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Abstract
We study the excitation transfer across a fully connected quantum network whose
sites energies can be artificially designed. Starting from a simplified model of a
broadly-studied physical system, we systematically optimize its local energies to
achieve high excitation transfer for various environmental conditions, using an
adaptive Gradient Descent technique and Automatic Differentiation. We show that
almost perfect transfer can be achieved with and without local dephasing, provided
that the dephasing rates are not too large. We investigate our solutions in terms of
resilience against variations in either the network connection strengths, or size, as
well as coherence losses. We highlight the different features of a dephasing-free and
dephasing-driven transfer. Our work gives further insight into the interplay between
coherence and dephasing effects in excitation-transfer phenomena across fully
connected quantum networks. In turn, this will help designing optimal transfer in
artificial open networks through the simple manipulation of local energies.

1 Introduction
Boosted by the unprecedented interest towards quantum information technologies, the
study of the properties of complex networks in the quantum domain has received a great
deal of attention, due to its broad range of applicability [1, 2]. Several theoretical stud-
ies have indeed shown that modeling complex quantum phenomena in terms of simple
quantum systems is not sufficient to capture a plethora of interesting problems belong-
ing to different fields, ranging from—just to name a few—quantum communication [3, 4],
transport phenomena in nanostructures [5, 6], to quantum biology [7, 8].

Despite their apparent differences, such phenomena face similar theoretical challenges.
On one hand, they require a deeper understanding of the role played by the geometry and
topology in the properties of the network itself, as well as its optimal functionality. On
the other hand, while exploring quantum dynamical processes in complex networks, it is
crucial to assess whether or not genuine quantum features, such as non-classical corre-
lations [9], or genuine quantum processes, such as decoherence [10], may influence the
transport properties of a given complex network. The significance of these theoretical
studies is essentially twofold: they constitute an attempt to unveil the potential benefits
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offered by quantum resources, while paving the way towards a better understanding of
the way quantum complex networks can be realised in practice.

In this work, we address the problem of identifying a network configuration compat-
ible with optimal transport performances, including the effect of non-trivial interaction
between the complex system and an external environment. These instances call for an
extensive use of the open quantum systems formalism, the latter being able to effectively
describe and interpret the dynamical evolution of a system undergoing irreversible pro-
cesses such as dissipation and dephasing, which result from the interaction with the envi-
ronment [11–13].

However, attacking this multifaceted issue from the most general standpoint would be
a formidable task. We therefore focus on a specific model of open quantum network,
whose features have been extensively studied. The latter has been used to effectively de-
scribe the phenomenological dynamics of the Fenna–Matthews–Olson (FMO) protein
complex [14, 15]. This complex plays a pivotal role in light-harvesting process of green-
sulphur bacteria: it mediates the highly efficient transfer of excitations from large antenna
structures to reaction centres [7, 15, 16]. The dynamics of such a complex has been mod-
eled and thoroughly studied resorting to the open quantum system paradigm in a series
of seminal papers [17–19]. In particular, in this work we refer to Ref. [18], where the FMO
complex dynamics is described by a network simultaneously undergoing a Hamiltonian
dynamics, accounting for the coherent exchange of excitations between the network sites,
along with dephasing and dissipative Lindbladian dynamics, leading to loss of coherence
and excitations instead. Interestingly, the dynamics exhibits a behaviour, which, to some
extent, seems conterintuitive: unlike a classical random walk model, whenever one studies
the fully Hamiltonian dynamics (i.e., in absence of dephasing and dissipation), the trans-
port through the network can be inhibited as a consequence of destructive interference
between sites [18]. Such destructive interference can be suppressed by either adding local
static disorder—eventually leading to perfect excitation transfer in the limit of random
local energies—or adding local dephasing noise. The addition of static disorder contra-
dicts the celebrated Anderson localization, according to which random disorder is re-
sponsible for inhibition of fully coherent transfer [20, 21]. The effects of local dephasing
mechanisms, instead, clearly show that this is a relevant example of environment-assisted
transport [17, 22, 23]: contrary to expectations, the effect of dephasing is not necessarily
detrimental for the performance of transport, which could instead be enhanced in certain
conditions [17, 18].

Our work systematically explores the interplay between optimal transport and differ-
ent instances of dephasing noise affecting the system’s coherence. More specifically, we
focus on the model introduced in Ref. [18] to describe the FMO complex, where the latter
is represented by a N = 7-site fully connected network (FCN), i.e, a network where each
site is connected to any other one. We find the optimal distribution of local on-site ener-
gies resulting in the best population transfer—constrained by the interaction strengths as
gathered from experiments [24]—under different dephasing conditions.

