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Abstract
We demonstrate an implementation of the precise test of dimension on the qubit,
using the public IBM quantum computer, using the determinant dimension witness.
The accuracy is below 10–3 comparing to maximal possible value of the witness in
higher dimension. The test involving minimal independent sets of preparation and
measurement operations (gates) is applied both for specific configurations and
parametric ones. The test is robust against nonidealities such as incoherent leakage
and erroneous gate execution. Two of the IBM devices failed the test by more than 5
standard deviations, which has no simple explanation.

1 Introduction
The basic building block of a quantum computer is a qubit, a generic two-level system.
Since the goal is to manipulate accurately many qubits, it is necessary to ascertain whether
or not the qubit space is reliable, i.e. not combined with a larger space. The most promis-
ing implementations of qubits keep them detuned from environment and other states,
operating each qubit at a unique and isolated transition frequency, believed to cause only
small incoherent disturbances. The assumption of two-level states is necessary for any
successful fault-tolerant quantum computation performed on noisy devices, as the error
mitigation relies on the controlled space of noise [1–3]. In some systems the effect of extra
states can be identified and erased because of known mechanism and transition parame-
ters [4–7]. On the other hand, the potential unknown contribution of external states can
lead to systematic errors, which are hard to correct [8–11]. Such a leakage has been di-
rectly observed in the delay test [12] at the level of 3.5 variances, but its origin has not been
yet identified. Due to anharmonicity, the leakage to known higher states of the transmon
[13] becomes significant for very fast gates, where additional measures are necessary to
reduce it [14–16].

The dimension of the quantum space can be checked by a dimension witness [17–22].
The construction of the witness is based on the two-stage protocol. The initial preparation
preceeds the final measurement, with both chosen from independent sets of operations, as
we schematically illustrate in Fig. 1. The precise witness is a quantity, which is exactly zero
for systems up to a certain dimension, and nonzero otherwise. A good witness certifies the
linear independence of specific dichotomic outcome probability p(M|N) for the prepara-
tion N and measurement M and so it is expressed by a suitable determinant [23–25]. This
type of witness was tested on optical states [26].
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The tests of dimension are robust against many deficiencies of real quantum gates. Phys-
ical operations on qubits are realized by microwave pulses and suffer from distortions due
to nonlinearities of waveform generators [27]. Therefore a simple deviation of the proba-
bility distribution from the theoretical prediction [28, 29] is insufficient to test for an extra
qubit space.

In this paper, we apply the optimal witness [25] to test several IBM quantum devices.
Most of the results agree with the 2-level model. However, after taking a large statistics,
we find clear signatures of the test failure. We reveal a device, which systematically pro-
duces more than 5 standard deviations away from the reference zero. Of course, it does not
immediately mean a larger space, but the problem needs urgent further investigation. The
cause, which may be also another assumption of the test (e.g. lack of independence of the
operations) points to deeper problems, which can make promises of near-term quantum
noisy devices fruitless.

2 Theory
We test the qubit space d = 2 with the witness constructed from the measurement prob-
abilities p(M|N) = tr MN , where the preparation operator is N = N† ≥ 0, tr N = 1 and the
measurement is M = M† (both M and 1 – M are positive semi-definite). In Appendix A
we write the explicit form of Nj, Mk for 5 preparations j = 1..5 and 4 measurements
k = 1..4.

We construct the 5 × 5 matrix p with entries pkj = p(Mj|Nk) and supplement it with
p5j = 1. Then the witness determinant W = det p must be equal to zero if all Nj and
Mk represent the same two-level space [12, 25]. In addition, it remains zero also if all
preparations contain some constant incoherent leakage term, i.e. N ′

j = Nj + Ñ , with Ñ
in an arbitrary space, independent of j. In this way, the uncontrolled leakage to an extra
space does not affect the test [12]. For d = 2 we have W = 0, but d = 3 gives maximally
27

√
2/64 � 0.6 in the real space and � 0.632 in the complex space [25]. For d = 4 the max-

imum (real and complex) is 212/37 � 1.87, even higher dimensions saturate the classical
bound 3.

