
Hu et al. EPJ Quantum Technology           (2024) 11:28 
https://doi.org/10.1140/epjqt/s40507-024-00241-1

R E S E A R C H Open Access

Quantum image representations based on
density matrices in open quantum systems
Yingying Hu1, Dayong Lu1*†, Qianqian Zhang1† and Meiyu Xu2†

*Correspondence:
dayonglu@163.com
1School of Mathematics and
Statistics, Henan University, Kaifeng,
475001, China
Full list of author information is
available at the end of the article
†Equal contributors

Abstract
So far, research on quantum image representation has gone through more than 20
years. During this time, the quantum image representation models used have almost
all been based on state vectors. However, in practical problems, the environment and
the principal quantum system cannot be separated, and isolated quantum systems
do not exist in principle. This case is often referred to as an open quantum system. In
open quantum systems, many problems involve density matrices, such as the
calculation of Von Neumann entropy, the quantization of coherence, and the
operator-sum representations of quantum operations. Therefore, the existing
quantum image representation models are only suitable for closed quantum systems.
To this end, the paper proposes three models that can not only represent quantum
images in an open quantum system but also decompose the evolution process of
quantum images utilizing operator-sum decomposition. These three models are the
representation model of quantum gray-scale images, the tensor product
representation model of quantum color images, and the representation model of
quantum color images based on mixed states in the Bloch sphere, respectively. All
these image representation models have strong correlations among them and are
very different from their classical analogues. Between them, the biggest difference is
that the paper employs density matrices, inspired by incoherent-coherent states, to
represent quantum images rather than classical state vectors. By means of one of the
representation models proposed in the paper, we finally demonstrate the evolution
process of the quantum image going through the amplitude damping channel.

Keywords: Open quantum systems; Image representations models; Bloch sphere;
Quantum noise channels

1 Introduction
In recent decades, the combination of quantum computing [1] and digital image process-
ing [2] has been extensively studied. Quantum image processing (QIP) [3], an area focused
on extending conventional image processing tasks and operations to the quantum com-
puting framework, is the new sub-area that has emerged in that regard. The most fun-
damental problem in this field is the problem of quantum image representation (PQIR)
[4–7], the development process of which can be divided into two stages. The first stage
starts with the Qubit Lattice representation of quantum images proposed by Benegas-
Andraka and Boshi [8] in 2003. This was closely followed by Entangled Image [9] and Real
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Ket [10] representation models. In the second stage, the flexible representation of quan-
tum images (FRQI) [11] was proposed in 2011, followed by the novel enhanced quantum
representation of digital images (NEQR) [12] was proposed in 2013, and they are generally
considered pioneers of this phase.

However, these representations and applications of quantum images mentioned above
are all in closed quantum systems, which require the principal system not to interact with
the external environment. In the classical system-environment division, the environmen-
tal perturbations to the system can be arbitrarily reduced until their effects are negligible
through rational design and division. But the quantum system-environment division is
different from that of the classical system-environment, everything that happens in the
principal system is always in extensive entanglement with the external environment and
even if the energy and matter transfer on the boundary is small enough to be negligible,
this entanglement still has a huge impact. Thus, the environment and the principal system
can never be separated, and isolated quantum systems cease to exist in principle.

In real physical systems, no matter how weak the coupling that can prevent the principal
system from being isolated, the evolution of an open quantum system [13] is eventually
plagued by non-unitary features like decoherence and dissipation. The so-called quan-
tum decoherence [14] here is a purely quantum-mechanical effect whereby the system
loses its ability to exhibit coherent behavior by getting entangled with the ambient de-
grees of freedom. Decoherence stands as a serious obstacle common to all applications
relying on the capability of maintaining and exploiting quantum coherence. According to
the DiVincenzo criteria [15], we require relatively long decoherence times to ensure co-
herence is preserved during gate operations. Therefore, when the quantum systems we
are interested in are no longer isolated or closed but become open quantum systems, it
is necessary to quantify the coherence of quantum images in the evolution process. This
allows us to better understand and control the effects of these non-unitary features (which
can be considered as noise in quantum information processing) on the system’s evolution,
and take appropriate measures to reduce their negative impact. Hence, it is of significant
importance to find better ways to represent quantum images for the future development
of quantum image processing.

In the framework of quantum Internet [16], the study of methods and techniques for
open-system quantum communication is crucial for building efficient quantum commu-
nication networks. Distributed gate models [17] can be used to construct complex and
powerful quantum computing networks, where multiple gate model quantum computers
can operate and exchange information in a distributed manner. In quantum image trans-
mission, especially under the open system, the effects of noise and distortion need to be
considered. At this time the capacity of the quantum noise channel [18] is an important
consideration, i.e., the maximum amount of quantum information that can be transmitted
in a channel affected by quantum noise. Therefore, when designing and implementing a
distributed gate model quantum computing setup, one needs to consider how to ensure
the integrity and accuracy of quantum image transmission. The interplay of these aspects
promotes the development of the fields of quantum computing and quantum communi-
cation, helps to build more reliable quantum communication systems, and promotes the
application of quantum technology in various fields.

Inspired by the above problem, the paper considers the PQIR in open quantum systems
and gives three specific representation models that can be used to quantify coherence
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[19–21] and analyze the dynamic conditions of coherence completely unaffected by noise
in open quantum systems. Since the principal system is entangled with the environment
in an open quantum system, it is usually described by a mixed state rather than a pure
state of the wave function. On this occasion, the following advantages of the state density
matrix are demonstrated:

• The density matrix can accurately and completely characterize all measurement prop-
erties of open quantum systems.

• Some rigorous frameworks have been proposed to quantify coherence and determine
intuitive and computable measures of coherence.

• It can be used to calculate Von Neumann entropy, entropy exchange, and operator-
sum representations of quantum operations.

Therefore, the paper utilizes the density matrix to store the gray value of each pixel and
completes the preparation process by performing rotation operations on the surface of the
Bloch sphere.

The rest of the paper is organized as follows:
–Sect. 2 presents the preliminary knowledge,
–Sect. 3 gives three novel models for representing gray-scale images and RGB color

images in open quantum systems and gives the process of quantum image preparation,
–Sect. 4 introduces the environments and quantum noise channels and gives an example

of a quantum image coupling with the environment.
Finally, we draw conclusions and outline possible future research tracks.

2 Related work
To date, various quantum image-representation model have been proposed to store and
process image information, in quantum computing, such as qubit lattice, entangled image,
real ket representation, flexible representation of quantum images (FRQI), novel enhanced
quantum representation of digital images (NEQR).

