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Abstract
Due to its large electric dipole moment, the Rydberg atom exhibits a strong response
to weak electric fields, hence it is regarded as a highly promising atomic antenna.
However, to enhance the reception sensitivity, split-ring resonators are needed
normally, which will brings sensing blind spots. Thus it is not conducive to the
application of full-coverage space communication. Here we propose that an atomic
antenna with an asymmetric parallel-plate resonator, can not only enhance the
received signal, but also eliminate sensing blind spots (pattern roundness can reach
7.8 dB while the split-ring resonator can be up to 39 dB). We analyze the influence of
structural parameters on the field enhancement factor and directionality, and further
discuss the limitation of the sensitivity by using thermal resistor noise theory. This
work is expected to pave the way for the development of field-enhanced Rydberg
atomic antennas that communicate without a blind spot.
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1 Introduction
The Rydberg atomic antennas are devices that measure physical quantities utilizing the
quantum properties of microscopic particles [1–5], offering great advantages in high sen-
sitivity, small system size, and concealed anti-damage detection [3, 6, 7]. Particularly,
it has been theoretically demonstrated that the electric field measurement sensitivity
limit is –220 dBm/Hz [8], which is far exceeding the classical receiver sensitivity limit of
–174 dBm/Hz. Generally, there are two approaches to improve sensitivity in microwave
domain [9], superheterodyne [10–12] and resonator [13–19]. Field-enhanced Rydberg
atomic antennas are loading resonators for atomic antennas. However, the directional-
ity of field-enhanced atomic antennas is a great important parameter, which has not been
investigated in previous researches, especially for sensing blind spots.

Atomic antennas with isotropic response [6] are needed in many situations, such as
wide-beam scanning [20], aerospace communications [21], and precision measurement
calibration of electromagnetic fields [22]. Nevertheless, field-enhanced atomic antennas
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[13–17] will cause reception blind spots at particular angles. In addition, previous litera-
tures [13–17] rely only on Finite Difference Time Domain (FDTD) simulation for sweeping
parameter optimization and lack the theoretical methods.

In this paper, we propose a useful approach by adding asymmetry structure, which
breaks the rotational symmetry so that the pattern roundness of the asymmetrical parallel-
plate resonator (PPR) can be reduced to 7.8 dB comparing with symmetrical resonator
[13] of 46.7 dB and symmetrical split-ring resonator (SRR) [16] of 39 dB. Furthermore,
we theoretically and experimentally explain the electric field-enhanced behaviors of PPR,
including resonant frequency and electric field using rigorous Maxwell’s equation theory.
The theoretical electric field enhancement limit of PPR by resistor thermal noise is in-
vestigated. The presented theory lets us to complete the PPR design quickly and better
comprehend the varying rules of the electric field strength.

This paper is organized as follows. In Sect. 2, a general theoretical analysis of PPR is pre-
sented, experimental implementation is introduced in Sect. 3, and results are discussed
in Sect. 4. The formula of resonance frequency and characteristic impedance are in Ap-
pendix A and the potential � derivation is in Appendix B. Furthermore, transient forming
processes, contribution of the electric field, and effect of the cell are investigated in Ap-
pendix C. Superheterodyne sensitivity of field-enhanced atomic antenna is investigated in
Appendix D.

2 Theory
The most significant difference between the conventional antenna and the field-enhanced
atomic antenna is that the gain of the former with isotropic response to linearly polarized
radio waves is typically low, such as 2.1 dB for a half-wave dipole, whereas the receive-gain
[23] of the latter loading PPR can be at least 20 dB. The traditional antenna directionality
coefficient and gain are both restricted by each other. Conventional antennas for high
gain must be grouped in an array to expand the receiving area. Conventional antennas
operate by receiving power density, but atomic antennas work by sensing electric field
strength. Here, the gain of the conventional antenna is relative to the external noise and
the receive-gain of the atomic antenna is relative to the internal noise of the receiver. Field-
enhanced atomic antennas can operate at a certain frequency by modifying the length of
the plate physically or electrically, including the variable capacitance diode. In the design
of microwave aperture, some control is needed, such as metasurface [24, 25] control of
electromagnetic wave, resonant cavity.