The IBM Quantum Experience cloud computing offers several devices, collections of
qubits, which can be manipulated by a user-defined set of gates (operations) – either sin-
gle qubit or two-qubit ones, equipped with a general parametrization. One can put barri-
ers (controlling the order of operations) or additional resets (nonunitary transition to the
ground state). These features are necessary to implement our tests. The qubits are physical
transmons [30], the artificial quantum states existing due to interplay of superconductivity
(Josephson effect) and capacitance (Coulomb charging effect). Controlled anharmonicity
allows to limit the working space to two states. The decoherence time (mostly environ-
mental) is long enough to perform a sequence of quantum operations and read out reliable
results.

Gates are implemented by time-scheduled microwave pulses prepared by waveform
generators and mixers (time 30 – 70 ns with sampling at 0.222 ns), tuned to the drive fre-
quency (energy difference between qubit levels) [31] (about 4 – 5 GHz). The single-qubit
rotation Zγ is not a real pulse, but it is realized by an instantaneous virtual gate VZ(γ ),
which adds a rotation between in- and out-of-phase components of the pulse for the next
gates [32]. The readout is performed by coupling the resonator to another long microwave
pulse at a frequency different from the drive and finally measuring the populated photons
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Figure 1 Preparation and measurement scenario; the state is prepared as N and
measured by M to give an outcome of either 1 or 0

Figure 2 The quantum circuit for the dimension test. The initial
state |0〉 and four gates Sγ , split into preparation and
measurement stages, are followed by the final dichotomic
measurement

[31, 33]. The ground state |0〉 can be additionally assured by a reset operation applied after
the measurement.

In the following, we assume the two-level description of the qubits, expecting W = 0 up
to a statistical error. Larger deviation would be an evidence that this description is inac-
curate. In a two-dimensional Hilbert space the states and the operators are constructed
with the standard Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 –i
i 0

)
, σ3 =

(
1 0
0 –1

)
, (1)

defined in the computational basis |0〉, |1〉. Then the initial pure state is |0〉〈0| = (1 + σ3)/2.
A microwave pulse tuned to the interlevel drive frequency allows one to apply the para-

metrically controlled gates. The native gate is the π/2 rotation:

S = RX(π/2) =
√

X =
1√
2

(
1 –i
–i 1

)
. (2)

The rotation for a given angle θ is realized with the native gate S and two gates Z(θ ):

Sθ = Z†
θ SZθ , Zθ =

(
e–iθ/2 0

0 eiθ/2

)
. (3)

Physically the experiment is a sequence of initialization in the state |0〉, two gates Sα ,
Sβ applied for the preparation, then the two gates Sφ , Sθ , and the readout pulse for the
measurement of the state |0〉 again, see Fig. 2. There are 5 pairs of angles αj, βj (j = 1..5)
to be chosen independently of the 4 pairs θk , φk (k = 1..4). Then Nαβ = SβSα|0〉〈0| and
Mθφ = S†

φS†
θ |0〉〈0|Sθ Sφ represent the state preparation and measurement operators cor-

respondingly. The actual pulse waveform of a sample sequence of gates is depicted in
Fig. 3.

The states and measurements of a two-level system can be equivalently represented in
the Bloch sphere. The initial state |0〉〈0| corresponds to the vector (0, 0, 1). In Appendix A
we write explicit formulas for the Bloch vector nαβ corresponding to our preparations
and mθφ corresponding to the measurements. The Bloch vectors are used for illustration
purposes in Fig. 4. Heuristically, one needs evenly spread vectors over the Bloch sphere to
provide a more discriminative test [25].

3 Experiment
In a perfect theory, we can predict a probability for every choice of α, β , θ , φ. The exper-
imental results can differ for a variety of reasons. Firstly, the test is random and we have
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Figure 3 The actual waveform of the pulse on IBM quantum computer (nairobi), with four subsequent gates
Sγ , with γ = α,β ,φ ,θ , consecutively. The discretization unit time is dt = 0.222 ns. Driving (level gap)
frequency is denoted by D0. The light/dark shading corresponds to in-phase/out-of-phase amplitude
component, respectively. The element VZ(ξ ) is a zero-duration virtual gate Zξ for subsequent gates Sγ Sδ with
ξ = γ – δ [32]

Figure 4 The Bloch vectors for the preparations (red) and
measurements (blue) corresponding to the angles from
Table 1, top ’ and bottom ”. For the case ’, the four
measurement direction are identical to four preparations

to estimate the error due to finite statistics. For T times the experiment is repeated, the
variance of W was derived in Ref. [25] as:

T
〈
W 2〉 � ∑

kj

pkj(1 – pkj)(Adj p)2
jk , (4)
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where Adj is the adjoint matrix (matrix of minors of p, with crossed out a given row and
column, and then transposed). Note that the identity p–1 det p = Adj p does not apply here
as W = det p = 0 in the limit T → ∞. We circumvent the limitations of statistical errors
by accumulating a vast statistics of the data. We use the finite data estimate of 〈W 2〉 to
monitor accuracy of our results. Secondly, the implementation of gates may be not faithful.
Our test is not affected the standard local sources of depolarizing and relaxation errors,
and general gate and readout errors, as they are assumed to remain within the two-level
space. Moreover, the test accounts for a leakage to external states (e.g. |2〉) as long as it is
incoherent and does not depend on the circuit parameters α, β , θ , φ, as it adds a global
constant to eacht pjk . Lastly, we have to assume that the pulse does not depend on the
previous ones. In other words, we can only test the following combination of assumptions:
dimension of the space and independence of operations.

We have calculated W in two ways: (i) determining p for each job and then finding W
(see the values for each job in Fig. 10) and finally averaging W , and (ii) averaging first p
from all jobs and then finding W . Results are consistent within statistical error, the details
are depicted in Fig. 6.

There is no a priori best selection of preparations and measurements but they should
not lie on a single Bloch circle. Otherwise the qubit becomes a rebit (reduced to real sub-
space). We decided to make two kinds of tests: (I) two special configurations correspond-
ing to either the same Bloch vectors for preparation and measurements or maximal 〈W 2〉
for a given T ; (II) a family of configurations with one preparation vector at one of the 5
directions on the Bloch circle. In both cases the corresponding Bloch vectors are derived
explicitly in Appendix A. The sets of angles in the case (I) are given in the Table 1, and the
corresponding Bloch vectors are visualized in Fig. 4.

We have run the test (I) on lima and lagos, qubit 0. The probability matrix, compared to
the ideal expectation is depicted in Fig. 5. The deviation from zero and the statistical error
is given in Fig. 6. The total number of experiments is T = #jobs · #shots · #repetitions.
Technically, one sends a list of jobs to execute, each job contains up to 300 circuits, to
be distributed between experiments repeated the same number of times. The number
of shots specifies how many time the preprogrammed sequence of circuits is repeated
within a single job. The readout counts for each circuit is the value returned after the job
execution is accomplished. In this case the results agree with the assumption or the qubit
space within the statistical error.

The sets of angles in the case (II) are prepared differently. Four preparations and mea-
surements are fixed while the last preparation is parameter-dependent. The fixed angles
are specified in Table 2. The last preparation angles are α5 = 2π i/5 = β5 – π/2 for i = 0..4.
The corresponding Bloch vectors are depicted in Fig. 7. We have run the test (II) on nairobi

Table 1 The angles for the special two special cases, ’ and ”, with η = acos(1/3) and 1 = 1’ = 1” for
preparations in the test (I)

j 1 2’ 3’ 4’ 5’ 2” 3” 4” 5”

α 0 2π /3 2π /3 4π /3 4π /3 0 η –π η + 5π /3 η +π /3
β 0 π /6 –π /6 π /6 –π /6 π 0 2π /3 –2π /3

k 1’ 2’ 3’ 4’ 1” 2” 3” 4”

θ 5π /3 5π /3 π /3 π /3 π π /2 7π /6 –π /6
φ 7π /6 5π /6 7π /6 5π /6 0 π 5π /3 π /3
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Figure 5 Results of the test (I) with probabilities pkj for the angles from Table 1, for lima and lagos, compared
to the ideal expectation. Lagos: 60 jobs, 32000 shots, 15 repetitions. Lima: 521’/194” jobs, 20000 shots, 5
repetitions