In FRQI, a normalized superposition is used to store used to store position and gray-
scale information for all the pixels in an image. The main drawback of this model is that
FRQI uses only one qubit to store the gray-scale information of each pixel in the image,
which cannot process complex color operations. To improve FRQI, the following proposed
NEQR model uses two entangled qubit sequences to store the gray-scale and position in-
formation and stores the whole image in the superposition of the two qubit sequences.
However, since NEQR can only represent square images of size 2n × 2n, it cannot be ap-
plied to more rectangular images. To solve this problem, NEQR was improved into INEQR
[22] to represent quantum images of size 2n1 × 2n2

Furthermore, since in image representation and processing, we usually treat quantum
images as two-dimensional data, which are typically represented by floating-point num-
bers. Therefore, in 2020, Zhang [23] et al. improved the representation of quantum images
by increasing the pixel size from positive integers to floating-point representations. This
enhancement allows for a finer and more flexible representation of quantum images of ar-
bitrary size, enabling the representation of arbitrary sized 2-D data and accommodating
element values of arbitrary precision. Additionally, this method not only handles two-
dimensional data of arbitrary size but also facilitates the processing of three-dimensional
data through dimensionality reduction. Furthermore, fewer qubits are needed after the di-
mensionality reduction process compared to the direct preparation of three-dimensional
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data. This proposal integrates information about a H × W 2-D data into a quantum state
having it formula in (2.1):

|D〉 =
1√
2h+w

(H–1∑
Y =0

W –1∑
X=0

|SYX〉F ⊗ |YX〉
)

, (2.1)

here, |YX〉 is the location information, |SYX〉F can store a floating-point number of 2-D
data. Therefore, these latest models are also improvements on the FRQI as well as the
NEQR. Subsequently, numerous research results in the field of quantum computing have
emerged, including the QIC algorithm [24–26], floating point quantum algorithm [27, 28],
image scrambling [29], quantum encryption [30], quantum neural networks [31, 32] and,
so on.

However, all the above representations are based on closed quantum systems, inspired
by [33], when a quantum image transmits quantum information through a noisy channel
(i.e., a channel that is not isolated from the environment), assuming that the quantum
image is the primary system and undergoes a dynamic evolution process, which can be
expressed as the transmission of a quantum image through a noisy quantum channel, the
evolution process from initial state to final state is described using density matrices. At the
same time, the fact of mathematically describing the evolution of the quantum image in a
noisy channel need to use the operators-sum representations of the noisy channel, which
inevitably concern the density matrix. Also the use of density matrix description paves the
way for the quantization of coherence as well as frozen coherence in future researches.

3 Preliminaries
In this section, we introduce the basic concepts and some knowledge about the Bloch
sphere and present the definition of the incoherent-coherent state [34–36].

3.1 Bloch sphere
Comparing the 0 and 1 of classical bits, the two possible states of a single qubit are |0〉 and
|1〉. In three-dimensional Bloch Sphere, a qubit can be written in the form as:

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (3.1)

where | cos θ
2 |2 and |eiφ sin θ

2 |2 respectively represent the probability of becoming |0〉 and
|1〉, also they satisfy the normalization condition: | cos θ

2 |2 + |eiφ sin θ
2 |2 = 1. Among them,

0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , and eiφ is the relative phase factor. In the Bloch sphere, a point P
can be determined by two angles θ and φ, i.e., the state vector corresponds to a point on
the surface of the Bloch sphere, as it is shown in Fig. 1.

Before we describe the specific use of density matrices in QIP, it is important to introduce
the related knowledge of density matrices. To do so, let us first consider the density matrix
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Figure 1 Qubit Bloch sphere

for a single-qubit pure state |ψ〉 as follows:

ρ(θ ,φ) = |ψ〉〈ψ |

=
(

cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉
)(

cos
θ

2
〈0| + e–iφ sin

θ

2
〈1|
)

=

(
cos2 θ

2 e–iφ cos θ
2 sin θ

2
eiφ sin θ

2 cos θ
2 sin2 θ

2

)
.

(3.2)

Next, let Bloch vectors �υ = (υ1,υ2,υ3), where υ1 = sin θ cosφ, υ2 = sin θ sinφ, υ3 = cos θ ,
then (3.3) can be rewritten as follows:

ρ(θ ,φ) =
1
2

([
1 0
0 1

]
+ υ1

[
0 1
1 0

]
+ υ2

[
0 –i
i 0

]
+ υ3

[
1 0
0 –1

])

=
(I + �υ · �σ )

2
.

(3.3)

Now, since the amplitude of the Bloch vector is unity for a pure state, i.e., υ2
1 +υ2

2 +υ2
3 = 1,

this is perfectly consistent with the definition of a pure state and we may conclude that the
points on the surface of the Bloch sphere depict pure states. Reference [1] also shows that
mixed states can be characterized by the condition υ2

1 + υ2
2 + υ2

3 < 1, thus the single-qubit
mixed states can be represented by the points inside the Bloch sphere.

3.2 Incoherence-coherence state
Quantum coherence represents a basic feature of quantum systems that is not present in
the classical world. Coherence is regarded as a precious resource that cannot be generated
or increased under a restricted class of operations known as incoherent operations. Unlike
other resources, quantum coherence is a basis dependent quantity, a quantum state ρ is
said to be incoherent in a given reference basis {|i〉}, if the state is diagonal in this basis,
i.e., if ρ =

∑
ipi|i〉〈i| with some probabilities pi.

In Chitambar’s research assisted coherent distillation task [34], this task arises naturally
in bipartite systems where both parties work together to generate the maximal possible co-
herence on one of the subsystems. For a bipartite system, the reference basis is assumed to
be a tensor product of local bases. So in the bipartite system, if a quantum state is called an
incoherent-coherent state, then such a state has the following form: ρ =

∑
ipi|i〉〈i|A ⊗ ρB

i .
Here, ρB

i are arbitrary quantum states on quantum subsystem B, and the states |i〉A belong
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to the local incoherent basis of quantum subsystem A. Similarly, it is called a coherent-
incoherent state if it can be written as ρ =

∑
ipiρ

A
i ⊗ |i〉〈i|B. Incoherent-coherent and

coherent-incoherent states are incoherent in one subsystem.
Despite the fundamental importance of quantum coherence, only very recently have

relevant first steps been introduced to a rigorous framework for the quantification of co-
herence and identified some intuitive and computable measures of coherence [19]. In fact,
for the incoherent-coherent state, since one postulate for coherent measurements requires
that C(ρ), the coherence of ρ , does not increase on average under selective incoherent op-
erations, then

C(ρ) ≥
∑

i

piC
(|i〉〈i|A ⊗ ρB

i
)

=
∑

i

piC
(
ρB

i
)
,

for which we choose the incoherent operation for the local projective measurements
{|i〉〈i|} on the first subsystem. Another postulate for coherent measurements requires that
C(ρ) is a convex function of density matrices, which implies

C(ρ) ≤
∑

i

piC
(|i〉〈i|A ⊗ ρB

i
)

=
∑

i

piC
(
ρB

i
)
.