Focusing on the local energies without changing the interaction strengths greatly sim-
plifies both the numerical optimization and practical implementation of the resulting
network. Furthermore, in similar systems, there is evidence that the excitation trans-
port efficiency is more susceptible to changes to the site energies than to the connection
strengths [25]. We also assess how robust the transfer performance is against changes in
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Figure 1 Sketch of the physical situation investigated in this paper. We consider a fully connected network
comprising N sites. The excitation is initially injected in one site of the network (darker green), while a different
site is attached to a sink into which the excitation is transferred (at a rate �s). The generic n-th site of the
network is locally affected by dephasing noise (at a rate γn) and spontaneous emission, the latter causing the
excitation to be irreversibly lost at rate �n . By optimizing the set of local energies hn , we systematically study
the efficiency of excitation-transfer to the sink under different dephasing conditions

the network configuration. In particular, for fixed N , we perform arbitrary changes in the
network connectivity, and also change the initial site, where the excitation is initially in-
jected, or the final site where the excitation is extracted from the network (the so-called
sink). In all these cases we find that the presence of even a moderate local dephasing noise
makes the transport properties quite robust against arbitrary change in the network prop-
erties.

We then go beyond the prescriptions imposed by experimental data and perform the
optimization step by choosing random (albeit fixed) coupling strengths. This is consistent
with the aim of this work that, as we should indeed stress, is not about ascertaining how
effective the FCN representation of Ref. [18] is at correctly reproducing the FMO phe-
nomenology. Rather, we would like to address the potential to improve transport perfor-
mances in a given network, whose architecture is well justified by experimental evidence,
by exploiting its quantum features.

The remainder of the paper is organised as follows. In Sect. 2, we describe our model of
open N-site FCN, whose dynamics is affected by Markovian dissipation and dephasing.
In Sect. 3, we give more details about the methodology used throughout the paper. In par-
ticular, we discuss the standard procedure for Markovian master equation vectorization
used both for numerically simulating the system dynamics, and arranging the parameters
over which performing the optimization in a suitable way. Using an adaptive gradient-
descent technique, we run the numerical simulations whose results and analysis are given
in Sect. 4. Focusing on the case of a network made of N = 7, we thoroughly study its per-
fomances by optimizing the local energies, while the couplings between the network sites
are given. In the same Section, we discuss the resilience of the network against changes
in the network configuration. We finally draw our conclusions in Sect. 5, where possible
future directions are also discussed.

2 Description of the model
Following Ref. [18], we consider a FCN made of N sites—Cf. Fig. 1. We assume that, to-
gether with the Hamiltonian dynamics, the system is affected by two different noise mech-
anism: local pure dephasing, which destroys coherence of any superposition of states, and
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local spontaneous emission, causing the network to irreversibly transfer excitations from
one site to the environment. We further assume that one excitation at a time can be trans-
ferred across the network, i.e., we work in the single-excitation subspace. This assumption
reduces the complexity of the problem, as we scale down the Hilbert space dimension from
2N to N , still exhibiting interesting physics. In order to fix the notation, let us introduce
the basis {|n〉} (n = 1, . . . , N ). In this basis, the unitary dynamics of the FCN is captured by a
N ×N Hamiltonian containing the energies associated to each site, as well as the coupling
between them. For purposes that will become clear in the following Sections, the system
Hamiltonian can be decomposed as

H = HD + HI , (1)

where HD is the diagonal part containing all the on-site energies, while HI contains the
coupling between any two sites of the network. The former can be decomposed as

HD =
∑

n
hn|n〉〈n|, (2)

where hn is the energy associated to the n-th site, while the latter is given by

HI =
∑

m,n
Jmn|m〉〈n|, (3)

which, in the language of graph theory, represents the so-called adjacency matrix [26].
Note that, as we are dealing with a FCN, HI is not a sparse matrix, meaning that, in general,
we have Jmn �= 0.

The whole picture is actually completed by introducing two auxiliary sites to the net-
work: one where excitations are irreversibly lost after spontaneous emission, the other
where excitations are transferred to, and which mimics the reaction center in photosyn-
thetic complexes such as the FMO complex. This site is named, from now on, the sink.
Owing to such extra sites, we are actually working with an (N + 2)-dimensional Hilbert
space, therefore we complete our basis by introducing |0〉 and |s〉, which identify the afore-
mentioned extra sites, respectively.

