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Abstract
The classical moving target segmentation (MTS) algorithm in a video can segment
the moving targets out by calculating frame by frame, but the algorithm encounters a
real-time problem as the data increases. Recently, the benefits of quantum
computing in video processing have been demonstrated, but it is still scarce for MTS.
In this paper, a quantummoving target segmentation algorithm for grayscale video
based on background difference method is proposed, which can simultaneously
model the background of all frames and perform background difference to segment
the moving targets. In addition, a feasible quantum subtractor is designed to perform
the background difference operation. Then, several quantum units, including
quantum cyclic shift transformation, quantum background modeling, quantum
background difference, and quantum binarization, are designed in detail to establish
the complete quantum circuit. For a video containing 2m frames (every frame is a
2n × 2n image with q grayscale levels), the complexity of our algorithm is O(n + q).
This is an exponential speedup over the classical algorithm and also outperforms the
existing quantum algorithms. Finally, the experiment on IBM Q demonstrates the
feasibility of our algorithm in this noisy intermediate-scale quantum (NISQ) era.

Keywords: Quantum video processing; QVNEQR; Moving target segmentation;
Background difference; IBM Q

1 Introduction
Video is a powerful information transfer tool, which can carry richer information and con-
vey it to the audience in a more intuitive way compared with text and pictures. Therefore,
the processing of video information has become an important link in the development of
computer vision. In the field of video processing, moving target segmentation is one of the
hot research topics that has received much attention. It not only plays an essential role in
video surveillance, autonomous driving, and medical impact analysis, but also has a sig-
nificant impact on application scenarios such as human-computer interaction. However,
with the dramatic growth of video data volume, the real-time problem is gradually high-
lighted. Quantum computing can achieve amazing computational speeds with its unique
quantum advantage [1]. Therefore, combining quantum computing with video processing
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will effectively solve the real-time problem and thus promote the further development of
video processing technology. This combination can also provide faster and more accu-
rate solutions for other applications in the field of computer vision, thereby enabling AI to
better serve human society.

In the current research stage, the steps of quantum video processing are similar to those
of quantum image processing, both of which include three steps. First, a quantum rep-
resentation of the digital video is constructed on a quantum computer, then, the video
is processed using a quantum algorithm, and finally, the processed video is returned to
a classical video. These three steps also correspond to three research directions, and the
first of these is to store the video in qubits. Since a video consists of multiple images, we
first need to use a quantum image representation model to store the digital images and
then connect the images to form a complete video. The earliest quantum image repre-
sentation model was proposed by Latorre et al. [2] in 2005, who designed the Real Ket
model by using the quantum superposition property. In 2010, Venegas-Andraca et al. [3]
proposed the entangled image representation model based on the quantum entanglement
property. In 2011, Le et al. [4] proposed the well-known fexible representation of quantum
images (FRQI), which stores the pixel’s position information into the base state of qubits,
and maps the color information as angles into the probability amplitude. This allows the
color information and position information of each pixel to correspond one by one accu-
rately, and because each pixel is in a superposition state, the space for storing the image is
reduced. In 2013, Sun et al. [5] extended the FRQI model from grayscale images to RGB
images and proposed the multi-channel RGB images representation of quantum images
(MCQI). They added three qubits to represent the different color information of the pixel
and the position information was not added. The proposed model extends quantum im-
age processing from grayscale space to color space. In 2017, Yao et al. [6] proposed the
quantum probability image encoding representation (QPIE), in which they normalize the
grayscale values and put them directly into the probability amplitude of qubits, while the
position information is remained stored in the base state of the qubits. This model fur-
ther reduces the number of qubits required to store the image. The above coding methods
allow for efficient coding of images using fewer qubits, but they require a large number
of measurements when retrieving an image, which increases the difficulty of restoring a
quantum image to a classical image. In order to solve this problem, in 2013, Zhang et al.
[7] proposed a novel enhanced quantum representation (NEQR) model, which was im-
mediately and widely used by scholars. They used three entangled sequences of qubits to
store the position and color information of the image, and the whole image is stored in
the superimposed sequences of qubits, so that when one pixel is processed, all the pixels
can be processed, which leads to an exponential increase in the processing speed. Because
three binary sequences are used for encoding, only a small number of measurements are
required to obtain the complete image when it is retrieved. Although the NEQR model
uses a relatively large number of qubits, it perfectly solves the problem of retrieving an
image in a short period of time. In addition, storing color information into a sequence of
qubits also makes it easy to manipulate the color information directly. These advantages
also make the NEQR model the most commonly used representation model in quantum
image processing.