2.1 Estimation of resonance frequency and characteristic impedance
Figure 1(a) depicts the PPR structure. Since the PPR exhibits the same electromagnetic
characteristics as a resonant LC circuit, the resonant frequency can be calculated by an
equivalent circuit model with a set of parameter values as shown in Fig. 1(b). The capaci-
tance of the equivalent circuit model consists of the gap capacitance Cgap and the surface
capacitance Csurf due to the excess charge, current, and radiation energy. In addition, the
PPR has a flowing current with magnetic field surrounding it, indicating the presence of
magnetic flux and parallel inductance L. When the incident field is set to a Gaussian pulse,
the resonant frequency of the main mode is obtained. Then, to analyze transient forming
processes of electric field, the input field is set a single-frequency continuous plane wave.
The duration time exceeds the relaxation time (Appendix C). The frequency of the plane
wave is equal to the resonant frequency of the structure.
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Figure 1 (a) Atomic-vapor cell is placed inside the PPR. The geometrical details are presented by its specific
geometry parameters which is lup = ldown = lr = 19.2 mm in length, d = 0.01 mm in thickness, h = 10 mm in
width, g = 4 mm, wr = 10 mm in height, and wup = wdown = 3 mm in length. (b) Equivalent lumped LC circuit
representation. (c) Contribution of the electric field E along the curve ABCD corresponding to curvilinear
coordinate along half PPR with AB = 3 mm, BC = 19.2 mm, CD = 5 mm. Theoretical results corresponding to
red dashed line, FDTD simulations corresponding to black line.(d-f ) xrOyr , xrOzr , zrOyr E-field strength
distribution, respectively

We solve Cgap = 0.15 pF, Csurf = 0.23 pF, L = 11.8 nH, resonant frequency f1 = 2.35 GHz
(FDTD simulated resonant frequency f2 = 2.43 GHz) and characteristic impedance Z0 =
227� numerically in Appendix A. The FDTD simulated resonant frequency is explained
by this theory. Moreover, characteristic impedance of PPR is less than free space wave
impedance, which is 377 �. This implies that there are reflections of impedance mismatch.

2.2 Estimation of electric field at selected position
An atomic-vapor cell is installed near the open port. There is non-zero current due to
electric and magnetic excitations. The gap voltage is defined as [26, 27]

Vgap = 4
√

Z0Q
π

√
P, (1)
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where Z0 is characteristic impedance, Q is quality factor, P is power harvesting. When
PPR harvests plane wave energy P is defined

P =
∫

E × H · dSe =
∫

S · dSe =
∫

S dSe cos(β), (2)

where E is electric field, H is magnetic field, S is Poynting vector, Se is effective aperture,
β is the angle between S and Se, which represents the fact that PPR has directionality.

The potential � and electric field E in an PPR has been found analytically by assuming
that the voltage Vgap applied to its gap. The simplified expression of the potential � in the
rectangular boundary coordinate(Appendix B for the derivation) can be represented as

�(z) =
Vgap

π
tg–1

(Re[cn(z′, 1√
2 )] + Im[cn(z′, 1√

2 )] –
√

2

– Re[cn(z′, 1√
2 )] + Im[cn(z′, 1√

2 )]

)
, (3)

x′ = Ke ×
(

xr

lr
–

yr

wr

)
– Ke, y′ = Ke ×

(
xr

lr
+

yr

wr
)
)

, (4)

where cn is a Jacobi elliptic function, Ke =
∫ π/2

0 dt/
√

1 – 1/2 sin2 t, z = xr + yri, z′ = x′ + y′i,
Re[cn(x′ + y′i)], Im[cn(x′ + y′i)] can be calculated by the formulas [28, 29]. Based on E =
–�� equation, J = σE constitutive relation and rigorous Maxwell’s equation theory [30]
Eq. (5), electric field E, current density J and charge density ρ can be theoretically analysed,
which will help us to calculate the surface capacitance Csurf in Eq. (14).

� · E =
ρ

ε
, (5)

where ε is the relative dielectric constant.
To validate the effectiveness of the expression above, the electric field contribution along

the curve ABCD corresponding to curvilinear coordinate along half PPR was considered.
Theoretical results are compared with the FDTD results derived from a single frequency
plane wave with an amplitude of 1 V/m, as depicted in Fig. 1(c). The observed trend in the
FDTD simulation closely aligns with the theoretical predictions. According to the theory,
the electric field at the probe site indicated by the red dot in Fig. 1(a) is measured to be
14.7 V/m. As depicted in Fig. 1(d–f), xrOyr, xrOzr, zrOyr E-field strength distribution is
presented, respectively.