Resorting to this notation, the pure dephasing process is formally described by local
Lindblad operators of the form

Lγn =
√

γn|n〉〈n|, (4)

where γn is the dephasing rate. Differently, the spontaneous emission processes are mod-
eled through the set of Lindblad operators

L�n =
√

�n|0〉〈n|, (5)

where �n is the rate with which the excitation is lost in the local environment. As we
said earlier, we introduce a sink, where the excitation travelling through the network is
transferred with a rate �s. Similarly to Equation (5), this process is physically modeled as
a spontaneous emission, whose associated Lindblad operator reads

L�s =
√

�s|s〉〈m|, (6)
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|m〉 being a given site of the network, i.e., m = 1, . . . N . Note that the latter ensures that
population is irreversibly transferred to the sink once the target site |m〉 is reached.

We assume that our system undergoes a fully Markovian irreverisble dynamics, there-
fore the corresponding Lindblad master equation reads

dρ

dt
= –

i
�

[H ,ρ]

+
1
2

∑

μ={γn},
{�n},
�s

(
2LμρL†

μ – L†
μLμρ – ρL†

μLμ

)
, (7)

where H is suitably defined over the enlarged (N + 2)-dimensional Hilbert space, while
the sums over γn and �n are meant to run over all the possible values of n = 1, . . . , N . Note
that the case of a uniform network, i.e., when hn, Jmn,γn,�n are all equal for any value of
n, can be analytically solved—Cf. Appendix A in Ref. [18]. In a more general setting, one
can include temperature and memory effects by replacing Equation (7) by a more gen-
eral master equation, as done, e.g., in Ref. [19] using the numerically exact Time Evolving
Density with Orthogonal Polynomial Algorithm (TEDOPA) [27–29]. However, including
these effects is beyond the scope of this work, so we restrict to the Markovian master equa-
tion in Eq. (7). Finally, it is worth stressing that we have made the underlying assumption
of local environmental mechanisms. This adheres well with a scenario where the nodes
of the network are spaced more than any spatial correlation-length of the environment.
While this allows to explicitly bypass the possibility of environment-induced effects in the
transport of the excitations to the sink, it matches the situation encountered in situations
of simulated networks consisting of matter-like information carriers effectively connected
by radiation-based quantum buses and addressed by local potentials to tune their respec-
tive local energies. Although identify a specific arrangement is not among the goals of our
investigation, we will have such an architecture in mind, implicitly, in the remainder of
our formal analysis.

3 Methods
Given the model introduced in Sect. 2, our goal is to optimize the local on-site energies �h ≡
{h1, . . . hN } in order to further improve the excitation transfer, under different dephasing
conditions.

First, prior to the optimization problem, we need to solve the system dynamics. To this
end, one widely used option is to vectorise Equation (7) [30]. Note that, by construction,
the reduced density operator is represented by a (N + 2) × (N + 2) Hermitian matrix ρ ,
which also automatically encodes information about two extra sites introduced in Sect. 2.
Through vectorisation, the density matrix is readily transformed to a (N +2)2-dimensional
vector (whence the name of the technique)

ρ → �r = (ρ00,ρ01, . . . ,ρ0N+1,ρ10, . . . ,ρN+1N+1). (8)

Analogously, the unitary part can be remapped according to

[H ,ρ] →LU�r ≡ (
I ⊗ H – HT ⊗ I

)�r, (9)
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whereas the dissipative part transform as

LμρL†
μ –

1
2
{

L†
μLμ,ρ

} →Lμ�r

=
[(

L†
μ

)T ⊗ Lμ –
1
2
(
I ⊗ L†

μLμ +
(
L†

μLμ

)T ⊗ I
)]�r. (10)

By applying this set of rules, one obtains a first-order differential equation of the form

�̇r = –
i
�
L

[�r(t)
]
, (11)

where the full vectorised Lindbladian is given by L ≡ LU + i�
∑

μ Lμ. Owing to this rep-
resentation, the system state at a generic time t is formally obtained by exponentiation,
i.e.,

�r(t) = e– i
�

tL�r(0). (12)

Therefore the sink population is easily obtained considering the (N + 2)2-th component
of �r(t), i.e., rt

s = �r(t) · �s, where �s = (0, 0, . . . , 0, 1) is a (N + 2)2-dimensional vector. Notice
that, after applying the transformation given by Equation (9), we are still able to separate
between an interaction term LI

U and a term which depends solely on the local energies
LD

U . The latter can be written as

LD
U =

∑

n
hnHn, (13)

with

Hn =
(
I ⊗ |n〉〈n| – |n〉〈n| ⊗ I

)
. (14)

Let us now fix the total evolution time T and prepare the system with an excitation in the
n-th site. The goal of optimizing the population transfer can be achieved by minimising
the cost function