Therefore, the coherence of incoherent-coherent and coherent-incoherent states is the
average of the coherent parts, which proves that the coherence of the incoherent-coherent
states can be quantized.

4 Image representation in open quantum systems
All real-world quantum systems always interact with their surroundings to a greater or
lesser extent, so that quantum decoherence occurs, such the quantum systems are often
called open quantum systems. Representation of quantum images in open quantum sys-
tems becomes a crucial step in exploring quantum computers with noise for practical ap-
plications. But the quantum image representation models used so far, such as FRQI and
NEQR given in (4.1) and (4.2) respectively, are all represented in the form of state vectors
as follows:

|IFRQI〉 =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

(
cos θYX |0〉 + sin θYX |1〉)|YX〉, (4.1)

|INEQR〉 =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

∣∣f (Y , X)
〉|YX〉

=
1
2n

2n–1∑
Y =0

2n–1∑
X=0

∣∣C0
YXC1

YX . . . Cq–2
YX Cq–1

YX
〉|YX〉.

(4.2)

Therefore, the desired density matrices corresponding to (4.1) and (4.2) can be obtained,
respectively, by

ρFRQI =
1

22n

2n–1∑
Y =0

2n–1∑
X=0

2n–1∑
Y ′=0

2n–1∑
X′=0

(
cos θYX |0〉 + sin θYX |1〉)(cos θY ′X′θ〈0| + sin θY ′X′ 〈1|)

⊗ |YX
〉〈

Y ′X ′∣∣
(4.3)
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Figure 2 ρ(θYX , 0) on the surface of the Bloch sphere

and

ρNEQR =
1

22n

2n–1∑
Y =0

2n–1∑
X=0

2n–1∑
Y ′=0

2n–1∑
X′=0

∣∣f (Y , X)〉〈f (Y ′, X ′)∣∣⊗ |YX〉〈Y ′X ′∣∣. (4.4)

It is intuitively obvious that both ρFRQI and ρNEQR are so complex that their storage and
preparation would require a large number of resources, which question demands us to
find new tools to represent quantum images in open quantum systems.

4.1 Representation of quantum gray-scale images
In this subsection, combining the encoding method given by FRQI with the incoherent-
coherent state, a novel representation for gray-scale images based on density matrices is
proposed. Furthermore, the time complexity of the preparation process is also discussed.

The representative expression of a quantum image in the size of 2n × 2n can be written
as follows:

ρ =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ1(θYX),

θYX ∈
[

0,
π

2

]
, Y = 0, 1, . . . , 2n – 1; X = 0, 1, . . . , 2n – 1,

(4.5)

where |Y 〉〈X| encodes the information about position, and ρ1(θYX) is a density matrix re-
lated to θYX , which encodes the gray-scale value corresponding to pixel (Y , X) and is specif-
ically expressed as follows:

ρ1(θYX) =
(
cos θYX |0〉 + sin θYX |1〉)(cos θYX〈0| + sin θYX〈1|)

=

(
cos2 θYX cos θYX sin θYX

sin θYX cos θYX sin2 θYX

)
.

(4.6)

It is obvious that formula (4.4) is equivalent to formula (3.3) with φ at 0, i.e., ρ1(θYX) =
ρ(θYX , 0). This interesting consequence inspires us to represent the intensity in the gray-
scale image by employing the quantum states in the Bloch sphere with φ at 0. As shown
in Fig. 2, ρ1(θYX) = ρ(θYX , 0) is the quantum state in the dashed part of the Bloch sphere.
Therefore, only the dashed part of the Bloch sphere is used to encode the gray scale.
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Figure 3 A 2× 2 example image and its representative expression in an open quantum system

Figure 3 shows a 2×2 quantum image. Compared with the example of FRQI, the obvious
difference is that this model utilizes the density matrix to represent the gray scale of pixels
instead of the probability amplitude of a single qubit in FRQI.

In quantum computing, computers are usually initialized in well-prepared states. There-
fore, the preparation process of transforming the quantum computer from the initializa-
tion state to the desired quantum state is necessary. The differences between the evolution
of the state vector and that of the density matrix during the preparation process can be
specifically described as

|ψ〉 U−→ U|ψ〉 and ρ = |ψ〉〈ψ | U−→ U|ψ〉〈ψ |U† = UρU†. (4.7)

There are two ways to prepare the desired quantum states in (4.5). One is based on the
relevance of the evolution process between the state vector and the density matrix in (4.7).
As a result, in the preparation process, the newly proposed gray-scale image representa-
tion, which is encoded based on the density matrix, can replace the state vector in FRQI.
Also the same evolutionary operator Ry is adopted in both preparation processes, so it can
be concluded that the time complexity of both methods is the same.

The other method is that we take advantage of the fact that the dashed part on the Bloch
sphere shown in Fig. 2 represents the intensity of the quantum gray-scale image. So, we
can apply the rotation operators to realize the preparation of pixel gray-scale information.
Recall that

Rx(θ ) =

[
cos θ

2 –i sin θ
2

–i sin θ
2 cos θ

2

]
, Ry(θ ) =

[
cos θ

2 – sin θ
2

sin θ
2 cos θ

2

]
, Rz(φ) =

[
1 0
0 eiφ

]
.

Any quantum state on the Bloch sphere can be realized by the rotation operators Rz(φ)
and Rx(θ ) acting on the |0〉, i.e.,

Rz

(
φ +

π

2

)
Rx(θ )|0〉 =

[
1 0
0 ei(φ+ π

2 )

][
cos θ

2 –i sin θ
2

–i sin θ
2 cos θ

2

][
1
0

]

= cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉.

(4.8)

When discussing the preparation process of gray-scale images in this method, it is worth
noting that in equation (4.8), when φ = 0, the effect of Rz(φ + π/2)Rx(θ ) acting on |0〉〈0| is
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Figure 4 The quantum gray-scale image circuit of Fig. 3 and its equivalent form

equivalent to that of Ry(θ ) acting on |0〉〈0|, i.e.,

Rz(π/2)Rx(θ )|0〉〈0|R†
x(θ )R†

z (π/2)

=

[
1 0
0 i

][
cos θ

2 –i sin θ
2

–i sin θ
2 cos θ

2

][
1
0

][
1 0

][ cos θ
2 –i sin θ

2
–i sin θ

2 cos θ
2

][
1 0
0 i

]

=

(
cos2 θYX cos θYX sin θYX

sin θYX cos θYX sin2 θYX

)

= Ry(θ )|0〉〈0|R†
y(θ ).