With the development of quantum image representation models, quantum video rep-
resentation models have also been proposed. In 2011, Iliyasu et al. [8] proposed a quan-
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tum movie storage framework based on the FRQI model, in which they put both frame
information and pixel position information in the video into the base state of qubits. In
2016, Wang et al. [9] proposed a quantum video representation model based on the NEQR
model (QVNEQR). This model stores the position and grayscale information of the frames
in a video into three sequence of qubits, and like the NEQR model, it can retrieve classical
video with fewer measurements. In 2023, Wei et al. [10] proposed an efficient framework
for quantum video and video editing (EFQV), in which they added temporal indexing to
the image representation model in the qubit plane for each frame, which allowed the model
to have relatively low temporal complexity. Among the above quantum video representa-
tion models, the QVNEQR model entangles the position information of frames and pixels
with the pixel’s color information to represent the grayscale values of a grayscale video, and
the position information and color information are stored in the base state of the qubits. So
that, it will be easier to manipulate the pixels in the frame, and this also makes it the most
used quantum video representation model. In this paper, we also use this representation
model for storing video. According to our survey, current research in quantum video pro-
cessing mainly focuses on quantum video representation models [8–10], quantum video
encryption [11–14], and moving target detection [9, 15].

In 2016, Yan et al. [15] used multiple measurements to collapse the quantum video
to each frame, and then detected the position of the target in each frame to determine
the moving trajectory. This measurements-based moving target detection (MMTD) algo-
rithm is a meaningful attempt and it is also one of the few studies on moving target detec-
tion in quantum video. In 2020, Song et al. [14] proposed an efficient and secure quantum
video encryption method, which mainly consists of three steps: inter-frame alignment,
intra-frame pixel position transformation and high 4-frame quantum bit-plane disruption.
This method has simple calculation, low complexity, and strong filtering ability. In 2023,
Zhu et al. [16] proposed a hybrid encryption scheme for quantum-secure videoconferenc-
ing combined with blockchain, which embeds quantum key distribution into the classical
network and then designs the security level to design the classical quantum hybrid en-
cryption scheme. This approach improves the encryption efficiency compared to the tra-
ditional approach. In general, compared with the research on quantum image processing,
the research on quantum video is still in its infancy and there are still many aspects to be
explored. Among them, quantum image segmentation algorithms have been widely stud-
ied as an important task in computer vision [17–30], but the research on quantum video
segmentation is still scarce. In 2023, Liu et al [31] proposed a quantum algorithm for mov-
ing target segmentation (QMTS) in a grayscale video and they designed some quantum
computational units to segment the target using the three-frame difference method, but,
this algorithm only focuses on the edges of the target and cannot segment the complete
target. Furthermore, if there is a slow moving target, it will not be segmented effectively.
In addition, the complexity of the algorithm is also high. In order to solve these prob-
lems, in this paper, we use the background difference method to design the moving target
segmentation algorithm in quantum video, and some quantum circuit units with relevant
functions are designed. Overall, the contributions of this paper are shown below.

• Based on the background difference method, a moving target segmentation algorithm
in quantum video is proposed, which can use quantum mechanism to model the
background for all frames and quickly segment out the moving target in a grayscale
video.
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• A feasible quantum subtractor is designed to perform background subtraction
operations by using fewer quantum resources. Then, relevant quantum operation
modules, including quantum cyclic shift transformation, quantum background
modeling, quantum background difference, and quantum binarization, are designed
to construct the complete quantum circuit with low quantum cost.

• We verify the superiority and feasibility of our proposed algorithm by analyzing the
circuit complexity and performing experiments on IBM Q [32], respectively.

The rest of this paper is organized as follows. In Sect. 2, the NEQR model, the QVNEQR
model, and the classical moving target segmentation method are introduced. In Sect. 3,
some quantum operations are first designed and then detailed quantum circuits are de-
signed according to the algorithmic steps, and finally a complete quantum circuit of the
algorithm is given. Section 4 analyzes the complexity of the complete quantum circuit and
verifies it experimentally on IBM Q. Finally, the conclusion and the future works are drawn
in Sect. 5.

2 Preliminaries
2.1 A novel enhanced quantum representation model for quantum images

(NEQR)
A digital image is made up of many different pixels arranged in a certain order. Therefore,
only the position and color information of the pixels need to be stored to preserve a com-
plete image. Next, various processes can be performed on the image simply by computing
these two types of information. In the NEQR model, the color and position information
of a pixel are stored separately in three sequences of qubits and entangled together [7].
So, the image is in the superposition state, which saves a lot of resources. For a 2n × 2n

image with grayscale range [0, 2q – 1], the mathematical form of NEQR can be expressed
as follows:

|I〉 =
1
2n

22n–1∑

i=0

|ci〉|i〉 =
1
2n

22n–1∑

i=0

∣∣ci
q–1ci

q–2 · · · ci
0
〉|i〉, (1)

where cq–1
i cq–2

i · · · c0
i represents the grayscale value of the pixels, ct ∈ {0, 1}(t = 0, 1, . . . , q –

1). i denotes the position of the pixel, and the position information of each pixel can be
represented in the form shown in Equation (2).

|i〉 = |Y 〉|X〉 = |Yn–1Yn–2 · · ·Y0〉|Xn–1Xn–2 · · ·X0〉, (2)

where Y represents the vertical coordinate information of each pixel and X represents
the horizontal coordinate information of each pixel. Both Y and X are composed of n-bit
binary numbers.