2.3 Reception pattern investigation
As depicted in Fig. 2(a) with the black dashed line, the implementation of a SRR [13] is
employed to enhance the sensitivity of reception. Nevertheless, this approach gives rise
to sensing blind spots at ϕ = 0◦, θ = 0◦, 180°, thereby destroying the isotropic response
of Rydberg atoms. The probe reception directivity pattern has been investigated in prior
research [31], which theoretically permits an ideal isotropic response to a linearly polar-
ized field to be measured [6]. Figure 2(d) depicts an illustration of the reception pattern
measurement setup. We use the definitions of the polar angles θ and azimuth angle ϕ in
spherical coordinate system that θ is the angle with respect to zr-axis and ϕ is the counter-
clockwise angle of the point of interst projected to xryr plane with positive xr-axis. Simul-
taneously, the directional dependence of the distribution of electric field enhancement is
characterized using measurements of the electric field reception pattern. The optical and
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Figure 2 The normalized receive-gain directivity patterns in EastWave FDTD of PPR1-PPR4 for manipulations
the structure asymmetry comparing with SRR. Reception field pattern for PPR1-PPR4 structure comparing
with SRR where (a) ϕ = 0◦ and θ scanning, (b) θ = 90◦ azimuth angle ϕ scanning and (c) ϕ = 90◦ polar angle
θ scanning. (d) Schematic of the PPR electric field reception pattern measurement setup (top) and the
definitions of the polar angles θ and azimuth angle ϕ in spherical coordinate system that θ is the angle with
respect to zr -axis and ϕ is the counter-clockwise angle of the point of interst projected to xryr plane with
positive xr -axis. The electric field polarization points along �z, magnetic field vector points along –�x and the
linear optical polarizations inside the cell along �z. PPR is placed at an initial position (xr , yr , zr ) = (0, 0, 0).
(e) Schematic diagram of PPR1-4

electromagnetic wave by the MW horn are linearly polarized along the zr axis. For the
horn antenna, the field propagation is in yr-direction. Then, the direction of the electric
field is along z-direction and magnetic field vector points along – �xr . The antenna gain at
2.1 GHz is 7.7 dB. The antenna’s H-plane –3 dB beamwidth is 70.2° and the E-plane is
75.4°. VSWR of the antenna ≤ 3.

The manipulation of electric and magnetic excitation enables the control of the re-
ception pattern. Long-distance propagation of electromagnetic waves is essentially plane
wave. The generation of an induced current is contingent upon the presence of an electric
field component that is aligned parallel to the metal plate. This particular type of excita-
tion is commonly referred to as an electric excitation. Induced currents can also be gen-
erated through magnetic resonance, in accordance with Faraday’s law of electromagnetic
induction. The receiving field pattern depicted in Fig. 2(b,c) is a result of both electric and
magnetic excitation, whereas Fig. 2(a) is only attributed to electric excitation. In Fig. 2(a),
the induced current I of the symmetrical resonator structure is expressed by

I = Im cos(θ ), (6)



Wu et al. EPJ Quantum Technology           (2024) 11:30 Page 6 of 17

where Im is maximum value of current. Here we define the normalized receive-gain
(Gnorm) of atomic antenna in decibels as

Gnorm = 20 lg
|E(θ ,ϕ)|

|E(θ ,ϕ)max| . (7)

As depicted in Fig. 2(a), when the angle θ is set to 0°, it is observed that the poten-
tial difference between the top and bottom plates of the asymmetric structure is unequal.
Consequently, this asymmetry leads to the generation of effective electric excitation. The
presence of an asymmetric structure eliminates the blind spots (reception zero point) in
field-enhanced Rydberg atomic antenna sensing.

2.4 Limitation sensitivity of PPR
To thoroughly understand the cost of introducing a metal PPR structure to the atomic
antennas, resistor thermal noise analysis is investigated. The Nyquist equation [32] can be
utilized to show the thermal noise power spectrum S(f ) (V2/Hz) since the resonant cavity
is a conductor and electrons flow about in it, which is a typical dissipative device,

S(f ) = 4kTR, (8)

R = ρ0
2lr + 2wr – g

h ∗ d0
, (9)

where k is Boltzmann constant, R is the resistor value, T is the physical temperature, ρ0

is electrical resistivity, d0 = 1/
√

π f μ0σ is electromagnetic skin depth and σ is electrical
conductivity.