Therefore, the quantum gray-scale image circuit of Fig. 3 and its equivalent form can be
shown in Fig. 4. In addition, the position information setting in the circuit will be described
in detail in Sect. 4.4, Fig. 9.

Recalling the facts that the first preparation method employs the rotation operator Ry(θ ),
and the second one utilizes the composite of the rotation operator Rz(φ)Rx(θ ), it follows
from the above equation that the two preparation methods are equivalent, Therefore, the
time complexity of the preparation process of (4.5) is similar to that of FRQI.

In contrast, when using the FRQI model or the NEQR model to represent a quantum
image in an open quantum system, 4n qubits are required to generate the density matrix
which stores the position information as far as the position information is concerned,
consuming a large amount of resources. However, only 2n qubits are needed to store the
position information when the density matrix represents the quantum image, saving 50%

of qubits. Moreover, as for the computational efficiency, which refers to the complexity
of the preparation process, i.e., the number of quantum universal gates, by the way the
density matrix shown in Eq. (4.7) evolves, we can learn that the time complexity of the
preparation process in Eq. (4.5) is similar to that of FRQI. As for the use of the latest models
simply changing the storage of gray values on the basis of FRQI as well as NEQR, the
preparation process is similar. Therefore, this approach effectively saves precious qubits
and has a unique advantage in dealing with the dynamical evolution of open quantum
systems.
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4.2 Tensor product representation of quantum color images
The RGB color representation model is one of the most commonly used multi-channel
color models, which produces new color information by combining three channels of
color information: red, green and blue. Using the RGB color model, a color image can be
decomposed into three gray-scale channel images. As mentioned above, the FRQI model
has widespread appeal in quantum color images. Inspired by the representation technique
in Sect. 4.1, i.e., the gray value at each pixel can be encoded by a pure state ρ(θ ,φ) with
φ = 0 on the surface of the Bloch sphere. A question arose naturally: Whether the encoding
technique for gray-scale images can be extended to RGB color images?

The way to deal with this problem is as follows: The gray value information at each pixel
is still encoded with ρ(θ ,φ), but the difference is that φ encodes the information of red,
green and blue. Specifically speaking, ρ(θ , 0) encodes color red; ρ(θ ,π/2) encodes color
green; and ρ(θ ,π ) encodes color blue. In all these cases, the angle θ is still used to encode
the brightness of the color.

The representation of a 2n × 2n RGB color image can be written as follows:

ρ =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ2(
−→
θYX ,

−→
φ ). (4.9)

As can be seen from the above formula, |Y 〉〈X| encodes the information about the position
and

ρ2(
−→
θYX ,

−→
φ ) = ρ

(
θ1

YX , 0
)⊗ ρ

(
θ2

YX ,
π

2

)
⊗ ρ

(
θ3

YX ,π
)
,

encodes the RGB color information corresponding to the position |Y 〉〈X| in quantum im-

ages, and at this time
−→
θYX = (θ1

YX , θ2
YX , θ3

YX), θ
j
YX ∈ [0,π/2], j = 1, 2, 3, and

−→
φ = (0,π/2,π ).

Among them, ρ(θ1
YX , 0), ρ(θ2

YX ,π/2) and ρ(θ3
YX ,π ) are used to encode the information of

red, green and blue, respectively. According to (3.3), a simple calculation leads to the fol-
lowing conclusion:

ρ
(
θ1

YX , 0
)

=

⎛
⎝ cos2 θ1

YX
2 cos

θ1
YX
2 sin

θ1
YX
2

sin
θ1

YX
2 cos

θ1
YX
2 sin2 θ1

YX
2

⎞
⎠ , (4.10)

ρ

(
θ2

YX ,
π

2

)
=

⎛
⎝ cos2 θ2

YX
2 –i cos

θ2
YX
2 sin

θ2
YX
2

i sin
θ2

YX
2 cos

θ2
YX
2 sin2 θ2

YX
2

⎞
⎠ , (4.11)

ρ
(
θ3

YX ,π
)

=

⎛
⎝ cos2 θ3

YX
2 – cos

θ3
YX
2 sin

θ3
YX
2

– sin
θ3

YX
2 cos

θ3
YX
2 sin2 θ3

YX
2

⎞
⎠ . (4.12)

The preparation of gray-scale information can be implemented by applying rotation op-
erators that act on a single qubit on the Bloch sphere according to Sect. 4.1, and the quan-
tum circuits for (4.10), (4.11) and (4.12) are shown in Fig. 5. The method above is a slight
modification of that shown in Sect. 4.1. More specifically, we use the three curves on the
Bloch sphere to represent the states of the R, G, and B channels, and the preparation pro-
cess for each curve is the same. When φ = 0, it is observed that the representation is the
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Figure 5 The quantum circuits preparing RGB color information

same as that of the gray-scale image. Then, by utilizing equation (4.8), we can further de-
duce that the effects of Rz(φ + π/2)Rx(θ ) acting on |0〉〈0| are equal to that of ZRx(θ ) and
ZSRx(θ ) when φ = π/2 and φ = π , respectively. Additionally, the time complexity analysis
of the preparation process for this representation model will be discussed in Sect. 4.4.

4.3 Mixed state representation of quantum color images
This subsection provides another representation of quantum color images in open sys-
tems. The color of each pixel in a quantum color image is determined by the three com-
ponents R, G, and B, and each component has a value range of 0 to 255. First, the R, G,
and B components of the quantum color images are normalized, and then υ1,υ2 and υ3

are applied to encode R, G, and B, respectively. The most intuitive purpose of normaliz-
ing R, G, and B components is to reduce the dependence of the color represented by the
RGB value on the brightness of the image. Therefore, the information about (R, G, B) of
the pixel position (Y , X) in an arbitrary quantum image can be written as

υ1
YX =

R
255

√
3

, υ2
YX =

G
255

√
3

and υ3
YX =

B
255

√
3

. (4.13)

Obviously, υ1
YX ,υ2

YX ,υ3
YX ∈ [0, 1/

√
3] and (υ1

YX)2 + (υ2
YX)2 + (υ3

YX)2 ≤ 1. Thus, the corre-
sponding (R, G, B) information for the pixel position (Y , X) in a quantum color image can
be encoded by −→

υ YX = (υ1
YX ,υ2

YX ,υ3
YX).

