2 is the cross section, w0 is the beam waist at the focus z = 0, ζ =

kw2
0/2 is the Rayleigh length, and q(z) = z + iζ is the complex beam parameter. Now

F =
∫

dr2
⊥|φ(r)|2 = �ω

2ε0L and Eq. (9) can be cast in a more intuitive form

α̂ = α̂in +
i√

〈α̂†
inα̂in〉

∑

j

�∗(rj)σ̂ j
ge, (11)

where �(r) = 1
�

ê ·℘geφ(r)
√

n, with n = L
c 〈α̂†

inα̂in〉, is the Rabi frequency of the incident field
at atomic position r.

Returning back to the probe field in the Gaussian mode focused at, and normal to, the
atomic array, for the transmitted field we have

α̂T = α̂p +
i√

〈α̂†
pα̂p〉

∑

j

�∗
p(rj)σ̂ j

ge, (12)

where �p(r) = ℘eg
�

φ(r)√np with np = L
c 〈α̂†

pα̂p〉, while for the field reflected in the backward
propagating Gaussian mode φ∗(r), we have

α̂R =
i√

〈α̂†
pα̂p〉

∑

j

�̄∗
p(rj)σ̂ j

ge, (13)
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where �̄p(r) = ℘eg
�

φ∗(r)√np while the incident field in that mode is vanishing. Note that
the field radiated by the atoms in the forward and backward directions is symmetric if all
the atoms are at z = 0, otherwise �̄p(r) �= �p(r) and this symmetry is broken.

2.3 Weak incident probe field
We now consider a weak (coherent) probe pulse with the Gaussian temporal envelope
αp =

√
〈â†

pâp〉 1√√
2πτ

e–(t/2τ )2 of duration τ = L/c normalized as
∫ |αp|2 dt = n̄p = 1, i.e., the

pulse contains on average one photon. The field is σ+ polarized in a Gaussian spatial
mode (10) normal incident onto the atomic array. The atoms are assumed 87Rb, with
the resonant transition |e〉 → |g〉 having wavelength λe = 780 nm, free-space decay rate
�e = 2π × 6 MHz, and the transition dipole moment along ℘̂ = x̂+iŷ√

2 (closed �M = 1 tran-
sition). The square 2D atomic lattice has a period s = 0.68λe = 532 nm [32, 33] and is suf-
ficiently larger than the probe beam waist w0 at the position of the atomic sheet.

We simulate the dynamics of the system using the stochastic quantum trajectories ap-
proach. We can expand the collective atomic wavefunction as |�〉 = a|G〉+

∑
j bje–iωet|ej〉+

∑
i<j b(2)

ij e–i2ωet|ei, ej〉 + · · · , where |G〉 ≡ |g1, g2, . . . , gN 〉 is the collective ground state, |ej〉 ≡
|g1, g2, . . . , ej, . . . , gN 〉 are the single excitation states, |ei, ej〉 ≡ |g1, . . . , ei, . . . , gl, . . . , ej, . . . , gN 〉
are the double excitation states, etc. According to the Schrödinder equation, the ampli-
tudes a, bj, b(2)

ij , . . . evolve via

∂ta = i
∑

j

�∗
p(rj)bjei�pt , (14a)

∂tbj = i�p(rj)ae–i�pt + i
∑

i�=j

�∗
p(ri)b(2)

ij ei2�pt –
1
2
�ebj –

∑

j′ �=j

(�jj′ – iVjj′ )bj′ , (14b)

∂tb(2)
ij = i�p(ri)bje–i2�pt + i�p(rj)bie–i2�pt – �eb(2)

ij –
∑

j′ �=i,j

(�jj′ – iVjj′ )b(2)
ij′

–
∑

j′ �=i,j

(�ij′ – iVij′ )b(2)
j′j , (14c)

. . . ,

interrupted by quantum jumps which project the system onto the state with one less ex-
citation. The normalized atomic amplitudes at any time are ā(t) = a(t)/||�(t)||, b̄j(t) =
bj(t)/||�(t)||, b̄(2)

ij (t) = b(2)
ij /||�(t)||, etc., while the amplitudes of the transmitted and re-

flected fields are

αT = αp +
i

|αp|
∑

j

�∗
p(rj)