2.2 Quantum video based on NEQR (QVNEQR)
In a video, multiple consecutive images of the same size are combined to form a coherent
screen, where each image is called a frame. Based on NEQR model, QVNEQR model ar-
ranges the images in a certain order and stores them in four sequences of qubits (with the
addition of a sequence storing the position of the frames compared to the NEQR model)
[9]. Suppose a video has 2m frames, the size of each frame is 2n × 2n, and the grayscale
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Figure 1 Quantum circuit for storing videos using
QVNEQR

range is [0, 2q – 1]. Then, the mathematical expression of the QVNEQR model can be ex-
pressed as:

|V 〉 =
1

2m/2

2m–1∑

j=0

|Ij〉⊗|j〉, (3)

where j represents the position information of each frame and |j〉 = |jm–1jm–2 · · · j0〉, jr ∈
{0, 1}(r = 0, 1, . . . , m – 1). |Ij〉 denotes the jth NEQR image and can be represented as:

|Ij〉 =
1
2n

22n–1∑

i=0

|cj,i〉 ⊗ |i〉 =
1
2n

22n–1∑

i=0

∣∣cj,i
q–1cj,i

q–2 · · · cj,i
0
〉|i〉 (4)

The qubits and quantum circuits required to store a quantum video are shown in Fig. 1,
and the value of q can be changed according to the video’s grayscale level. If q = 8, then
the video is in grayscale; if q = 24, then the video is in RGB.

2.3 The classical moving target segmentation algorithm
Among the classical moving target segmentation algorithms, the background difference
method [33, 34] has received widespread attention as one of the most commonly used
algorithms. It subtracts each current frame from a pre-stored or real-time acquired back-
ground image, so that regions that deviate from the background by more than a certain
threshold can be calculated as moving regions. The MTS algorithm based on background
difference method is simple to implement and fast to calculate, and its results can directly
respond to the position, shape and size of the moving target. In addition, the algorithm
can overcome the influence of light, which makes it more practical. The key of this algo-
rithm lies in the acquisition and updating of the background model, so it is necessary to
use some methods to establish the background model such as the median method, the
mean method and the Gaussian method. Among them, the nonlinear median modeling
method has a simple computational process and is easy to implement. Besides, it is robust
to noise and can eliminate the interference caused by abnormal pixels, so median model-
ing has been widely used in the field of image processing. The algorithm process is shown
below.

D(x, y) =

⎧
⎨

⎩
1, |fk(x, y) – bk(x, y)| ≥ T ,

0, |fk(x, y) – bk(x, y)| < T ,
(5)

bk(x, y) = median
{

fk–n(x, y) · · · fk–1(x, y), fk(x, y)︸ ︷︷ ︸
n

}
, (6)
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Figure 2 The schematic diagram of video frame cycle shift transformation

where (x, y) denotes the pixel position of each frame, fk(x, y) denotes the pixel value of
the kth frame, and the corresponding bk(x, y) denotes the pixel value of the kth frame’s
background. T is the threshold, which is set artificially according to the segmentation
result, and D(x, y) denotes the pixel of the result frame.

3 The quantum moving target segmentation algorithm based on background
difference method

In this section, we first introduce some quantum computing operations including quan-
tum cycle shift transformation, quantum subtractor, quantum comparator, and quantum
copy. Then the specific steps of the moving target segmentation algorithm for quantum
video are explained and the corresponding quantum circuits are designed in detail.

3.1 Quantum operations
(1) Quantum cycle shift transformation

In order to fully utilize the parallelism of quantum computing, we need to shift the
frames in the video forward or backward by using cycle shift transformation (CT)
operation. Figure 2 shows the cycle shift process of a video containing 4 frames.
Since the pixels in each frame of the QVNEQR video are generated by entangling
them with position information, when we process a pixel at a certain position, we
are processing all the pixels in the video meanwhile. By using the CT operation, we
can move frames from different positions to the same position, so when we process
this particular frame, we are also simultaneously processing all the frames in the
video. The unitary operation of CT operation for quantum video with 2m frames is
shown in Equation (7). In the research of quantum image processing and quantum
video processing, using Toffoli gates to build a CT operation has become a most
common method, and this method can be used with +1 or –1 to move the frame
position forward or backward. The specific quantum circuit of the common CT
operation is shown in Fig. 3. It is realized by a series of Toffoli gates with multiple
control qubits, and its complexity is O(n2) [23, 30, 35–37], which is very difficult to
achieve in this noisy intermediate-scale quantum (NISQ) era. So in order to reduce
the complexity, we design a quantum operation for CT operation with complexity
O(n) by using NOT gates, CNOT gates, Reset gates and Toffoli gates as shown in
Fig. 4, where a denotes the position information and h denotes the auxiliary qubits.
Compared with the existing CT operation, ours has lower quantum cost and fewer