Consequently, PPR resistor thermal noise analysis is proportional to physical tempera-
ture and resistor value. Thermal noise in resistors exists independently of the existence of
voltage or current in the conductor. Furthermore, we offer the noise voltage Vn =

√
4kTR

and the PPR size depicted in Fig. 1, which exhibits a resistor thermal noise level of
–174.32 dBm/Hz. This finding indicates that the sensitivity of the field-enhanced atomic
antenna is constrained by the thermal noise limit of the associated resistor, hence estab-
lishing the maximum achievable sensitivity.

3 Experimental implementation
The overall implementation for these experiments is illustrated in Fig. 3. Inset depicts Ry-
dberg states of cesium atoms inside vapor cells are probed by a two-photon Rydberg elec-
tromagnetically induced transparency(EIT) ladder scheme. There are two laser sources,
at 852 nm with a 1/e2 beam diameter of 800 μm, 8 μW power and approximately 510 nm
with beam diameter of 1.4 mm, 12 mW power for EIT interrogation of Rydberg states. The
852-nm laser is locked to the one of the 6S1/2 → 6P3/2 transitions with Rabi frequency �p.
The 510-nm laser is locked to the 6P3/2 → 50S1/2 transitions with Rabi frequency �c.

Smaller size compact-size portable measurement system is unitized compared with pre-
vious literature [31, 33–35], which comprises a dual wavelength integrated laser system
and a Rydberg fiber-integrated probe as shown in Fig. 3. The dual wavelength integrated
laser system, operating at 509 nm and 852 nm, relies on the narrow linewidth properties
exhibited by fiber lasers. 509 nm laser is achieved by the process of frequency doubling
using Periodically Poled Lithium Niobate crystals. Simultaneous entry of a fraction of the
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Figure 3 (a)Energy level diagram. (b)Overview of the experimental setup. We have also used the following
notations: local oscillator(LO), signal source(SIG). (c) Compact-size portable field-enhanced atomic antenna
prototype. Rydberg probe and a dual wavelength integrated laser system together composing the atomic
antenna. (d)Three-port fiber-integrated vapor cell Rydberg probe

Table 1 Performance comparisons of portable field-enhanced atomic antennas

Reference Volume dimensions[cm] Rydberg probe efficiency

[33] not mention 17%
[31] 45 × 60 × 120 not mention
[34, 35] space optical paths 40.4%
Our work 45 × 45 × 15 41.0%

stabilised 852 nm laser and a part of the 509 nm laser occurs within the EIT optical path
module. The remaining fractions of both lasers serve as the primary output. The resul-
tant EIT spectrum can be utilized to precisely control and lock the wavelength of the laser
at 509 nm. In addition, the Verilog software interface offers functionalities such as probe
and coupling frequency locking control, as well as spectrum waveform display. A compar-
ison of portable atomic antennas is presented in Table 1, which summarizes the specific
performance comparison with Rydberg fiber-integrated probes [31, 33–35] where volume
dimensions and probe efficiency are presented. The efficiency of this probe is transmis-
sion efficiency, defined as the ratio of power from output fiber of the 852 nm laser to the
probe input to output power after passing through gas chamber. Note that there is no cou-
pled optical input at this point and no electromagnetically induced transparency occurs.
For this work, the volume dimensions are significantly reduced compared with previous
atomic antennas [31, 33], under optimal Rydberg probe efficiency. It is crucial for practical
applications.

The experimental scene in the microwave anechoic chamber is formed by the wave-
absorbing material and metal shielding body. Conducting tests on antenna, radar, and
other wireless communication devices, as well as electronic products, within a microwave
anechoic chamber offers the advantage of minimizing clutter interference. This, in turn,
enhances the accuracy and efficiency of the testing process for the equipment being eval-
uated.
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4 Results
In our work described in this paper, there are three major experimental tasks: (i) verify
the resonator electric-field-enhancement factor and electric-field polarization response by
rotating the antenna, (ii) investigate the field-enhanced atomic antenna reception pattern,
(iii) characterize superheterodyne sensitivity(Appendix D).