〈
σ̃ j

ge
〉
, (15a)

αR =
i

|αp|
∑

j

�̄∗
p(rj)

〈
σ̃ j

ge
〉
, (15b)

where the slowly-varying atomic polarizations are given by

〈
σ̃ j

ge
〉

= ā∗b̃j +
∑

i�=j

b̃∗
i b̃(2)

ij + · · · . (16)
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with b̃j = b̄jei�pt , b̃(2)
ij = b̄(2)

ij ei�pt , etc. The total transmission and reflection probabilities pT,R

for the probe pulse are obtained via the integration pT,R =
∫

dt|αT,R|2, while the scattering
probability is pS = 1 – pT – pR.

We first perform simulations of the atomic amplitude Eqs. (14a)–(14c) for a small sys-
tem of N � 100 atoms without quantum jumps, i.e., assuming conditional no-jump dy-
namics [44, 45]. We verify that, for a weak incoming pulse of duration τ � 2 μs con-
taining on average n̄p = 1 photon [the probabilities pn of n-photon states are pn=0,1,2,3,... =
(1, 1, 1/2, 1/6, . . .)×e–1], the total probability of double excitations P2e =

∑
i<j |b̄(2)

ij |2 remains
small at all times, with the peak value P2e � 10–4, while the total probability of single exci-
tations P1e =

∑
j |b̄j|2 attains peak values P1e � 2 × 10–2. This means that double and mul-

tiple excitation contribute little (∼ 0.5%) to the atomic polarization (16). We can therefore
neglect the amplitudes b(2)

ij of multiple atomic excitations which makes the Monte Carlo
simulations of Eqs. (14a)–(14c) particularly efficient and tractable even for large N ∼ 500.
Then any quantum jump projects the system onto the collective ground state |G〉, since
we have at most a single collective excitation, and we do not need to determine the various
collective decay channels and their jump probabilities, as described above.

In Fig. 1(c) we show the transmission, reflection and scattering spectrum for the probe
field. We observe a collective resonance at �p = � � 0.17�e and the position � and width
� of that resonance depend on the lattice constant; more precisely, they depend on the
surface density of the atoms, and are independent of the lattice geometry (square, trian-
gular) [28], and with increasing the density (decreasing s) � shifts to the blue side (larger
� > 0) and the resonance broadens, � = 3

4π

λ2
e

a2 �e.
Next we observe that on resonance the transmission vanishes and the reflection prob-

ability attains a large value pR � 0.98 which is however slightly smaller than 1 since we
truncated the multiple atomic excitations. We have verified that by decreasing the pulse
amplitude αp, by decreasing the mean photon number n̄p = 〈â†

pâp〉 � 1 or increasing the
pulse duration τ , the reflection probability increases, approaching pR → 1 as predicted by
the linear response and static atomic polarizability theory for infinite lattice radiated by a
weak cw plane wave field [28].

Finally, we simulate the dynamics of the system in the presence of position disorder of
the atoms, see the inset of Fig. 1(c). We observe that just a few percent of position disorder
with respect to the lattice constant s, or wavelength λe, already significantly degrade the
performance of the atomic mirror: for standard deviation of the disorder σxy,z � 0.025s �
20 nm the reflection probability is reduced to pR � 0.65 consistent with [32, 33]. For still
larger disorder, we observe that the atomic position disorder σz along the field propagation
axis z (surface roughness) leads to more scattering of the light than a similar position
disorder σxy in the normal plane xy.

3 Hybrid system involving multilevel atoms
Having reviewed the transmission and reflection of a weak probe pulse from a two-
dimensional array of two-level atoms, we next consider a hybrid quantum system that
integrates such atomic arrays with superconducting and optical elements.