Wang et al. EPJ Quantum Technology           (2024) 11:26 Page 7 of 21

Figure 3 The quantum circuits of the common used CT operation.(a) S+; (b) S–

auxiliary qubits, as detailed shown in Table 1

CT(j±)|V 〉 =
1

2m/2

2m–1∑

j=0

|Ij〉⊗
∣∣(j ± 1) mod 2m〉

, (7)

where CT(j+) =
[ 0 1

Im
2 –1 0

]
, CT(j–) =

[ 0 Im
2 –1

1 0

]
.

(2) Quantum subtractor
The quantum subtractor (QS) takes two binary numbers an and bn as input and

takes the result of an – bn as output. The existing quantum subtractor has high
complexity and is not suitable for the quantum devices in this NISQ era. Therefore,
we design a new quantum subtractor using additive operation as shown in Fig. 5.
The main design idea is to convert subtraction to addition by complementary code
and then the subtraction of two binary numbers can be realized by two addition
operations. Firstly, bn is inverted by using NOT gates, then the carry information is
obtained through a Toffoli gate and stored in an auxiliary qubit. Then the result is
obtained by CNOT gates based on the information of the corresponding bits in an

and bn. Finally, the final result rn can be obtained by performing +1 operation on the
result of the previous step. There will be only four cases for each bit of the addition
operation: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0/1. Therefore, if bk = 1, then it
is only need to perform a NOT operation on ak . At this point, if there is a carry in
the k – 1th bit, it is necessary to perform a NOT operation on ak again. The first half
of the subtractor can be realized by looping through this step, and then we use the
CT operation designed above to perform +1 operation on the previous result. Thus,
the final rn = an – bn is completed.
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Figure 4 The quantum circuits of our proposed frame CT operation.(a) S+; (b) S–

Table 1 Comparison of different CT operations

CT operations Auxiliary qubits Quantum cost

Ref. [35] 0 O(n2)
Ref. [38] n + 1 24n – 10
Ref. [39] n + 1 24n – 10
Ref. [36] 0 13n – 22
Out operation 2 7n – 5

Figure 5 Quantum circuit implementation of the quantum subtractor

Since our subtractor is realized by a quantum adder, we compare the proposed
quantum adder with the existing adders as shown in Table 2. It can be seen that our
adder has fewer auxiliary qubits and lowest quantum cost. The adder proposed by
Thapliyal et al. [40] and Li et al. [36] both use TR gates, which is difficult to
implement and cannot run on existing quantum platforms. Therefore, although
their adders’ quantum cost are low and has no auxiliary qubits, it cannot be used in
practice in this NISQ era. The adder proposed by Vedral et al. [41] can be
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Table 2 Comparison of different quantum adder

Quantum adders Auxiliary qubits Quantum cost

Ref. [40] 0 13n – 10
Ref. [41] n + 1 24n – 10
Ref. [42] 2 17n – 12
Ref. [36] 0 13n – 10
Ref. [43] 2 12n
Our adder 2 8n – 7

Table 3 Comparison of different quantum subtractor

Quantum adders Auxiliary qubits Quantum cost

Ref. [42] 1 19n – 28
Ref. [43] 2 16n
Our subtractor 2 15n – 12

Table 4 Comparison of different quantum comparators

Quantum comparators Auxiliary qubits Quantum cost

Ref. [44] 3n-1 30n-15
Ref. [28] 5 28n-15
Our comparator 3 7n+6

implemented as a quantum gate, but the number of auxiliary qubits is too large to be
implemented on the existing quantum platform. Considering the limitations of the
NISQ era, the adder proposed by Cuccaro et al. [42] and Yuan et al. [43] reduces the
number of auxiliary qubits, but the quantum cost is still high. The adder we
proposed can be implemented using only the NOT gate, CNOT gate, Reset gate,
and Toffoli gate. In addition, the quantum cost of our adder is lower and can run on
the existing quantum platform, which is very meaningful in this NISQ era. In
addition, we also compare the proposed complete subtractor with the existing ones
as shown in Table 3, from which we can see that our subtractor has a lower
quantum cost as well.