C(�h) = 1 – rT
s (�h), (15)

where �h represents the set of parameters over which the optimization is performed.
Using Equations (8) to (14), we are able to obtain the sink population rT

s and calculate
its gradient with respect to �h. The latter can be efficiently done by using Automatic Differ-
entiation techniques [31]. We can hence minimise C(�h) using gradient-based techniques,
eventually finding the optimal on-site energies configuration, i.e., �hopt. In this work, we
chose to use a Root Mean Square Propagation (RMSprop) algorithm [32], an adaptive
learning-rate optimization algorithm developed to tackle limitations of stochastic gradi-
ent descent in training deep neural networks. It adjusts learning rates for each parameter
and divides the gradients by an exponentially weighted moving average of the squares
of the derivatives in the parameters updates. This aids convergence, speed, and stability.
While reuqiring careful hyper-parameter tuning, RMSprop is a valuable tool for training
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neural networks, particularly useful for non-stationary objectives and recurrent neural
networks. Our choice is based solely on the fact that we generally observed a compar-
atively faster convergence to the solution compared to other similar techniques in our
numerical simulations.

4 Analysis and results
As mentioned above, we start our analysis by considering a specific network made of N = 7
sites, which, according to the evidence experimentally gathered in [24], reproduces quite
accurately the excitation transfer operated by a FMO complex. In order to perform the
optimization, we assume that the coupling between the network sites are those given in
Ref. [18], which, in turn are based on the experimental results given in Ref. [24]. Therefore,
the non-diagonal part of the system Hamiltonian is given by

HI =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 –104.1 5.1 –4.3 4.7 –15.1 –7.8
–104.1 0 32.6 7.1 5.4 8.3 0.8

5.1 32.6 0 –46.8 1.0 –8.1 5.1
–4.3 7.1 –46.8 0 –70.7 –14.7 –61.5
4.7 5.4 1.0 –70.7 0 89.7 –2.5

–15.1 8.3 –8.1 –14.7 89.7 0 32.7
–7.8 0.8 5.1 –61.5 –2.5 32.7 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Here and in the following energy values are expressed in units of 1.2414 · 10–4 eV, while
times are in ps, as in Refs. [18, 24].

A few comments about HI are now in order. Equation (16) is representative of a network
with a high level of connectivity—all the entries are non-zero, as we would expect for a
FCN where every site is coupled to any other site—where evidently coupling strenghts
are site-dependent. We further assume that the sink |s〉 is attached to the third site, rep-
resented by |3〉. This assumption is actually physically motivated in FMO complexes: ex-
perimental evidence suggests that the third site is the one coupled with the reaction cen-
tre [24]. For the sake of completeness, we mention here that more recent experiments
revealed the existence of a 8-th site in the FMO complex [33, 34]; however, for our pur-
poses, we mainly consider the case of N = 7 sites, as the largest system, with some results
concerning networks with reduced size discussed in Sect. 4.2.

Although our first aim is to optimize the network transport properties over the on-site
energies, we will benchmark our numerical findings against those contained in Ref. [18],
where the on-site energies are given by, �href = (215, 220, 0, 125, 450, 330, 280), the decaying
rates associated to spontaneous emission are �n = � = 5 · 10–4, �s = 6.283, the optimal lo-
cal dephasing rates are �γref = (0.157, 9.432, 7.797, 9.432, 7.797, 0.922, 9.433), while the total
evolution time is T = 5 unless differently stated.

Using the methodology introduced in Sect. 3, we can, for instance, plot a typical learning
curve of �h. In Fig. 2, we show the final sink population rT

s as a function of the number of
the iterations of the optimization algorithm, given a specific network and environment
configuration.

4.1 Optimal solutions
In this Section, we systematically study the network performance under different dephas-
ing conditions, by looking at the population transferred to the sink over a total evolution
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Figure 2 Example of learning curve using the approach presented in Sect. 3. The final sink population rTs is
optimized with respect to �h, and we plot it as a function of the number of iterations of RMSprop, with T = 5.
The numerical values of the HI entries are those given by Equation (16), the decaying rates are given by
�n =� = 5 · 10–4, �s = 6.283, while we assume that γn = 0 for any value of n, meaning that the network is not
subject to any dephasing. We assume that the excitation is initially injected in the first site of the network, i.e.,
ρ(0) = |1〉〈1|

time T . To this end, we assume that the coupling between the sites is given by HI in Equa-
tion (16), with the numerical values of the decaying rates as given above. We then study
the effectiveness of the optimization of local energies for different dephasing conditions.
We indeed start with considering three relevant cases: in the first case, we consider the
local dephasing rates �γref obtained through the optimization performed in Ref. [18]; in the
second case, the network sites are not subject to any dephasing, i.e., γn = 0, for any value of
n; the third case, where the dephasing is uniform across all sites, i.e., γn = γ = 1. For easing
the notation, we will denote the array of local depashing rates �γ with �γref, �0, �1 in the three
aforementioned cases, respectively.