Our aim is to extend the functionalities of superconducting atom chips which contain
microwave resonators to mediate coupling between superconducting qubits [3, 5–8] while
simultaneously interacting with cold trapped atoms [48, 49]. We envisage a setup sketched
in Fig. 2: The atomic array is positioned in the vicinity of a coplanar waveguide resonator
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Figure 2 Schematics of the hybrid system: The two-dimensional array of atoms is positioned near a
superconducting microwave coplanar waveguide resonator while the incoming probe field Ep is reflected or
transmitted into an optical waveguide whose collection lens is placed under the atomic array in the gap
between the superconducting elements of the resonator. The inset shows the atomic level scheme: The
atoms initially in the ground state |g〉 interact with the probe field on the transition |g〉 → |e〉 with detuning
�p , the electronically excited state |e〉 is coupled to a Rydberg state |s〉 by a classical driving field with Rabi
frequency �d and detuning �d , while the Rydberg transition |s〉 → |r〉 is strongly coupled to the microwave
cavity mode ĉ with strength η and detuning �c . The presence or absence of a microwave cavity photon
changes the transmission and reflection of the atomic array

that also incorporates optical elements for the collection of the transmitted probe field
into an optical waveguide. A strong classical field with wavevector kd and frequency ωd

drives the atomic transition from the electronically excited state |e〉 to the Rydberg state
|s〉 with Rabi frequency �d and detuning �d = ωd – ωse. The resonator microwave field
mode ĉ with frequency ωc strongly couples to the atoms on a dipole-allowed transition
between the Rydberg states |s〉 and |r〉 with detuning �c = ωc – ωrs and strength η (vac-
uum Rabi frequency). The coupling strength η(r) = (℘rs/�)εcφc(r) is proportional to the
dipole moment ℘rs of the atomic transition, the field per photon εc =

√
�ωc/ε0Vc in the

cavity with effective volume Vc, and the cavity mode function φc(r) at the position r of the
atoms. We assume the parameters similar to those in Refs. [21, 48, 49]: With the strip-line
length l = 10.5 mm and the gap width d = 10 μm to the grounded electrodes, the effec-
tive cavity volume is Vc � 2πd2l yielding the field per photon εc =

√
�ωc/ε0Vc � 0.37 V/m

for the full-wavelength cavity mode of frequency ωc/2π = c/l√εr � 12 GHz (εr � 5.6).
The atoms are placed at the antinode of the standing-wave cavity field which falls off
evanescently with the distance from the chip surface, φc(z) � e–|z|/d . We choose the Ry-
dberg states |i〉 = |68P3/2, mJ = 1/2〉 and |s〉 = |69S1/2, mJ = 1/2〉 of Rb having the transi-
tion frequency ωrs/2π � 12 GHz and dipole moment ℘si � 2000a0e [50]. Then, for the
atoms at z = 10 – 15 μm from the chip surface, the coupling strength to the cavity mode
is η(z)/2π � 2 – 4 MHz.

The total Hamiltonian H = Haf + HRDDI + Hd + Hc acquires now two new terms,

Hd = �

N∑

j

{
ωsσ̂

j
ss –

[
�deikd ·ri σ̂ j

se + H.c.
]}

, (17)
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due to the coupling with the spatially uniform driving field, and

Hc = �

N∑

j

{
ωrσ̂

j
rr –

[
η(rj)ĉσ̂ j

rs + H.c.
]}

, (18)

due to the coupling to the microwave cavity. Consistency with the discussion above, we
can expand the collective atomic wavefunction in the basis of at most single excitations as
|�〉 = a|G〉+

∑
j bje–iωet|ej〉+

∑
j cje–iωst|sj〉+

∑
j dje–iωr t|rj〉, where |sj〉 ≡ |g1, g2, . . . , sj, . . . , gN 〉

and |rj〉 ≡ |g1, g2, . . . , rj, . . . , gN 〉 are the single Rydberg excitation states. Then, according to
the Schrödinder equation, the amplitudes a, bj, cj, dj evolve via

∂ta = i
∑

j

�∗
p(rj)bjei�pt , (19a)

∂tbj = i�p(rj)ae–i�pt + i�∗
de–ikd ·ri cjei�dt –

1
2
�ebj –

∑

j′ �=j

(�jj′ – iVjj′ )bj′ , (19b)

∂tcj = i�deikd ·ri bje–i�dt + i�∗
c djei�ct –

1
2
�scj, (19c)

∂tdj = i�ccje–i�ct –
1
2
�rdj, (19d)

where we included the small decay rates of the Rydberg states �s,r � �e, while �c = η
√nc

is the Rabi frequency of the cavity field containing nc = 〈c†c〉 microwave photons and we
assume that the cavity mode function φc(r), and thereby η, varies little across the atomic
array which is parallel to the chip surface with the dimension much smaller than the wave-
length of the microwave radiation λc ∼ l.