The second representative expression of a quantum color image in the size of 2n × 2n

can be written as follows:

ρ =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρYX . (4.14)

The density matrix ρYX in (4.14) encodes the information of color corresponding to the
pixel position |Y 〉〈X|, where

ρYX =
(I + −→

υ YX · �σ )
2

, (4.15)

in which −→
υ YX = (υ1

YX ,υ2
YX ,υ3

YX), I is the identical matrix, �σ = (σ1,σ2,σ3) and σ1,σ2,σ3 are
the Pauli matrices, respectively.

It is worth noting that ρYX is the density matrix of a certain mixed state ensemble, and
so the point corresponding to ρYX will be in the interior or on the surface of the Bloch
sphere.
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Figure 6 Relationship between point C and points A and B on the
Bloch sphere

Problem 1 One shortcoming of the model (4.14) is its complexity in preparing the mixed
state ρYX , which limits its practical applicability and confines it to theoretical research. In
the paper [37], we learned that, in the general situation, it is possible to purify the mixed
state formed by a quantum system Q in interaction with its environment by introducing
a reference system R. Specifically, the system R is a dynamically isolated system and has a
zero internal Hamiltonian, so that the system R and the quantum system Q can be formed
into a joint system RQ to reach a purely entangled state |ψRQ〉. Then, the pure state en-
semble of quantum system Q can be obtained through the purification process.

And in the paper, the preparation method of the mixed state is explored by utilizing
the relation equation between the mixed state and the pure state on the Bloch sphere.
Specifically, to realize the preparation of ρYX , a commonly used approach is employed,
where the point corresponding to ρYX within the Bloch sphere is mapped onto the surface
of the Bloch sphere. This mapping allows us to represent ρYX using a set of pure states. The
precise understanding of the relationship between mixed states and pure states is further
clarified in Lemma 4.1, which is presented below.

Lemma 4.1 A mixed state characterized by any point C in the Bloch sphere can be de-
composed into two pure states characterized by two points A and B on the Bloch sphere,
respectively, where C is on the line connecting A and B.

Proof From the geometric relationship in Fig. 6, we can have

−→r C = −→r B +
−→
BC = −→r B +

|CB|
|AB|

−→
BA =

|CB|
|AB|

−→r A +
(

1 –
|CB|
|AB|

)−→r B.

Recalling (3.3) we know

ρA =
1
2

(I + −→r A · −→σ ), ρB =
1
2

(I + −→rB · −→σ ) and ρC =
1
2

(I + −→r C · −→σ ).

Let λ = |CB|/|AB|, then

ρC =
1
2

(I + −→r C · −→σ ) =
1
2
{

I +
[
λ
−→r A + (1 – λ)−→r B

] · −→σ }.
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In addition,

λρA + (1 – λ)ρB =
1
2
{

I +
[
λ
−→r A + (1 – λ)−→r B

] · −→σ }
=

1
2

(I + −→r C · −→σ ).

This finishes the proof. �

Problem 2 Although Lemma 4.1 gives the answer to Question 1, another question arises
naturally, the two pure states, representing the mixed state, corresponding to A and B are
obviously not unique, which means that the code based on such pure state decomposition
is not uniquely decodable.

Next, the method to solve Problem 2 is given, which is divided into the following two
steps.

Step 1: The RGB values of the quantum color image are translated into the correspond-
ing points inside the Bloch sphere. For the (R, G, B) information corresponding to the given
pixel position (Y , X), the vector −→

υ YX = (υ1
YX ,υ2

YX ,υ3
YX) can be obtained using equation

(4.13). Then, it is possible to calculate (rYX , θYX ,φYX) for the corresponding points inside
the Bloch sphere.

Indeed, assuming that the color information ρYX at the pixel point (Y , X) has been
given in the form of (4.15), for the sake of convenience, we rewrite the vector −→

υ YX �
−→
υ = (υ1,υ2,υ3) and ignore its position information. According to the spherical coordi-

nate transformation:

υ1 = r sin θ0 cosφ0, υ2 = r sin θ0 sinφ0, υ3 = r cos θ0 and r ∈ [0, 1].

A direct calculation gives B(r, θ0,φ0), where θ0 ∈ [0,π/2],φ0 ∈ [0,π/2]. The location of
point B is shown in Fig. 7.

Step 2: At fixed point A, the mixed state B(υ1,υ2,υ3) inside the Bloch sphere can be
uniquely decomposed into pure states.

In order to obtain such a result, we first give a fixed point A(0, –1, 0) on the Bloch sphere

(see Fig. 7). Then, the half-line
−→
AB intersects the surface of the Bloch sphere at the point

C(υ ′
1,υ ′

2,υ ′
3), where C is the point related to B that we are looking for. According to the

following simultaneous equations to find the intersection, the coordinates of point C, of

the half-line
−→
AB with the Bloch sphere

⎧⎨
⎩x2 + y2 + z2 = 1,

x
v1

= y+1
v2+1 = z

v3
,

we have

υ ′
1 =

2υ1(υ2 + 1)
υ2

1 + υ2
3 + (υ2 + 1)2 ,

υ ′
2 =

2(υ2 + 1)2

υ2
1 + υ2

3 + (υ2 + 1)2 – 1, (4.16)
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Figure 7 Unique decodable code representing a mixed state by two
pure states

υ ′
3 =

2υ3(υ2 + 1)
υ2

1 + υ2
3 + (υ2 + 1)2 .

Since C is on the surface of the Bloch sphere, through geometric relationships we have

θ1 = arccosυ ′
3 = arccos

2υ3(υ2 + 1)
υ2

1 + υ2
3 + (υ2 + 1)2 ,

φ1 = arctan
υ ′

2
υ ′

1
= arctan

(υ2 + 1)2 – υ2
1 – υ2

3
2υ1(υ2 + 1)

.
(4.17)

In order to establish a unique decodable relation between B and C, the parameter λ is
also introduced, where λ = |AB|/|AC|. Here, |AB| and |AC| represent the length of line
segments AB and AC respectively. So far, the mixed state B is jointly determined by pure
states A, C and the parameter λ. The whole mapping procedure of a unique decodable
code representing a mixed state by two pure states can be seen in Fig. 7.

To better understand the encoding method presented above, two examples are given
next.

Example 1 Here we assume that if the information of (R, G, B) is (0, 0, 0), it corresponds
to the fully mixed state, i.e., ρYX = I/2, and the point is the center of the Bloch sphere.
Through simple calculation, we can have θ1 = π/2, φ1 = π/2 and λ = 1/2.