(3) Quantum comparator
A quantum comparator (QC) can compare the numerical magnitude of two

binary numbers stored in qubits. In this paper, we use a comparator [29] consisting
of 2n + 3 qubits, where 2n qubits are used to store two n-bit binary numbers an and
bn, and 3 qubits are used as auxiliary qubits to form the complete circuit. In order to
minimize the complexity of the circuit, we also use only NOT gates, CNOT gates,
Toffoli gates and Reset gates to form the complete quantum comparator. As shown
in Fig. 6, where an and bn denote the two binary sequences to be compared, and h
denotes the auxiliary qubits. y denotes the result of the comparison. If y = 0, then
a ≥ b; if y = 1, then a < b. Comparing with the existing quantum comparators, our
comparator requires fewer quantum gates and fewer auxiliary qubits, and the
quantum cost is also less, as shown in Table 4.

To perform the sorting operation, we adjust the order of the QC outputs
according to the comparison results, i.e., larger numbers are output from an and
smaller numbers are output from bn. In the quantum circuit implementation, we use
n CSWAP gates at the output of the QC and the order of the output can be adjusted
according to the value of y, as shown in Fig. 7.
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Figure 6 Realized circuit of quantum comparator and its simplified diagram

Figure 7 The quantum circuir of QCS

Figure 8 The quantum circuit of copy operation

(4) Quantum copy operation
In order to perform multiple operations on the pixels in the video, we need to

copy them into auxiliary qubits. Since qubits in the superposition state are not
replicable according to the principle of non-replicability of quantum mechanics, the
information about the pixels we copy is stored in the base state. This can be
accomplished by a few CNOT gates as shown in Fig. 8, where x denotes the original
value and 0 denotes the initial value of the auxiliary qubits.
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3.2 The proposed algorithm and its quantum circuit implementation
In this proposed algorithm, a classical video is firstly stored into qubits according to the
QVNEQR model and then the copy operation is used to copy the grayscale value informa-
tion of the video to the auxiliary qubits for backup. Then the CT operation is utilized to
shift the frame forward by N –1 units, so that all the information of the N frames including
the current frame can be obtained. Then these N frames are modeled with median back-
ground using quantum sorting operation, so that the background of the current frame can
be obtained. Next, the grayscale value of the original video in the auxiliary qubits is sub-
tracted from the background by using the quantum subtractor to obtain the differential
value. The difference result is then binarized using the quantum binarization operation
and finally the quantum video is restored to the classical video by measurement. Due to
the limitation of quantum resources and also for the convenience of introduction, we takes
N = 3 in this paper. If N needs to be set to a larger value, we just need to add the QCS
module and increase the qubits in the sorted quantum circuit designed in this paper. The
detailed steps of the algorithm are shown below.

(1) Quantum video preparation
For a classical video, assume that it has 2m frames, and each frame is a 2n × 2n

NEQR image with grayscale range [0, 2q – 1]. First of all, we need to store this
classical video into qubits. Since the QVNEQR model is a combination of NEQR
images, we need to store the color and position information of each frame in the
video in sequence. The position of the pixels in a quantum video are in
superposition state and the grayscale value of the pixels are generated by entangling
with the position, so q qubits are used for storing the grayscale value of the pixels,
2n qubits are used for storing the pixels position information of each frame, and
finally m qubits are used for storing the position information of the frames. The
mathematical form of the quantum state is shown below.

|V 〉 ⊗ |0〉3q+3 =
1

2 m
2 +n

2m–1∑

j=0

22n–1∑

i=0

|cj,i〉|i〉|j〉|0〉q|0〉q|0〉q|0〉|0〉|0〉 (8)

(2) Quantum video cycle shift transformation
To segment the target in all frames of a video at the same moment after a single

computation, instead of computing each frame one by one as in the classical
algorithms, we need to make a set of quantum videos by cycle shifting the frames.
That is, the Nth frame is shifted forward N – 1 positions to get N videos. Relatively,
this means that all the previous N – 1 frames are shifted to the position of the Nth
frame. At this point, these N videos share the same position qubits, and the
grayscale values are stored in different qubits, i.e., one position corresponds to N
different frames. The reason for achieving this is that grayscale values are generated
by entanglement with position qubits, and different grayscale values can be obtained
by changing the position. Then, by restoring the position, different grayscale values
can be obtained at the same position. Mathematically, cycle shifting is the process of
doing +1 or –1 transformation of the frame position information and then using the
position qubits to generate the grayscale value information. The expression of the
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Figure 9 The quantum circuit of background modeling

generated quantum video set is shown in Equation (9).