Resonant drive and cavity fields In Fig. 3 we show the transmission, reflection and scat-
tering spectra of the four-level atomic medium for the incoming probe pulse. When the
microwave cavity field mode is empty, nc = 0 and �c = 0, the coherent drive on the atomic
transition |e〉 → |s〉 to the long-lived Rydberg state |s〉 results in the Autler-Townes split-
ting of the atomic resonance by ±�d (assuming |�d| � �e) resulting in electromagneti-
cally induced transparency (EIT) for a resonant probe [42]. Essentially the probe field with
frequency within the EIT window feels no atoms. We tune the detuning of the driving field
�d = –� to be at the two-photon resonance on the transition |g〉 → |s〉 and obtain for the
probe field at the collective resonance frequency �p = � a perfect transmission, pT � 1,
pR,S � 0, even through a disordered atomic array. When, however, the resonant cavity
mode is populated by one or more photons, nc ≥ 1 and �c = η

√nc, it spits the EIT reso-
nance by ±�c and the perfect transmission of the probe pulse turns to a strong reflection
at �p = �, as for a two-level atomic medium. Now, again, the reflection resonance is sensi-
tive to atomic position disorder, and already for σx,y,z = 10 nm we obtain pT � 0, pR � 0.85,
and pS � 0.15.

Non-resonant drive and cavity fields We next consider a slightly different scheme. We
assume that both the driving field and cavity mode are largely detuned from the corre-
sponding atomic transitions, |�d| 
 �d and |�c| 
 η, but that their detunings satisfy
�d + �c = –� corresponding to a two-photon resonance on the transition |e〉 → |r〉 with
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Figure 3 Transmission (T, green), reflection (R, red) and scattering (S, brown) spectra of the two-dimensional
array of four-level atoms for an incoming coherent probe pulse (n̄p = 1) of duration τ = 2 μs focused at the
atomic layer in the xy plane. The driving field has the Rabi frequency �d = 2π × 2.0 MHz and detuning
�d = –0.172�e to provide a two-photon resonance for the probe field at the collective resonance frequency
�p =� = 0.172�e . The cavity mode is assumed resonant, �c = 0, and couples to the Rydberg transition with
strength η = 2π × 2.0 MHz. The decay rates of the Rydberg states are �s,r = 10–3�e with the other parameters
as in Fig. 1. The cavity mode is empty, nc = 0 and �c = 0, (long dashed lines); or contains one photon, nc = 1
and �c = η, (solid lines). For reference, we also show the response of two level atoms as in Fig. 1(c) (thin
dashed lines). Inset shows the transmission, reflection and scattering of the probe field at the collective
resonance frequency �p =� vs the atomic position uncertainly σx = σy while σz = 0.01 μm. The graph are
obtained from Monte Carlo simulations of Eqs. (19a)–(19d) in conjunction with Eqs. (15a), (15b) and (16)

small detuning –�. Adiabatically eliminating the non-resonant intermediate state |s〉 we
then obtain the AC Stark shifts Se = |�d|2/�d of level |e〉 and Sr = –|�c|2/�c of level |r〉.
When the cavity mode is empty, nc = 0 and �c = 0, the detuned driving field does not
result in EIT but only shifts the collective reflection resonance of the two-level atoms to
�p = �′ ≡ � + Se (the collective resonance is still at detuning � from the Stark-shifted
atomic transition |g〉 → |e〉), as seen in Fig. 4. The sensitivity of the reflection probability
to the atomic position disorder is similar to that for two-level atoms. But when the cavity
mode contains a photon, nc = 1 and �c = η, together with the driving field it results in
the EIT for the probe field via the two-photon driving of the |e〉 → |r〉 transition with the
effective Rabi frequency �(2) = �c�d/�d and detuning –� + Se – Sr . Assuming Se � Sr ,
we then have a three-photon resonance |g〉 → |r〉 for the probe field with the frequency
�p = �′. Now the probe field with the frequency within the EIT window is transmitted
with nearly unit probability, pT � 1, pR,S � 0, and is insensitive to the atomic position dis-
order. Of course for larger cavity photon number, nc > 1, the AC Stark shift of level |r〉
will be different, Sr = –|η|2nc/�c, which in principle can be compensated by adjusting the
frequency of the driving field to satisfy the three-photon resonance conditions and attain
EIT. But if our aim is to realize a switch for the probe field controlled by the presence or
absence of a microwave cavity photon, this scheme should be applied for nc = 0 or 1.