4.1 Electric-field-enhancement factor and electric-field polarization response
In the off-resonant region, the Rydberg atomic energy level undergoes AC Stark shifts
in response to an applied microwave electric field. The electric field strength E and the
spectral shift �l follow quadratic correspondence [36]:

�l = –
E2

4
α0(ωRF ), (10)

where α0(ωRF ) is called as the dynamic scalar polarizability in the SI units of MHz/(V/m)2.
We utilize cesium 50S1/2 mj = 1/2 state EIT to detect about 2 GHz microwave field. Be-
cause α0(ωRF ) polarizability only factor to effect the electric field in the far off-resonant
of the Stark shift regime, we have not used 50D state EIT [37], where different mj = 1/2,
3/2, 5/2 have different polarizability [38]. We use a numerical Floquet theory [39] to cal-
culate the |50S1/2〉 Rydberg α0 = 53.7 MHz · cm2/V2 by fitting a quadratic relationship of
the AC shift of the 50S1/2 level at an microwave frequency of 2 GHz as shown in Fig. 4(a).
During the calculation, the Floquet program calls the ARC [40] calculator package to cal-
culate atomic parameters. The percentage error �f between the predicted 2.1 GHz and

Figure 4 (a) Rydberg state |50S1/2〉 AC Stark shift �l fitted to electric field. (b)Measured enhancement factor
versus microwave field frequency. (c)EIT spectra of the Rydberg state |50S1/2〉 acquired without microwave
field (black curve), with an applied 2 GHz 0.5 dBmmicrowave field and resonator (red curve) and with an
applied 2 GHz 25 dBmmicrowave field (blue curve). The figure shows red and blue curve have same AC shift
�l of about 4.24 MHz. (d)Normalized electric-field polarization response by rotating the antenna, the error
bars representing the standard deviation
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the actual measured data is 5% by the following formula:

�f =
|fSimulation – fMeasure|

fMeasure
, (11)

where fSimulation is FDTD simulated resonant frequency 2.1 GHz (Appendix C Fig. 7(a)),
fMeasure is measured resonant frequency 2 GHz.

The properties of measured enhancement factor frequency response are thoroughly ex-
plored to elucidate the resonant frequency. Figure 4(b) shows the evolutions of enhance-
ment factor with the increment of microwave frequency where dots correspond to exper-
imental results. It indicates that the resonator has a maximum measured E-field enhance-
ment factor at 2 GHz and has a fairly narrow frequency response. The observed decline in
the experimental quality factor Q = 17 compared to the numerical curve Q = 20 (as shown
in Appendix C Table 3), as well as the frequency shift from 2.1 GHz to 2 GHz, can be as-
cribed to the following factors: first, the cell inner surface has nonzero conductivity due to
the adsorption of alkali-metal atoms [41] electric-field-screening effect; Second, the res-
onator metallic losses and minor differences in manufacturing dimensions may also lead
to a reduction in the quality factor.

Figure 4(c) shows EIT spectra of the Rydberg state |50S1/2〉 without (black curve) and
with incident microwave fields when the signal source feeds a signal of 2 GHz, 25 dBm cor-
responding to the blue curve and 0.5 dBm with resonator corresponding to the red curve.
Note that applied microwave field at 2 GHz induces a red-shift and the red and the blue
curves have the same AC shift �l about 4.24 MHz (corresponding to the same detectable
E-field strength) can be obtained by attenuating to 24.5 dBm after loading the resonator.
Thus, the resonator provides electric-field enhancement factor of 17 (10(24.5/20) = 17). The
experimental results indicate that the electric field at the same probe location is mea-
sured to be 17 V/m. For the same test method, the resonant frequencies of PPR3, PPR4
are 2.02 GHz and 2.06 GHz, respectively, with electric-field enhancements of 23 dB and
21.5 dB.

Figure 4(d) illustrates the normalized experiment and numerical results when the E-field
is rotated from z-polarization (κ = 0◦) to y-polarization (κ = 90◦). The slight discrepancy
between these results could be attributed to imprecision of the antenna’s rotation, where
black dots correspond to experimental results, and blue curves correspond to fitting line.

4.2 Field-enhanced atomic antenna reception pattern
Figure 5 demonstrates measured and FDTD simulated normalized receive-gain pattern
response of the symmetrical and asymmetrical PPR. Antenna pattern roundness is defined
as the deviation between the maximum and minimum level value from the mean value in
a horizontal plane directional pattern. Figure 5(a) shows that the proposed asymmetrical
PPR4 breaks the rotational symmetry so that the roundness of the PPR4 is reduced to
7.8 dB from symmetrical PPR1 21.5 dB and symmetrical SRR 39 dB. Figure 5(b,c) shows
that PPR1,3,4 appear isotropic when azimuth angle ϕ and polar angle θ scanning.