Example 2 Calculate the coordinates of point C on the surface of the Bloch sphere and
the parameter λ, which jointly determine (R, G, B) information as (255, 0, 0).

It is easy to know that the coordinates B(υ1,υ2,υ3) of the mixed state are (
√

3/3, 0, 0). So
we have

r sin θ cosφ = υ1 =
√

3
3

, r sin θ sinφ = υ2 = 0 and r cos θ = υ3 = 0.

By straightforward calculation, we can get the following results: r =
√

3/3, θ = π/2 and φ =

0. Using the fact that A(0, –1, 0) is given, then we have
−→
AB = (

√
3/3, 1, 0) and |AB| = 2

√
3/3.

Combining (4.16) with (4.17), it can be calculated that the intersection point C(υ ′
1,υ ′

2,υ ′
3)

of the half-line
−→
AB and the surface of the Bloch sphere is C(

√
3/2, 1/2, 0). Therefore, we

know that |AC| =
√

3, θ1 = π/2, φ1 = π/6 and λ = |AB|/|AC| = 2/3.
By now, the conclusion can be drawn: When (R, G, B) is (255, 0, 0), the mixed state can be

uniquely decodable decomposed into the pure state C(θ1,φ1) and the parameter λ = 2/3.



Hu et al. EPJ Quantum Technology           (2024) 11:28 Page 15 of 25

Finally, based on the above discussion, an alternative representation in the size of 2n ×2n

RGB color image is as shown in (4.18):

ρ =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ ′
YX ⊗ |λYX〉〈λYX |. (4.18)

The new model proposed here is called the mixed state representation of quantum color
images, abbreviated as the MSR-QCI model. Supposing that the accuracy of the parameter
λYX is 2–q, i.e., λYX ∈ [0, 2–q – 1], then the parameter λYX corresponding to the pixel (Y , X)
is encoded as follows:

λYX = C–1
YXC–2

YX . . . C–q–1
YX C–q

YX , C–k
YX ∈ {0, 1}, k = 1, 2, . . . , q.

In (4.18), |Y 〉〈X| is used to represent position information of pixel, ρ ′
YX refers to the rep-

resentation of the mapping of the mixed states within the Bloch sphere to the pure states
of the corresponding sphere, while ρ ′

YX ⊗ |λYX〉〈λYX | encodes the color information.

4.4 Preparation process of MSR-QCI model
In order to obtain the desired quantum image on the quantum computer, the preparation
process of the MSR-QCI model is necessary and is described in this subsection. From
the representation of the MSR-QCI model, n + q + 1 qubits are needed to construct the
quantum image model for a 2n × 2n RGB color image.

The first step is to prepare n + q + 1 qubits and to set all of them to |0〉〈0|. The initial
state can be expressed by

ρ ′
0 =
(|0〉〈0|)⊗(n+q+1). (4.19)

Recalling the discussion in Sect. 4.3, the desired pure state C(θ1,φ1) and parameter |λ〉
can be calculated in advance. The preparation process for the MSR-QCI model is now
divided into three steps.

Step 1: In this step, single qubit gates I and H are used to prepare position information,
which converts the initial state ρ ′

0 to the intermediate state ρ ′
1, where

I =

[
1 0
0 1

]
, H =

1√
2

[
1 1
1 –1

]
.

The whole quantum operation in step 1 can be expressed by U1:

U1 = H⊗n ⊗ I⊗(q+1).

(4.20) interprets the transformation from the initial state ρ ′
0 to the intermediate state ρ ′

1.
After this step, the position information for all the pixels is stored in the MSR-QCI model.

U1
(
ρ ′

0
)
U†

1 =
(
H⊗n ⊗ I⊗(q+1))(|0〉〈0|)⊗(n+q+1)(H⊗n ⊗ I⊗(q+1))†

=
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ (|0〉〈0|)⊗(q+1)

= ρ ′
1.

(4.20)
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Step 2: To prepare the quantum color image, it remains to set the information of color
for every pixel. In effect, this step can also apply the rotation of qubit on the surface of the
Bloch sphere to realize the preparation of pixel color information. Given pixel position
(Y , X), define the quantum controlled rotation operation UYX as follows:

UYX =

(2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ I⊗(q+1)

)
+ |Y 〉〈X| ⊗ 
YX(θ1,φ1) ⊗ I⊗q,

where


YX(θ1,φ1) = Rz

(
φ1 +

π

2

)
Rx(θ1).

Acting 
YX(θ1,φ1) on the initial state |0〉〈0| gives us:


YX(θ1,φ1)|0〉〈0|
†
YX(θ1,φ1)

= Rz

(
φ1 +

π

2

)
Rx(θ1)|0〉〈0|R†

x(θ1)R†
z

(
φ1 +

π

2

)

=
(

cos
θ1

2
|0〉 + eiφ1 sin

θ1

2
|1〉
)(

cos
θ1

2
〈0| + e–iφ1 sin

θ1

2
〈1|
)

=
(I +

−→
υ ′

YX · −→σ )
2

= ρ ′
YX .

Then UYX acting on ρ ′
1 can obtain the following result:

UYXρ ′
1U†

YX

= UYX

[
1
2n

2n–1∑
j=0

2n–1∑
i=0

|j〉〈i| ⊗ (|0〉〈0|)q+1
]

U†
YX

=
1
2n

[2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ |0〉〈0| ⊗ (|0〉〈0|)q

+ |Y 〉〈X| ⊗ 
YX |0〉〈0|
†
YX ⊗ (|0〉〈0|)q

]

=
1
2n

[2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ |0〉〈0| ⊗ (|0〉〈0|)q + |Y 〉〈X| ⊗ ρ ′
YX ⊗ (|0〉〈0|)q

]
.

(4.21)

Therefore, the whole rotation operator U2 can be defined as

U2ρ
′
1U†

2 = U2n–1U2n–2 . . . U01U00ρ
′
1U†

00U†
01 . . . U†

2n–2U†
2n–1.
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Through the quantum operator U2, the intermediate state ρ ′
1 is transformed into ρ ′

2.

U2ρ
′
1U†

2 =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ ′
YX ⊗ (|0〉〈0|)q

= ρ ′
2.