To summarize, in scheme (a) the optical probe pulse is transmitted through the atomic
array when the microwave cavity is empty and is reflected when the cavity has one or more
photons, and vice versa in scheme (b). For a perfectly ordered array with fixed atomic
positions, the reflection probability in scheme (b) is closer to unity than in scheme (a) and
in both schemes it rapidly decreases with increasing the position uncertainties σx,y in the
plane and even more so with the position uncertainly σz in the field propagation direction.
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Figure 4 Transmission (T, green), reflection (R, red) and scattering (S, brown) spectra of the array of atoms for
an incoming probe pulse. The driving field has the Rabi frequency �d = 2π × 4.0 MHz and detuning
�d = –2π × 20.0 MHz and the cavity mode has the coupling strength η = 2π × 4.0 MHz and detuning
�c = –�d –� � 2π × 19.0 MHz. All the other parameters are as in Fig. 3. When the cavity mode is empty,
nc = 0 and �c = 0, (long dashed lines), the probe field undergoes nearly perfect reflection from the atomic
array at the AC Stark shifted collective resonance frequency �p =�′ ≡ � + Se . When the cavity mode
contains a photon, nc = 1 and �c = η, (solid lines), together with the driving field it results in EIT for the probe
field in the vicinity of �p =�′ . For reference, we also show the response of two level atoms as in Fig. 1(c) (thin
dashed lines). Inset shows the transmission, reflection and scattering of the probe field at frequency �p =�′
vs the atomic position uncertainly σx = σy while σz = 0.01 μm

In both schemes, the transmission provided by the EIT is nearly perfect and is insensitive
to the position uncertainly of the atoms in the array. In all cases, good performance of the
switch requires that the bandwidth of the probe pulse of duration τ be small compared
to the width of the reflection resonance, strength of the atom-cavity coupling and the
bandwidth of the EIT [42]: 2π/τ < |�d,c|2/�e for scheme (a), and 2π/τ < �, |�(2)|2/�e for
scheme (b).

4 Conclusions
To conclude, we have studied a hybrid quantum system composed of a two-dimensional
array of atoms near an integrated superconducting chip containing microwave coplanar
waveguide resonator and optical elements for strong coherent coupling of optical and
microwave photons. Our scheme allows to implement high-fidelity transmission or re-
flection of optical photons by the atomic array controlled by the presence or absence of
microwave photons in the cavity that couples strongly to the atoms on a resonant Ryd-
berg transition with strong electric dipole moment. For realistic parameters similar to the
current experiments with atomic arrays [32, 33], the fidelity of the coherent interface be-
tween the cavity microwave and propagating optical photons is in the range of 65-85%.
This fidelity is mainly limited by the atomic position uncertainly that degrades the reflec-
tivity of the array. The predicted fidelity compares favorably with the quantum efficien-
cies in the range of 0.1-80% of microwave to optical conversion in current experiments
[11, 13, 15–20, 24]. Tighter confinement of atoms in the subwavelength array, as well as
the reduction of the amount of defects in the array, can in principle lead to a nearly perfect
reflectivity of such arrays, and increase the fidelity of the interface in our scheme to nearly
95%, the remaining infidelity being due to atomic dephasing and Rydberg state decay, and
to thermal photons in the cavity with a finite quality factor.
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Quantum interfaces between microwave and optical fields are interesting and important
for various quantum technology applications, including realization of quantum commu-
nications and quantum Internet between distant quantum computers based on supercon-
ducting circuits using optical photons propagating over long distances in optical waveg-
uides with little loss.
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