Figure 6 Results of the test (I) the witnessW = detp, for the angles from Table 1, for lima and lagos, with the
error given by (4). Red –W for p from each job and then averaged, blue – p averaged from all jobs to giveW

and perth, qubit 0. The probability matrix, compared to the ideal expectation is depicted
in Fig. 8. The deviation from zero and the statistical error is given in Fig. 9. This time, the
results are away from 0 by more than 5 standard deviations, in opposite directions, com-
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Table 2 The angles for the parametric test (II) for preparations and measurements 1..4

j 1 2 3 4

α 0 η –π η + 5π /3 η +π /3
β 0 0 2π /3 –2π /3

k 1 2 3 4

θ π π /2 7π /6 –π /6
φ 0 π 5π /3 π /3

Figure 7 The Bloch vectors for the parametric case (II) with
fixed preparations (red) and measurements (blue)
corresponding to the angles from Table 1, and a parametric
preparation (green)

paring both devices. As a sanity-check of our test we have run the identical programs on
IBM simulator of a quantum computer with the noise model taken from the real devices
perth and nairobi. However, in contrast to real devices, the results are in agreement with
the theory as shown in Figs. 11, 12, 13. The data and scripts are available at the public
repository [34].

4 Discussion of nonidealities
There are several factors that can affect the correctness of the experiment. (A) The daily
calibration. The drive frequency and the gate waveforms are corrected so different jobs
can rely on different realizations of gates. There first order effect of calibrations is can-
celled out. Nevertheless, we made more detailed estimates on second order effects in Ap-
pendix B. Only large, unexpected failures could be a problem. (B) The leakage to higher
states, e.g. |2〉 is negligible [12, 29], of the order 10–13, according to IBM data, see details
in Appendix C. (C) Memory of the waveform between successive gates. Highly unlikely, a
residual voltage amplitude can persist up to the next gate. In principle it can be mitigated
by delay-separated gates if the effect fades out with time. (D) Other qubits. They are usu-
ally detuned but some crosstalk may remain. We expect the crosstalk to be incoherent and
so irrelevant for the witness.

5 Conclusions
A test of linear independence of quantum operations reveals subtle deviations, invisible in
more crude tests. We demonstrated an experimental feasibilty and usefullness of the the-
oretical test. Further tests are necessary to identify the origin of the deviations, to exclude
some sophisticated technical issues (e.g. lack of independence between the gate pulses)
and more exotic options many worlds/copies theories [35, 36]. Even when the technical
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Figure 8 Results of the test (II) with probabilities pkj for the angles from Table 2, for nairobi and perth,
compared to the theory expectation. Nairobi/perth: 115/93 jobs, both 100000 shots and 8 repetitions

issues are to be blamed, our results evade standard characterisation methods. We sug-
gest: (i) an extreme statistics collected in a relatively short time to avoid corrections due
to calibration drifts, (ii) a time separation between gates to exclude potential overlap of the
effects, (iii) a scan through a large set of Bloch vectors to maximize the potential deviation,
(iv) run the test on a single-qubit devices to avoid cross-talks. It is also possible to develop
more sophisticated tests, with different assumptions, or involving different qubits. In any
case, a precise diagnostics of qubits must become a standard in quantum technologies.

Appendix A: Bloch sphere representations
Using vectors n to represent the state N = |n〉〈n| = (1 + n · σ )/2, we have SαNS†

α = Nα and
S†

θ MSθ = Mθ with

nα =

⎛
⎜⎝

cos2 α – cosα sinα – sinα

– cosα sinα sin2 α – cosα

sinα cosα 0

⎞
⎟⎠ n,
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Figure 9 Results of the test (II) the witnessW = detp, for the angles from Table 2, for nairobi and perth, with
the error given by (4). Red –W for p from each job and then averaged, blue – p averaged from all jobs to give
W

Figure 10 Results of the test (II) the witnessW = detp, for the angles from Table 2, for nairobi and perth, for
individual jobs. Two values for nairobi are beyond the picture boundaries, (3, 0.0023) and (4, 0.003)
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Figure 11 Results of the simulations of the test (II) with probabilities pkj for the angles from Table 2, for
nairobi and perth

Figure 12 Results of the simulations of the test (II) the witnessW = detp, for the angles from Table 2, for
nairobi and perth noise models. Note that the two ways of calculation ofW almost coincide (the blue one
covers the red one), which is consistent with our explanation of averaged out first order difference in
Appendix B
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Figure 13 Results of the simulations of the test (II) the witnessW = detp, for the angles from Table 2, for
nairobi and perth noise models, for individual jobs

mθ =

⎛
⎜⎝

cos2 θ – cos θ sin θ sin θ

– cos θ sin θ sin2 θ cos θ

– sin θ – cos θ 0

⎞
⎟⎠ m, (A.1)