Step 3: The final step is to prepare the parameter |λYX〉 at each pixel position (Y , X),
which is expressed as a fixed-point decimal with an accuracy of 2–q and is stored in the
quantum circuits using q qubits. In effect, we also need to divide the last step into 22n sub-
operations to store the parameter information of each pixel. Fixed pixel position (Y , X),
the corresponding quantum sub-operation �YX is defined as follows:

�YX =

(2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ I⊗(q+1)

)
+ |Y 〉〈X| ⊗ I ⊗ ϒYX , (4.22)

where ϒYX is a quantum operator as shown in (4.23), which is the value-setting operator
for pixel position (Y , X):

ϒYX =
q⊗

i=1

ϒ i
YX , ϒ i

YX : |0〉〈0| → ∣∣0 ⊕ C–i
YX
〉〈

0 ⊕ C–i
YX
∣∣, i = 1, 2, . . . , q. (4.23)

From(4.23), if C–i
YX = 1, ϒ i

YX is an n-CNOT gate. Otherwise, it is a quantum identity gate
that will do nothing on the quantum state. Therefore, the quantum transformation of ϒYX

to set parameter |λYX〉 for the pixel is as follows:

ϒYX
(|0〉〈0|)⊗q

ϒ
†
YX =

q⊗
i=1

∣∣0 ⊕ C–i
YX
〉〈

0 ⊕ C–i
YX
∣∣

=
q⊗

i=1

∣∣C–i
YX
〉〈

C–i
YX
∣∣

= |λYX〉〈λYX |.

Therefore, the intermediate state ρ ′
2 is transformed as in (4.24):

�YXρ ′
2�

†
YX

= �YX

[
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ ′
YX ⊗ (|0〉〈0|)q

]
�

†
YX

=
1
2n

q⊗
i=1

[2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ ρ ′
ji ⊗

(|0〉〈0|)⊗q (4.24)

+ |Y 〉〈X| ⊗ ρ ′
YX ⊗ ϒYX

(|0〉〈0|)⊗q
ϒYX

†

]
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Figure 8 Quantum circuits for MSR model preparation of a 2× 2 image

=
1
2n

[2n–1∑
j=0

2n–1∑
i=0

(j,i) �=(Y ,X)

|j〉〈i| ⊗ ρ ′
ji ⊗

(|0〉〈0|)⊗q + |Y 〉〈X| ⊗ ρ ′
YX ⊗ ∣∣λ′

YX
〉〈λYX |

]
.

It can be seen from the above formula that every operator �YX only sets the parameter
|λYX〉 of its corresponding pixel position. Therefore, the whole work U3 of step 3 consisting
of all the sub-operators is as follows:

U3ρ
′
2U†

3 = �2n–1�2n–2 . . .�01�00ρ
′
1�

†
00�

†
01 . . .�†

2n–2�
†
2n–1

=
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ρ ′
YX ⊗ |λYX〉〈λYX |

= ρ.

(4.25)

After the three steps described above, the entire preparation is done.
(4.26) illustrates the representation of a quantum color image of size 2 × 2 in the MSR

model, and Fig. 8 shows the detailed quantum circuits for this 2 × 2 image MSR model.

ρ =
1
4

⎡
⎣(I +

−→
υ ′

00 · −→σ ) ⊗ |λ00〉〈λ00| (I +
−→
υ ′

01 · −→σ ) ⊗ |λ01〉〈λ01|
(I +

−→
υ ′

10 · −→σ ) ⊗ |λ10〉〈λ10| (I +
−→
υ ′

11 · −→σ ) ⊗ |λ11〉〈λ11|

⎤
⎦ . (4.26)

step 1 Preparation of position information:

H|0〉〈0|H† =
|0〉 + |1〉√

2
· 〈0| + 〈1|√

2
=

|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|
2

.

step 2 Use the quantum control rotation operator 
YX to obtain the intermediate state ρ ′
2.

step 3 For convenience, suppose that λ00 = λ01 = λ10 = λ11 = (3/4)10 = (11000000)2. By
means of the operators �YX , we can finish the preparation process of parameters λYX .

In quantum computation, computers are usually initialized in well-prepared states.
When we discussed the time complexity of quantum image preparation, a complex oper-
ation needs to be broken down into simple gates. Thus, the controlled operation in which
the control qubit is the position qubit and the target qubit is the color qubit in Fig. 8 has
its equivalent form as shown in Fig. 9.

Next, the time complexity of quantum image preparation will be discussed. To begin
with, the quantum operation of step 1 is U1. The transform U1 can be directly imple-
mented by 2n Hadamard gates, and it is known that the time complexity of step 1 is O(n).
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Figure 9 Equivalent form of controlled operation in quantum circuits

Figure 10 C2(
YX (θ ,φ)) gate can be broken down C(
YX (θ ,φ)), C(
YX (–θ , –φ)) and CONT gates

However, the work of step 2 is more complex than that of step 1. The unitary trans-
form U2, for a given coordinates (θ ,φ), can be implemented by 22n controlled rota-
tions 
YX(θ ,φ) or generalized-C2n(
YX(θ ,φ)) = C2n[Rz(φ + π

2 )Rx(θ )] [1]. Furthermore,
C2n(
YX(θ ,φ)) operation can be broken down into 2 · (22n – 1) single-qubit operations,
i.e., Rx( θ

2 ), Rx(– θ
2 ) and Rz( φ+π/2

2 ), Rz(– φ+π/2
2 ), and 2 · (22n – 2) CNOT operations. Therefore,

it is concluded that the time complexity of step 2 is 22n × 2[(22n–1 – 1) + (22n–1 – 2)]. And
the example when n = 1 is shown in Fig. 10.

In addition, it is known that every 2n-CNOT gate can be decomposed into 16(8n – 8)
2-CNOT gates (Toffoli gates), and a Toffoli gate can be decomposed into 8 CNOT and 8
single-qubit gates [1]. So the time complexity of step 3 is no more than 16 × 16 × 22n ×
q × (8n – 8) with enough ancillary qubits, i.e., O(qn22n).

The total number of single-qubit and double-qubit operations used to prepare the MSR-
QCI mode is

2n + 22n × 2
[(

22n–1 – 1
)

+
(
22n–1 – 2

)]
+ 16 × 16 × 22n × q × (8n – 8)

= 24n – 3 × 22n + 256 × 22n × q(8n – 8) + 2n.

Similarly, the time complexity of the preparation for the tensor product representation
of quantum color images is also obtained. From the model (4.9), n + 3 qubits are needed to
construct the quantum image model for a 2n × 2n image. To begin with, for the quantum
operation of U1 = I⊗3 ⊗ H⊗2n, its time complexity is obviously O(3 + 2n).