To illustrate the advantage and novelty of this work, Table 2 summarizes the specific
performance comparison with pattern roundness, resonant frequency f and enhancement
factor F. Given the absence of prior investigations [13, 14, 16, 17] into the directionality
of the field-enhanced Rydberg atomic antennas, we conducted an analysis of the pattern
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Figure 5 Measured and FDTD simulated normalized receive-gain pattern response of the symmetrical and
asymmetrical PPR. Reception field pattern for PPR1,3,4 where (a) ϕ = 0◦ and θ scanning, (b) θ = 90◦ azimuth
angle ϕ scanning and (c) ϕ = 90◦ polar angle θ scanning. The black dots are experimental data and the solid
lines are FDTD simulation data

Table 2 Performance comparisons of pattern roundness, resonant frequency f and enhancement
factor F in previous literatures [13, 14, 16, 17]

Reference Pattern roundness (dB) f (GHz) F (dB)

[13, 14] 46.7 4.35 24
[16] 39 1.309 40
[17] 16.6 19.629 7.9
This work PPR1 21.5 2 24.5
This work PPR4 7.8 2.06 21.5

roundness based on FDTD simulations utilizing the structural parameters from the previ-
ous literature. Compared with the works in References, it is shown that pattern roundness
of PPR4 reaches a minimum of 7.8 dB.

5 Conclusion
In summary, we have studied how to eliminate sensing blind spots of field-enhanced Ry-
dberg atomic antenna with asymmetrical PPR structures. Our results have shown that, as
the length of the upper edge gradually decreases, the asymmetry from PPR1 to PPR4 grad-
ually increases, with PPR4 having the smallest roundness of 7.8 dB, which is significantly
lower compared to the symmetrical SRR structure (39 dB). Importantly, a comprehensive
theoretical approach is provided for the electric field-enhanced behaviors of PPR. Finally,
we have demonstrated that the theoretical upper limit of electric field enhancement for
field-enhance atomic antennas by resistor thermal noise is –174.32 dBm/Hz. In a broader
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view, our ideas may still be instructive for optimal parameter options to control recep-
tion directivity. Thus, our findings demonstrate promising results in the application of
full-coverage space communication.

Appendix A: Estimation of resonance frequency and characteristic impedance
Inductance L Eq. (12) [42], capacitance of the gap Cgap Eq. (13) [43], surface capacitance
Csurf Eq. (14) [44], resonant frequency f and characteristic impedance Z0 for a rectangular
loop with a rectangular cross-section can be calculated.

L =
(

pe
μ0

π

[
(lr + wr) ln

(
lrwr

d + h

)
– lr ln

(
lr +

√
l2
r + w2

r

)
–

lr + wr

2

– wr ln
(

lr +
√

l2
r + w2

r

)
+ 2

√
l2
r + w2

r + 0.447(d + h)
])

,
(12)

Cgap = ε0

[
(h + g)(d + g)

g

]
, (13)

Csurf = (h + d)
∫

l

ρ(l)
V (l)

dl, (14)

f =
1

2π
√

L(Cgap + Csurf )
, (15)

Z0 =

√
L

Csurf
, (16)

where weighting factor pe = 1 – g/4lr , μ0 is magnetic permitivity, ε0 is free space permit-
tivity, ρ is the charge density and V is the voltage between two symmetric points on the
surface.

Appendix B: Potential � derivation
The currently available analytical expression for the potential is for the disc condition, but
in our device it is a rectangular, so a transformation is required. The potential � in the
disc boundary coordinate can be changed to the rectangular boundary coordinate by a
coordinate change conformal mapping. The simplified expression of the potential � [45]
in the disc boundary coordinate can be represented as

�(r,φ) =
Vgap

π
tg–1

(
r cosφ – 1

r sinφ

)
+

Vgap

2
sign(π – φ). (17)

Assuming the input disc coordinates are (u, v), the output square coordinates are (xs, ys),
and the output rectangular coordinates are (xr , yr). As shown in Fig. 6, the circle radius r
is equal to 1, the square side length ls is equal to 2, and the rectangle length is lr and its
width is wr .