For n = m = (0, 0, 1) we have Nαβ = SβSαNS†
αS†

β with

n′
αβ =

(
sin(β – α) cosβ , sin(α – β) sinβ , – cos(β – α)

)
(A.2)

while Mθφ = S†
φS†

θ MSθ Sφ with

mθφ =
(
sin(θ – φ) cosφ, sin(φ – θ ) sinφ, – cos(θ – φ)

)
. (A.3)

Then the probability matrix elements read

pkj = Tr MkNj = (1 + n · m)/2 (A.4)

and additionally p5j = 1.
In this way we can represent the choices used in our experiment. In the first choice,

preparations n′
1 = (0, 0, –1), n′

2 = (–
√

3/2, 1/2, 0), n′
3 = (–

√
3/4, –1/4,

√
3/2), n′

4 = (
√

3/4,
–1/4,

√
3/2), n′

5 = (
√

3/2, 1/2, 0) and measurements m′
k = n′

k–1. In the second choice,
n′′

1 = –n′′
2 = (0, 0, –1), n′′

3 = (2
√

2, 0, 1/3), n′′
4,5 = (–

√
2/3,∓√

2/3, 1/3) and measurements
m′′

1 = (0, 0, 1), m′′
2 = (1, 0, 0), m′′

3,4 = (–1/2,∓√
3/2, 0).
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For the parametric test we have n1 = (0, 0, 1), n2 = (2
√

2, 0, 1/3), n3,4 = (–
√

2/3,∓√
2/3,

1/3) while ni
5 = (– sin(2π i/5), – cos(2π i/5), 0).

Appendix B: Bounds on daily calibrations
Suppose that the calibration from job to job can alter the matrix of probabilities. Assuming
that each job n = 1..N satisfies W (n) = 0 for probabilities p(n), we ask if W for p =

∑
n p(n)/N

can be nonzero. Suppose δp(n) = p(n) – p(0) is small for some reference matrix p(0) and
|δp(n)

kj | ≤ ε for all kj and some small bound ε. Then, in the first order of δp we have still
W � 0 from expanding determinant in linear combinations of single columns p(n) and
the rest of columns kept equal p(0). The nonvanishing contribution is of the second order,
when replacing either of two columns by δp(n). Their length is ≤ 2ε. The last row con-
tains 0 for the replaced columns and 1 for the rest. Subtracting 1/2 of that row from the
other rows. The moduli of remaining elements are ≤ 1/2 for the length of the remaining 3
columns is ≤ √

2. From Hadamard inequality |det A| ≤ ∏
j |Aj| with |Aj| being the length

of the vector (column) Aj of the matrix A, we have the upper bound |W | ≤ 80
√

2ε2 as we
have 10 choices of 2 columns out of 5.

Appendix C: Corrections from higher states
The generic Hamiltonian, in the basis states |n〉, n = 0, 1, 2, . . . (� = 1) reads

H =
∑

n
ωn

∣∣n〉〈n∣∣ + 2 cos(ωt – θ )V̂ (t) (C.1)

with energy ωn eigenstates levels and the external drive V at frequency ω and phase shift
θ (the second term). In principle free parameters ω, θ and V̂ (t) can model a completely
arbitrary evolution. We can estimate deviations by perturbative analysis, setting ω0 = 0,
ω1 = ω (resonance), ω2 = 2ω + ω′ (anharmonicity, i.e. ω′ � ω, in IBM about 300 Mhz
compared to drive frequency ∼ 5 GHz). The state |2〉 should give the most significant po-
tential contribution. We can incorporate rotation and phase into the definition of states,
|n〉 → |n′〉 = e–in(θ+ωt)|n〉. Then the expected leakage depends on the gate duration, here
about τ = 35 ns. According to IBM documentation, it a Gaussian pulse width (variance)
σ = τ /4 the leakage is of the order exp(–σ 2ω′2) ∼ e–30 being completely negligible. A slow
Bloch-Siegert shift [37] does not cause leakage and stroboscopic corrections to RWA [38]
can be neglected due to a very short sampling time, dt = 0.222 ns, while the heating gives
incoherent leakage of the order 10–5 [24].
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