For sake of definiteness, we assume that the excitation is initially injected in the first site
of the network, i.e., the initial condition for Equation (7) reads ρ(0) = |1〉〈1|; furthermore
we assume that the third site, i.e., |3〉, is connected to the sink. It is worth mentioning that
our results are not qualitatively affected if we change either the state connected to the sink
or the initial excited site.

In order to solve the optimization problem, we first initialise the local energies �h0 setting
them all equal to zero, i.e., �h ≡ �h0 = (0, . . . , 0). By so doing, we obtain the final population
transferred to the sink rT

s (�h0). We then perform the optimization over the local energies
in the way described in Sect. 3 for the three different dephasing conditions, and obtain
rT

s (�h �γ
opt), with �γ = �γref, �0, �1.

The improvement achieved by optimizing over �h can be deduced from the data shown
in Table 1, whereas the sink population dynamics is shown in Fig. 3. The corresponding
optimal Hamiltonians can be found in the Appendix. We observe marginal improvement
of the population transfer when we take �γ = �γref, a slight improvement for uniform de-
phasing rates ( �γ = �1) and a larger improvement in absence dephasing, ( �γ = �0). In all cases,
we are able to achieve high population transfer.

We then explore larger uniform dephasing rates by considering γn = γ , where γ varies
in the range [0, 20]. As shown in Fig. 4, the optimization allows us to effectively transfer
population in a large interval of the chosen range; noticeably, the smaller is the dephasing



Sgroi et al. EPJ Quantum Technology           (2024) 11:29 Page 9 of 18

Table 1 Final sink population rTs (T = 5) for different dephasing consitions, i.e., �γ = �γref, �1, �0. In the
right-hand column we consider the case where all the local energies �h are set to zero, i.e.,
�h0 = (0, . . . , 0), while in the left-hand column, we show the final sink population for the optimal local

energies �h �γ
opt as obtained with the optimization method discussed in Sect. 3

�γ rTs (�h0) rTs (�h �γ
opt)

�γref 0.955 0.971
�1 0.922 0.981
�0 0.639 0.989

Figure 3 Plot of the sink population rts(�h �γ
opt) as a function of t, where �h �γ

opt are the optimal on-site energies

obtained through optimization, with the three sets of dephasing rates �γ = �γref , �0, �1. The remaining parameters
are the same as in Fig. 2. Notice that we are able to achieve high population transfer both with and without
dephasing noise

rate, the larger is the improvement compared to the non-optimized scenario. Moreover,
numerical investigations show that, even setting all the local energies to zero, the system
achieves high population transfer while we increase the value of the dephasing rates. One
can also observe that there is an intermediate range of γ where the population transfer
is high even without optimization. In this range, the optimization of local energies is su-
perfluous to observe high transfer; the process is mostly guided by dephasing, as in the
case where �γ = �γref. However, when the dephasing rate becomes too large, it turns out to
be detrimental to the transfer; we indeed observe a decrease in the final sink population,
both in the optimized and in the non-optimized case. This occurrence can be ultimately
justified in terms of the quantum Zeno effect [35–37]: extreme dephasing conditions tend
to freeze the system dynamics [23].

To conclude this part of the study we compare our optimal population transfer with
the population transfer achieved when taking �h = �href, as given at the beginning of this
section. Figure 5 provides evidence of the effectiveness of the optimization: the optimal
set of on-site energies �hopt outperforms �href for any t > 0.

4.2 Resilience against different configurations
We now want to test some properties of the optimal on-site energies �hopt for different �γ
discussed in Sect. 4.1. We start by looking at the resilience of the transfer against varia-
tions either in the initial or end sites, or in the coupling between the sites. We consider the
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Figure 4 Final sink population rTs (T = 5) for uniform dephasing rate across all network sites γn = γ . We
compare the case where on-site energies �h are the result of the optimization (dash-dotted line) with the case
in which we assume them to be all null (solid line). On the one hand the plot shows that the optimization
procedure only leads to minor improvements in the population transfer for moderate to large values of γ
compared to the case where all the local energies are set to zero. On the other hand, the optimization
procedure results in a significant improvement of the excitation transfer performance for small values of γ

Figure 5 Dynamics of the sink population rts(�h) under the dephasing condition �γ = �γref . The solid curve
corresponds to �h = �href , while the dash-dotted curve corresponds to the optimized site energies �h = �hopt . This
plot shows that the optimization method discussed in Sect. 3 is effective at improving the population transfer

optimal solutions for a total evolution time T = 5, with HI being given by Equation (16). In
our analysis the initial and the target sites are always different. The corresponding results
can be found in Table 2, where in the left-hand column we show the smallest popula-
tion transferred while varying the site where the excitation is initially injected, while in
the right-hand column we show the smallest population transferred when we vary the site
connected to the sink. In both cases, the transfer is more resilient when it is mostly guided
by dephasing. Indeed, when �γ = �1 or �γ = �γref we still observe high population transfer,
whereas those results are in stark contrast with the zero-dephasing case, when the popu-
lation transferred to the sink can drop almost to zero.