1
2 m

2 +n

2m–1∑

j=0

22n–1∑

i=0

|cj–N+1,i〉 · · · |cj–1,i〉|cj,i〉|i〉|j〉 (9)

(3) Background modeling
With the cycle shift transformation operation in the previous step, we have

obtained N videos that share position qubits, next, we need to extract the N frames
that have the same position in these videos and use the median method for
background modeling. That is to find the median value of the pixels in the same
position in the N frames, and then the obtained median pixels are placed as
background pixels in the corresponding positions of the background frames. Since
the pixels are generated by entangling with the positions, which are in the
superposition state, therefore, the computation for a pixel at one position is
equivalent to the computation for all pixels. The result thus obtained is the
background corresponding to the current frame. The specific quantum circuit is
shown in Fig. 9, where a denotes the pixel grayscale value of different frames, and
the grayscale level of each frame is q. The pixels at the corresponding positions in
the N frames are sorted using QCS to obtain the median values, which are the
background pixels’ values of the Nth frame.

(4) Background difference
After getting the background of each frame, we can perform the background

difference operation by using the quantum subtractor. Since we need to perform the
subtraction operation between different frames and their backgrounds, but the pixel
values in the background are not always smaller than the foreground, this operation
may produce negative values. To avoid this, we need to make sure that the result of
the subtraction operation is in the form of an absolute value. Designing an absolute
value subtractor directly is a very complex task, so we utilize the QCS and QS
designed in this paper to implement the absolute value subtraction operation. The
principle is to compare the magnitude of the current frame’s pixel with its
background pixel using a QCS, and then use the outputs of the QCS as the inputs of
the quantum subtractor. In this way, the absolute value of the background difference
can be obtained after the subtraction operation. The quantum circuit is shown as
Fig.10, where CN denotes the pixel of the frames in a video, P denotes the position
of the pixels, S denotes the position of the frames, BN denotes the pixel value of the
background of the frame, 0 denotes the auxiliary qubits, and DN denotes the result
of the background difference.
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Figure 10 The quantum circuit of background difference

Figure 11 The quantum circuit of binarization

(5) Binarization
After the background difference operation is completed, we need to perform

binarization on its results. First, we use q NOT gates to set the threshold and then
use a quantum comparator to compare the magnitude of DN and threshold T . If
DN ≥ T , then the pixel is the target pixel and y = 0. On the contrary, if DN < T , then
y = 1. In order to reduce the complexity, we set |cq–1, . . . , c1〉 = |0, . . . , 0〉 and only
investigate whether c0 = 1 or c0 = 0. If c0 = 0 and y = 0, then the pixel is the target
pixel, and we transform c0 to 1 by using the Toffoli gates. If c0 = 1 and y = 1, then the
pixel is the background pixel, and we transform c0 to 0 by using the Toffoli gates.
The detailed quantum circuit is shown in Fig. 11, where c denotes the pixel values, T
denotes the threshold value, y denotes the output of the quantum comparator, h1

denotes the auxiliary qubit and b0 denotes the binarization result.
Using the quantum units designed in the above steps, we can build the complete

quantum circuit for segmenting moving targets in a quantum video, as shown in
Fig. 12. In which we have marked the inputs and outputs of the useful qubits by
using black dots, and the classical video information is obtained after the final
measurement. In order to reduce the running time of the quantum circuit, we only
measure the qubits that store the quantum video information and do not care about
other qubits.
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Figure 12 The complete quantum circuits for quantum segmentation algorithms

4 Circuit complexity and experiment analysis
4.1 Circuit complexity analysis
The circuit complexity analysis of quantum algorithms can be transferred to calculating
the number of base quantum gates in a quantum circuit. For single-qubit gates like NOT
gates and double-qubit gates like CNOT gates, which are both base quantum logic gates,
we assume their complexity to be 1. Therefore the complex quantum gates (Toffoli gate
and CSWAP gate) in this paper can both be combined from the base quantum logic gates.
The complexity of the Toffoli gate is 5 and the complexity of the CSWAP gate is 3 [36]. The
Reset operation is actually to rotate a single qubit by certain angles around the Y-axis and
Z-axis [28]. Thus any single qubit can be changed to |0> by the Reset operation. Moreover,
in our manuscript, we use the Reset operation only on quantum bits that are in the base
state, and thus only need to rotate the qubit around the Y-axis to set the qubit to zero.
Such an operation is the same as the basis quantum gates (single and double qubit gates),
so its complexity can be assumed to be 1. So we can follow this approach to analyze the
complexity of the algorithm proposed in this paper for the segmentation of a video with
2m frames.