Based on conformal mapping [46, 47], a square to a disc mapping can be represented as

u = Re

[(
1 – i√

2

)
cn

(
Ke

1 + i
ls

(xs + ysi) – Ke,
1√
2

)]
, (18)

v = Im

[(
1 – i√

2

)
cn

(
Ke

1 + i
ls

(xs + ysi) – Ke,
1√
2

)]
, (19)
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Figure 6 Circle to rectangle pipeline

where cn is a Jacobi elliptic function, Ke =
∫ π/2

0 dt/
√

1 – 1/2 sin2 t. Through square-to-disc
mappings, we can extend it to handle rectangle. The rectangular and square coordinates
are directly related as follows:

xs

ls
=

xr

lr
,

ys

ls
=

yr

wr
. (20)

Substituting Eq. (18)(19)(20) back to the Eq. (17)

�(z) =
Vgap

π
tg–1

(Re[cn(z′, 1√
2 )] + Im[cn(z′, 1√

2 )] –
√

2

– Re[cn(z′, 1√
2 )] + Im[cn(z′, 1√

2 )]

)
, (21)

x′ = Ke ×
(

xr

lr
–

yr

wr

)
– Ke, y′ = Ke ×

(
xr

lr
+

yr

wr
)
)

, (22)

where z = xr + yri, z′ = x′ + y′i, Re[cn(x′ + y′i)], Im[cn(x′ + y′i)] can be calculated by the for-
mulas [28, 29]. These steps are summarized in the Fig. 6. Here, based on the conformal
mapping of a circle onto a rectangular, we get the Eq. (21) potential expression of rectan-
gular coordinates.

Appendix C: Transient forming processes, contribution of the electric field, and
effect of the cell

Since a resonator needs relaxation time to achieve steady state, it is required that the pulse
width of the microwave signal must be greater than the relaxation time [48] to ensure the
regular operation. By comparison with and without cell in Fig. 7(a), the resonant frequency
experiences a sharp downward trend from without cell to with cell. FDTD simulation with
a 1 V/m single-frequency continuous wave excitation source is performed, and numerical
curves are obtained, as illustrated in Fig. 7(b). The fitting equation for the transient field
E is [49] Eq. (23).

E(t) = F
(
1 – e– t

τ0
)
, (23)

where F is the field enhancement factor, τ0 (τ0 = CQ/f0) is the relaxation time, C is a con-
stant determined by the resonator, f0 is the resonant frequency, Q (Q = f0/BW ) is the qual-
ity factor, and BW is the 3 dB bandwidth.

As shown in Fig. 7(b), τ0 is approximately 4 ns, BW is 90.3 MHz, and Q is 23. Relax-
ation time is less than the Rydberg atomic decoherence time, which is approximately on
the order of microseconds [50]. The theoretical calculation is consistent with the FDTD
simulation. In conclusion, from Table 3 we can clearly see the performance comparison of
the fitting line parameters on the basis of 2.1 GHz resonant frequency. Table 3 illustrate
that the field enhancement factor F decreases from 32 with cell (Curve 3) to 20 without cell
(Curve 2), the relaxation time τ0 falls by 2.1 ns, the 3 dB bandwidth BW rises by 64 MHz,
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Figure 7 (a)The comparison of E-field versus frequency three curves. Curve 1 lr = 24.1 mm without cell(blue
dotted line), curve 21 lr = 19.2 mm without cell(red dotted line), curve 21 lr = 19.2 mm with cell(yellow solid
line). (b)Simulated transient response of E field strength. (c) The insert shows a zoom in the transient response.
(d-g) The intensity graphs show the measured time dependent out-of-plane electric field E(t) distribution at
successive times t = 0.18 ns (d), 0.26 ns (e), 0.48 ns (f ), and 0.7 ns (g), respectively

Table 3 Comparison of fitting lines’ field enhancement factor F, relaxation time τ0 (ns), 3 dB
bandwidth BW (MHz), distance lr (mm), quality factor Q, and constant C in the case of curves 1,2,3

F τ0 BW lr Q C

Curve 1 28 3.5 88 24.1 24 3.1
Curve 2 20 2.5 134 19.2 18 2.9
Curve 3 32 4.6 70 19.2 30 3.1

and the quality factor Q is 18 without cell, compared to 30 with cell. Inset Fig. 7(c) illus-
trates a zoom in the transient response. The time dependent electric field measured at
the probe position is shown in (d-g) are marked by black dots. Figure 7(d)–(g) were ex-
tracted from a movie showing the full time dependent electric field distribution E(Y , Z, t).
The color scale indicates the calibrated electric field. This helps to better analyse the res-
onance process to understand the resonance principle. The plane wave propagates from
left to right, and the electric field is gradually enhanced at the open-end, after steady state,
the electric field around the resonant structure is also enhanced, but remains strongest at
the open-end.