Next, we look at the effect of allowing population transfer to the sink from a second node
of the network. Under this hypothesis, we observe a minimum population of rT

s ≈ 0.998
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Table 2 Smallest population transferred min(rTs ) at T = 5 for different sets of dephasing noise
�γ = �γopt, �1, �0. In the central column, we show those instances in which we vary the initial state ρ(0),
i.e., the site where the excitation is initially injected, whereas on the rightmost column we change the
sitem connected to the sink through the operator L�s introduced in Equation (6)

�γ min(rTs )|ρ(0) min(rTs )|L�s
�γref 0.971 0.961
�1 0.981 0.976
�0 0.018 0.031

Table 3 Smallest and largest population transferred rTs at T = 5 as obtained with adjacency matrix HI
whose elements are randomly extracted from a uniform distribution defined over the interval
[–200, 200]. We consider 104 realisations of HI , showing that there is at least one matrix HI leading to
almost perfect transfer [cf. right-most column]

�γ min(rTs ) max(rTs )

�γref 0.833 0.999
�1 0.630 0.999
�0 0.036 0.999

transferred to the sink, when the latter is connected to both the 3-rd and 7-th sites, i.e.,
m = 3 and m = 7 in Equation (6). Furthermore, it is worth mentioning that we observe no
significant differences between the different dephasing conditions.

We then use the same local energies while considering different coupling between sites.
To do so, we randomly extract the entries of the matrix HI from a uniform distribution in
the range [–200, 200]. As before, we choose |1〉 as the initial excited site, while |3〉 is the
target state. Results are shown in Table 3, where we report the smallest and the largest
population transferred to the sink. We can see that the most resilient transfer is achieved
for �γ = �γref, while, again, the lowest transfer is observed in absence of dephasing noise.
It is worth noticing that in all cases we have evidence of a configuration yielding an al-
most perfect population transfer. The corresponding Hamiltonians can be found in the
Appendix.

To complete, we study the population transferred to the sink when the network size
is reduced. Starting from a FCN of N = 7 sites, where the adjacency matrix HI is given
by Equation (16), we progressively scale down the system size, removing one by one the
nodes of the network. To this end, we first discard one node of the network (except for
the input and the output nodes, 1 and 3, respectively) and update the adjacency matrix by
removing the corresponding row and column, then we optimize over the local energies
�h. Among all the possible configurations with 6 nodes, we select the one corresponding
to the smallest population transferred to the sink after performing the optimization. The
rationale behind such choice is that, by looking at the worst case scenario, we test the
effectiveness of optimizing only the local energies of a smaller network to achieve high
excitation transfer.

We iterate the node-removal followed by optimization procedure until we reach the
non-trivial case where we are left with only 3 nodes. Results are shown in Fig. 6, where
it can be seen that this operation has a significant, detrimental impact on the population
transfer, showing that carefully selecting the local energies for a given network configura-
tion may not be sufficient to achieve the desired transfer for smaller networks. Further-
more, we can see that, in contrast to changes in the coupling strengths for the seven-site
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Figure 6 Optimized population transferred to the sink rTs at T = 5 as a function of the number of nodes
removed from the original network for different dephasing conditions, i.e., �γ = �γref , �1, �0. See details in Sect. 4.2

network, reduction of the number of nodes seems to be more detrimental in presence of
dephasing noise.

4.3 Coherence preservation properties
Results from Sect. 4.2 have shown that, when the transport is dephasing-assisted, the pop-
ulation transfer is more resilient to changes of the network configuration. On the other
hand, we also expect that such process would tend to destroy coherence in the system.
This is not necessarily true in absence of dephasing noise, provided that the transfer is
fast enough (so that coherence is not destroyed due to excitation losses).

To study how coherence is preserved or lost from the system during the population
transfer, we add a new site |8〉 to the network, uncoupled from all the other sites. We then
prepare the system in the superposition 1√

2 (|1〉 + |8〉), and we study the time evolution of
coherences while the population transfer from site |1〉 to the target is taking place.