In the field of quantum image processing, our aim is to propose a pure quantum algo-
rithm which can directly process quantum images. As in classical digital image processing
algorithms, the algorithm directly processes an image that has been stored into classical
bits and that classical image is already prepared, so the complexity of the classical algo-
rithm does not include the process of image preparation. Quantum image processing algo-
rithm is also the same, our purpose is also to deal with the image has been stored into the
quantum bit, so the algorithm complexity only consider the algorithm itself, and does not
take into account the process of quantum image preparation. Since it is not yet possible
to obtain quantum images directly, for the sake of completeness of the paper, we describe
the preparation of quantum images. However, like its classical counterpart, the quantum
image preparation process is not considered as part of the complexity of the image pro-
cessing algorithms, and some related research works [20–24, 28, 43] also deal with it in
this way.

In the quantum video cycle shifting process, we use a new method designed in this
paper to implement it. That is, the video frame position is shifted using an adder with
+1(–1) function. And this adder only uses easily implementable quantum gates such as
NOT gates, CNOT gates, Reset gates, and Toffoli gates. According to the analysis in the
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previous section, we can know that the complexity of this cyclic shift operation is O(n),
which is easier to implement in this NISQ era than the commonly used quantum cyclic
shift operation with complexity of O(n2).

The main quantum operation used in quantum background modeling is the QCS, and
each QCS is composed of a quantum comparator and q CSWAP gates. The complexity of
each quantum comparator is O(q) and the complexity of a CSWAP is 3, so the complexity
of a QCS is O(q + 3q)= O(q). A complete process of background modeling requires N
QCSs, therefore, the complexity of background modeling is O(Nq). In this paper, N = 3,
so overall, the complexity of this step is O(q).

In the quantum video background difference step, we mainly use a QCS and a quantum
subtractor to realize difference operations between frames and their backgrounds. From
the analysis in the previous step, we can know that the complexity of a QCS is O(q), and
the complexity of a QS is also O(q). In addition, the Reset gate is a single qubit gate and
its complexity is 1. In this step, we need 3 Reset gates. Thus, the complexity of this step is
also O(q + q + 3)=O(q).

The quantum binarization operation essentially uses a QC to compare the difference
result to a threshold value, and then q – 1 Reset gates are used to set unneeded grayscale
value qubits to 0 and 3 Reset gateS are used to set the auxiliary qubits to 0. Finally C0 is
set to 1 or 0 by using 2 CNOT gateS and 2 Toffoli gateS. Therefore, the complexity of this
step is O(q + q – 1 + 3 + 2 + 10)=O(q).

In addition to the above steps, we need q Reset gates and q NOT gates to set the thresh-
old, and the complexity of this step is O(q). In summary, the complexity of our proposed
algorithm is O(n + q). The classical counterpart requires separate computation for each
frame and each pixel in the video, and its complexity is more than O(22n+m). Thus our al-
gorithm can achieve exponential speedup compared to the classical algorithm. As shown
in Table 5, our algorithm also has lower complexity compared to the existing quantum
algorithms. The existing moving target detection algorithm [15] are based on measure-
ment, and this algorithm stores video frames based on the MCQI model. The complexity
of preparing one frame of video is O(24n), so, in order to achieve moving target detec-
tion, a video with 2m frames needs to be prepared with the complexity of O(q · 2m+4n),
where q denotes the number of replications needed. Removing the process of preparing
the classical video into a quantum video, the complexity of the algorithm is O(q · 2m).
This complexity is already exponential and much higher than our algorithm. The existing
QMTS algorithm in quantum video [31] is based on the frame difference method, which
obtains the neighboring frames by cycle shift operation and implements the frame differ-
ence operation using a quantum subtractor. Finally the moving targets can be segmented.
Because the algorithm uses cycle shift operation with a complexity of O(n2) and other op-
erations in the algorithm have a complexity of O(q), its complete complexity is O(n2 + q),
which is also much higher than our algorithm. In addition, the algorithm cannot segment
the complete target, and the target’s movement speed cannot be too slow, which leads
to the limitations of the algorithm. Whereas, the algorithm proposed in this paper can
model the background so as to segment the complete target regardless of the movement
speed. Thus, our algorithm can realize more complex moving target segmentation tasks
with lower complexity.
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Table 5 Complexity comparison of different algorithms

Algorithm Complexity

Classic algorithm [33] O(22n+m)
MMTD [15] O(q · 2m)
QMTS [31] O(n2 + q)
Our algorithm O(n + q)

Figure 13 A video containing 4 frames

4.2 Experiment
Since our quantum algorithm is implemented as a quantum circuit, in order to verify the
validity and correctness of the algorithm, we need to run the quantum circuit and check
the results. As with some existing research work, we chose IBM Q as our experimental
platform. Using the Qiskit extension package [45] in the Jupyter environment created by
Anaconda, the Python language can be compiled into the OpenQASM language. This can
create quantum circuits and runs them, and finally the results can be read out by measur-
ing the qubits to collapse them to a deterministic state. IBM Q provides us with some real
and simulated quantum computers on the cloud, but due to some technical limitations,
the number of qubits of real quantum computers we can use is less. So we chose the uni-
versal simulated quantum computer ‘ibmq-qasm-simulator’ provided by IBM, which has
32 qubits and can meet our needs.