Figure 8 illustrates an E-field distribution comparison at resonant frequency between the
FDTD simulated a square cross-section vapor cell with solid walls depicted in Fig. 8(b),
and without cell depicted in Fig. 8 (a). In the bottom Fig. 8, we present the cumulative his-
tograms (Fig. 8(c)) and histograms of normalized E-field (Fig. 8(d)) generated by sampling
a cylinder region of approximately ten million samples. The diameter of the cylinder is
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Figure 8 (a)(b)Comparison E-field distribution without and with cell corresponding to Table 3 curve2,3. The
figure shows a simulation scenario. (c)Cumulative histogram of the normalized electric field within the beam.
(d)Histograms of the normalized electric field

1 mm, which is a reasonable size for both the probe and the coupling beam. The FDTD
simulation results clearly demonstrate the differences between the two scenarios, with
cell having a significant impact on the E-field homogeneity. To improve the homogeneity
within the cell, consider using a vapor cell with perforated walls [51]. Overall, the relative
dielectric constant εr of cell wall is not equal to 1, which renders much larger electrical
size. Changes in the refractive index n (n = √

εr) parameters of the cell walls in FDTD
simulations, with and without the cell, can greatly impact the resonant frequency, where
εr is relative permittivity. Due to the small size of vapor-cell compared to the wavelength of
the E-field, the effects of the vapor cell on the measured rf E-field are not significant [52].

Appendix D: Superheterodyne sensitivity of field-enhanced atomic antenna
In order to investigate the superheterodyne sensitivity that is theoretically defined as the
minimum detectable power when the signal to noise ratio decreases to 1, two signal gen-
erators are utilized. The LO microwave source frequency is 2 GHz, while the frequency
of the weak SIG is 2 GHz + 100 kHz, with a detuned frequency of 100 kHz. The 100 kHz
detuned frequency means that once the coupling laser is set, the probe laser intensity will
oscillate at a beat-note frequency of 100 kHz. The results indicate that the Rydberg atom
can achieve a function similar to a mixer and accurately down-convert the microwave sig-
nal according to the frequency of the LO signal. The spectral analyzer has a 1 Hz resolution
bandwidth.

Additionally, this emphasizes the importance of taking these potential errors sources
into account when performing experiments and simulations to obtain more accurate re-
sults. As the resonance-based system is more sensitive to errors, this paper take all the
cell walls refractive index and metal reflections into account. The issues of metal reflec-
tions, space scattering disturbance can appear multi-reflections inside the cell and stand-
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Figure 9 Results from the Rydberg-atom superheterodyne, plots of the beat-note intensity of the spectrum
analyzer as functions of signal generator, the error bars representing the standard deviation of sensitivity

ing waves disturbance(or resonances) [2]. The E-field strength in space can be expressed
as [53]:

E = F0
1√

2πcε0

√
PSIGGTL

R
, (24)

where c is the light speed in vacuum, ε0 is the permittivity of free space, R = 0.05 m is the
distance from antenna to the laser beam, F0 is the perturbation factor caused by space
scattering and standing wave(or resonances) disturbance in the cell, PSIGGTL is the radi-
ated power of microwave (PSIGGTL = PSIG + GT – L, PSIG represents the output power of
signal source, GT = 11 dB represents the gain of antenna, L = –1.5 dB represents the in-
sertion loss of transmission line). The parameter F0 which can be determined numerically
or experimentally [2, 54] is estimated F0 ≈ 0.411 for 2 GHz according to the electric-field.

As shown in Fig. 9, the beat-note intensity from the spectrum analyzer is a function of
signal generator for the cases with resonator in blue curve and without in black curve. As
indicated by the two black circles, the two curves are shifted along the x-axis by indicat-
ing an enhancement of 24 dB. This work identifies the intersections of the linear response
curves and the noise floor of the spectrum analyzer as sensitivity. Ultimately, we find that
resonator allows for a sensitivity of 2 μV/cm/

√
Hz, which is 16.7 times of magnitude im-

provement in sensitivity than without resonator, which allows for 336 μV/cm/
√

Hz.
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