The irreversible transfer from site |3〉 to the sink will inevitably lead to coherence loss
from the system. However, we would like to separate these artificial losses from the effect
of dephasing and spontaneous emission induced by the interaction with the environment.
To do so, we instead connect the site |3〉 to a long spin chain via an interaction Hamiltonian
J3s0 (|3〉〈s0|+ |s0〉〈3|), where |s0〉 is the first site of the chain. Moreover, the chain is described
by the following nearest- neighbour interaction Hamiltonian

HC = J
NC∑

j=0

(|sj〉〈sj+1| + |sj+1〉〈sj|
)
, (17)

where we assume uniform coupling J across the chain, and NC is the number of sites of
the spin chain.

If the chain is long enough and the evolution time considered is not too long, we do not
expect revivals to occur, meaning that most of the population transferred to the chain will
not go back to the network. This enables us to picture the whole chain as an effective sink.
However, in contrast to the previous scenario, the interaction between the network and
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Figure 7 Time evolution of coherence. In Panel (a), we study the system coherence C as quantified by
Equation (18), while in Panel (b), we look at the reduced coherence C8 associated to the 8-th site, computed
using Equation (19). We compare the curves obtained for different dephasing rates �γ = �γref, �0, �1, while
resorting to the corresponding optimal on-site energies. The parameters used for the numerical simulation
are the same as in Fig. 8

the chain is affecting the unitary part of the dynamics, therefore it does not induce any
additional decoherence.

We hence study the coherence dynamics in this new scenario for different dephasing
rates �γ and the associated optimal on-site energies presented in Sect. 4.1. The total pop-
ulation pC transferred to the chain as a function of time can be found in Fig. 8.

In order to study the time evolution of coherence we employ the standard quantifier
given by the l1-norm [38]. In Fig. 7, we show the dynamics of the total coherence of the
system computed as

C =
∑

i�=j

|ρij|, (18)

as well as the coherence associated to the 8-th site only

C8 =
∑

j

|ρ8j| – ρ88, (19)
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Figure 8 Population pC transferred from the network to the spin chain as a function of time. We consider the
optimal site energies �hopt (obtained for an evolution time T = 5), under different choices of the dephasing
rates �γ = �γopt, �0, �1. For the numerical simulations, we chose NC = 80 spins in the chain, J3s0 /� =�s , and
J = 2J3s0 , while all the remaining values of the physical parameters are given at the beginning of Sect. 4

where j = 1, . . . , N , s0, . . . , sNC . In our simulations, we considered a chain of NC = 80 spins,
J3s0 /� = �s, and J = 2J3s0 .

After a time T = 10, we observe a significant increase in C in absence of dephasing and
a small increase when we add dephasing noise. An increase in C8 can also be observed for
�γ = �0 and �γ = �1, while C8(T) < C8(0) for �γ = �γref. We eventually looked at the coherence
per number of sites/spins involved c = C/Ntot. For the initial state c = 1

2 , while at the end
of the transfer Ntot = N + NC . We obtained c ≈ 0.035 for �γref, c ≈ 0.080 for �γ = �1, c ≈ 0.499
for �γ = �0.

These results are in agreement with the expectation that in absence of dephasing, co-
herence is mostly preserved, while losses can occur when the population transfer is driven
by dephasing.

5 Conclusions and outlook
In this work, we optimized the on-site energies of a fully connected quantum network to
improve population transfer for different enviromental conditions. Specifically, we con-
sidered a simple model of a FMO complex in the single-excitation subspace, subjected
to spontaneous emission and local dephasing. Resorting to a gradient-based technique,
we found the optimal site energies for different dephasing rates. We studied the proper-
ties of our solutions in terms of resilience against changes in the network initial prepara-
tion, couplings, and size, providing a discussion about coherence preservation during the
transfer. We show that high population transfer in a FMO-like network can be achieved by
merely optimizing the sites energies for a large range of different dephasing rates. How-
ever, the optimal solutions for dephasing-driven and zero-dephasing transport are signif-
icantly different in terms of resilience to network configuration and coherence preserva-
tion. While in absence of dephasing we find both a high transport performance, and a
high degree of coherence preservation, the optimal solutions in the presence of dephas-
ing are shown to be more resilient to changes in the network initial state and couplings
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between sites, while, as expected, they exhibit a higher loss of coherence in the quantum

network state. However, in contrast to the transfer resilience against changes in the sites

interaction, reduction in the network size seems to be more detrimental in presence of

dephasing.

Our work contributes to further understanding of the transport properties of fully con-

nected quantum networks by isolating the effect of local energies, dephasing conditions,

and network size for a given set of couplings between the sites. Furthermore, our results

show that a viable and fruitful approach to design efficient synthetic devices is to apply

adaptive learning approaches to enhanced existing natural devices, such as the photosyn-

thetic complex that we have considered in this paper. In this respect, further progress can

be made by either studying larger networks, or going beyond the one-excitation subspace,

or studying different models of interactions. One might also consider more complex en-

vironments, e.g. including non-Markovian effects, as those are displayed by a variety of

non-artificial physical systems, and assess whether that could be beneficial for further im-

proving the properties of the transfer.