In addition, IBM Q has a time limit for each task running in the cloud, and each task
cannot run for more than 10,000 seconds. So without compromising the accuracy of the
experiment and in order to use less quantum resources, we choose a video with 22 frames
as the experiment object. The size of each frame of the video is 22 × 22, and the grayscale
range is [0, 23 –1]. Figure 13 represents 4 frames of video containing moving targets, where
the moving targets have been shown with yellow markers, and three binary digits denote
the grayscale values of the pixels.

Due to the small grayscale level of the video used, we set the threshold T = 1 in the algo-
rithm. After the quantum circuit has finished running, we need to measure the result 1024
times. In order to reduce the measurement time, we measure only the qubits that store the
frame position, pixel position and pixel grayscale value. Then the probability histogram
of the video processed by our proposed algorithm can be obtained as shown in Fig. 14.
The horizontal coordinates represent the measured sequences of qubits, which contain
the position information and color information of each pixel in the video. The vertical co-
ordinates indicate the number of times each sequence is measured. The pixel value C, the
pixel position P, and the frame position S have been labeled in this figure. Figure 15 repre-
sents a schematic of the segmented video read from the probability histogram. 0 denotes
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Figure 14 The probability histogram of segmented video

the background and 1 denotes the target. It can be seen that our algorithm can segment the
moving target completely. The segmentation result with the classical counterpart is shown
in Fig. 16, and it can be seen that the result is the same as the processing result of our algo-
rithm, while the complexity of our algorithm is exponentially improved over the classical
algorithm. This is due to the fact that we have accelerated the computational approach of
our algorithm using quantum mechanism, which allows us to obtain the same result in a
shorter time. The results of segmentation with the QMTS algorithm are shown in Fig. 17,
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Figure 15 The segmented video containing 4 frames

Figure 16 Segmentation results with the classical algorithm

Figure 17 Segmentation results with the QMTS algorithm

from which it can be seen that the results are also the same as ours, but the complexity of
our algorithm is lower. This demonstrates that our algorithm can have lower complexity
with the same segmentation results.

5 Conclusion and discussion
While classical moving target segmentation algorithms are developing rapidly, their quan-
tum counterparts are still in the infancy. How to utilize quantum computing for moving
target segmentation in video is still a brand new field. In this paper, a moving target seg-
mentation algorithm based on the background difference method is proposed, which can
utilize the quantum superposition and entanglement properties to segment the moving
targets in all frames of the video at the same moment after one computation. Such a com-
putation can solve the real-time problem encountered by classical algorithms. In addition,
utilizing less quantum resources, some quantum units with special functions are designed
to construct the complete circuit of the quantum segmentation algorithm. The circuit
complexity and experiment analysis demonstrate the superiority and feasibility of our al-
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gorithm. When our algorithm performs segmentation after background differencing, we
need to set a threshold for the differential value, which is a fixed value and only applies
when the differential values do not change much. However, in practice, the differential
values of the target and background may change considerably. In this case, the segmenta-
tion effect of fixed threshold may be poor. Therefore, our future research direction is to
investigate how to use adaptive thresholds in the algorithm to make the algorithm more
adaptive.

In quantum image processing research, FRQI and NEQR are the two most used repre-
sentation models, and as we introduced in the introduction section, they have their own
advantages and disadvantages. In this paper we have chosen the NEQR model to store
the image in order to be able to manipulate the pixels of the frame more easily, but this
also increases the number of qubits used. Because FRQI requires only one qubit to store
all the pixel values, while NEQR requires q qubits. NEQR stores the pixel values into the
basis state, which facilitates the manipulation of the pixel values and at the same time in-
creases the difficulty of scaling. This is because in order to fully utilize the parallelism of
quantum computing, we need to prepare multiple videos using cycle shift operations, and
each video requires q qubits to store the pixel values. In this paper, we use 3 frames for
background modeling, which requires the preparation of an additional 2 quantum videos
using cycle shift operation, and thus 3q qubits are needed to store the corresponding pixel
values. If the algorithm is extended to use N frames for background modeling, we need to
prepare N – 1 quantum videos by using cycle shift operations and use Nq qubits to store
the corresponding pixel values. Then, we need to increase the QCS according to the pro-
posed quantum circuit for background modeling and thus perform background modeling
for each frame. The rest of the operations only need to use the quantum circuits we de-
signed in the paper. Therefore, the extension of our algorithm is relatively easy, but the
disadvantage is that it needs to consume more qubits. In the future, we will consider how
to reduce the number of qubits to make the algorithm more compatible with this NISQ
era.
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