Appendix: Optimal Hamiltonians

In this Appendix, we report some of the optimal Hamiltonians found during our optimiza-

tions and analysis. All energy values are expressed in units of 1.2414 × 10–4 eV.

The optimal Hamiltonians, expressed in matrix form, found with the interactions de-

scribed by Equation (16) for the results presented in Table 1 in are

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

65.7 –104.1 5.1 –4.3 4.7 –15.1 –7.8
–104.1 –11.1 32.6 7.1 5.4 8.3 0.8

5.1 32.6 –56.1 –46.8 1.0 –8.1 5.1
–4.3 7.1 –46.8 –36.2 –70.7 –14.7 –61.5
4.7 5.4 1.0 –70.7 –30.6 89.7 –2.5

–15.1 8.3 –8.1 –14.7 89.7 55.7 32.7
–7.8 0.8 5.1 –61.5 –2.5 32.7 4.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.1)

for �γ = �γref,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

43.5 –104.1 5.1 –4.3 4.7 –15.1 –7.8
–104.1 13.7 32.6 7.1 5.4 8.3 0.8

5.1 32.6 –45.8 –46.8 1.0 –8.1 5.1
–4.3 7.1 –46.8 –4.3 –70.7 –14.7 –61.5
4.7 5.4 1.0 –70.7 –19.5 89.7 –2.5

–15.1 8.3 –8.1 –14.7 89.7 14.4 32.7
–7.8 0.8 5.1 –61.5 –2.5 32.7 –8.6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.2)
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for �γ = �1, and

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–13.2 –104.1 5.1 –4.3 4.7 –15.1 –7.8
–104.1 –1.7 32.6 7.1 5.4 8.3 0.8

5.1 32.6 16.1 –46.8 1.0 –8.1 5.1
–4.3 7.1 –46.8 –43.3 –70.7 –14.7 –61.5
4.7 5.4 1.0 –70.7 424.2 89.7 –2.5

–15.1 8.3 –8.1 –14.7 89.7 –568.8 32.7
–7.8 0.8 5.1 –61.5 –2.5 32.7 39.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.3)

for �γ = �0.
While a simple intuition of the pattern of optimal matrix entries found in such examples

seems to be elusive, one can notice that, in the absence of dephasing, the moduli of two of
the optimized local energies are significantly higher than the rest. In the analysis reported
in Sect. 4.2 we found fully connected networks that achieved near perfect transfer (see
Table 3) for different �γ . The corresponding Hamiltonians are

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

65.7 182.4 –83.3 –106.2 –191.6 –18.8 –20.8
182.4 –11.1 –152.6 91.9 –162.3 55.6 183.7
–83.3 –152.6 –56.1 –132.0 –190.2 177.3 –101.7

–106.2 91.9 –132.0 –36.2 –161.3 –169.0 144.6
–191.6 –162.3 –190.2 –161.3 –30.6 –106.3 –102.8
–18.8 55.6 177.3 –169.0 –106.3 55.7 –111.5
–20.8 183.7 –101.7 144.6 –102.8 –111.5 4.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.4)

for �γ = �γref,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

43.5 102.9 92.8 63.8 28.7 –136.6 –183.1
102.9 13.7 0.8 75.5 –118.5 177.5 110.7
92.8 0.8 –45.8 –140.9 –198.8 134.9 144.7
63.8 75.5 –140.9 –4.3 –184.6 –14.5 –139.5
28.7 –118.5 –198.8 –184.6 –19.5 –153.8 5.2

–136.6 177.5 134.9 –14.5 –153.8 14.4 –188.0
–183.1 110.7 144.7 –139.5 5.2 –188.0 –8.6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.5)

for �γ = �1, and

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–13.2 6.5 64.0 –147.1 –71.3 –46.6 –156.7
6.5 –1.7 13.2 20.5 –102.7 68.0 56.6

64.0 13.2 16.1 –164.0 154.5 95.7 –187.0
–147.1 20.5 –164.0 –43.3 –86.8 –17.3 43.4
–71.3 –102.7 154.5 –86.8 424.2 72.0 70.9
–46.6 68.0 95.7 –17.3 72.0 –568.8 155.8

–156.7 56.6 –187.0 43.4 70.9 155.8 39.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.6)
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for �γ = �0. Again, no intuition for the optimality of such configurations is apparte. However,
that many of the interactions are significantly stronger than in the FMO complex model
described by Equation (16).
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