After this step, the position information for all the pixels is stored in the quantum color
image model. It remains to set the RGB value for every pixel, where Ry(θYX) and Rx(θYX)
are the rotations about Bloch sphere’s ŷ axis and x̂ axis by the angle θYX/2, respectively.
Considering the fact that each operation C2n(Ry(θ1

YX)), C2n(Rx(θ2
YX)) and C2n(Rx(θ3

YX)) can
be broken down into 3(22n – 1) simple operations and 3(22n – 2) CNOT operations. Of
course, it is also necessary to decompose the C2n(Z) gate and the C2n(S) gate to single-
quantum and double-quantum gates. So the time complexity of setting the RGB value for
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Figure 11 An open quantum system model

every pixel is no more than 3 × 16 × 16 × 22n × q × (8n – 8) with enough ancillary qubits,
i.e., O(qn22n).

Therefore, the total number of single-qubit and double-qubit operations used to prepare
the tensor product representation of quantum color images is

2n + 22n × 3
[(

22n–1 – 1
)

+
(
22n–1 – 2

)]
+ 3 × 16 × 16 × 22n × q × (8n – 8)

= 3 · 24n – 9 × 22n + 768 × 22n × q(8n – 8) + 2n.

5 Environments and quantum noise channels
A natural way to describe the dynamics of open quantum systems is to think of them as
interactions between the system of interest (here called the principal system) and the en-
vironment, which together form a closed quantum system. The dynamics of such a closed
quantum system is described by a unitary transformation, and we can think of this uni-
tary transformation as a box. For us, we are not concerned with the internal mechanism
of the box, which can be implemented by quantum circuits or some Hamiltonian systems,
or even anything else. In other words, suppose we have a system in state ρ , and this state
is sent into a box which is coupled to an environment. Then, the final state ε(ρ) of this
system may not be related by a unitary transformation to the initial state ρ .

As illustrated in Fig. 11, we now assume that the input state of the system-environment
is a product state ρ ⊗ ρenv. After the U transformation of the box, the system no longer
interacts with the environment, because we perform a partial trace over the environment
to obtain the reduced state of the system alone.

ε(ρ) = trenv
[
U(ρ ⊗ ρenv)U†

]
(5.1)

This approach is easy to relate to the real world, but it has the disadvantage of being
mathematically inconvenient, whereas operator-sum representations for understanding
quantum operations, although exactly similar to it, provide a powerful mathematical rep-
resentation of quantum operations.

If the representation of equation (5.1) is based on the operator on the Hilbert space
of the principal system alone, let |ek〉 be a set of orthonormal basis of the (finite dimen-
sional) state space of the environment, and then let ρenv = |e0〉〈e0| be the initial state of
the environment. Suppose that the environment starts from a pure state, even though the
environment is started in a mixed state, we can use it as an intermediate step in the calcu-
lation by introducing an additional external system that purifies the environment and does
not make any difference to the dynamics experienced by the principal system. Therefore
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equation (5.1) can be rewritten as:

ε(ρ) =
∑

k

〈ek|U[ρ ⊗ e0〉〈e0|]U†|ek〉

=
∑

k

EkρE†
k ,

(5.2)

where Ek = 〈ek|U|e0〉 is an operator on the state space of the principal system. The above
equation is called the operator-sum representation of ε, and the operator Ek is called the
operator element of the quantum operation ε.

We can draw a physical explanation for the operator-sum representation, assuming that
after the unitary U transformation, the measurement of the environment is performed
on bases |ek〉. Applying the principle of implied measurement, it can be seen that such
a measurement only affects the state of the environment without changing the state of
the principal system. According to this idea, we can deal with noise in the quantum noise
channels without affecting the state of the principal system. We regard unnecessary in-
teractions in open quantum systems as noise in quantum information processing, and the
processed quantum images as the principal system. In order to build a useful quantum
information processing system, we need to understand and control these noise systems
without affecting the principal system.

For instance, the amplitude damping channel, which is a quantum operation that de-
scribes the energy dissipation of a system to the environment. It is typically an atomic pro-
cess and can be thought of as the spontaneous emission of a photon into the environment
by the decay of an excited state of a two-level atom in the presence of an electromagnetic
field. This channel can be described with the map:

|0〉prin|0〉env → |0〉prin|0〉env,

|1〉prin|0〉env →√
1 – p|1〉prin|0〉env +

√
p|0〉prin|1〉env.

When there is no excitation present, the system and the environment remain unaltered,
while when an excitation is present in the system, it can either remain itself with prob-
ability (1 – p) or decay to |0〉prin|1〉env with probability p, producing an excitation in the
environment. So the operator elements of amplitude damping operator ε are

E0 =

[
1 0
0

√
1 – γ

]
and E1 =

[
0 √

γ

0 0

]
,

where γ = sin2 θ can be considered as the probability of losing a photon.
If we transmit the quantum gray-scale image in the amplitude damping channel, the

quantum image will be in the principal system. After coupling with the environment, the
partial trace for the environment can be obtained as follows:

ε(ρ) =
1
2n

2n–1∑
Y =0

2n–1∑
X=0

|Y 〉〈X| ⊗ ε
(
ρ1(θYX)

)
, (5.3)
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Figure 12 Frozen coherence pre-processing process

and specifically speaking,

ε
(
ρ1(θYX)

)
= E0ρ1(θYX)E†

0 + E1ρ1(θYX)E†
1

=

[
1 0
0

√
1 – γ

][
cos2 θ

2 cos θ
2 sin θ

2
sin θ

2 cos θ
2 sin2 θ

2

][
1 0
0

√
1 – γ

]

+

[
0 √

γ

0 0

][
cos2 θ

2 cos θ
2 sin θ

2
sin θ

2 cos θ
2 sin2 θ

2

][
0 0√
γ 0

]

=

[
cos2 θ

2 + γ sin2 θ
2

√
1 – γ cos θ

2 sin θ
2√

1 – γ sin θ
2 cos θ

2 (1 – γ ) sin2 θ
2

]

=

[
1 – (1 – γ ) sin2 θ

2
√

1 – γ cos θ
2 sin θ

2√
1 – γ sin θ

2 cos θ
2 (1 – γ ) sin2 θ

2

]
.

If we compare the above result with the original density matrix of the qubit given in (4.6),
then we can easily observe that the effect of the coupling with the environment is the intro-
duction of (1 – γ ) to the density matrix. Meanwhile, the diagonal terms in the density ma-
trix will evolve faster than the off-diagonal terms, which implies that decoherence occurs
after the quantum image model is coupled to the noise channel. This coupling will result
in the loss of information from the principal system into the environment. Therefore, the
model (5.3) provides the foundation for the quantification and protection of coherence in
open quantum systems.

In an open quantum system, a quantum image may face the phenomenon of “decoher-
ence” during transmission due to interference from the external environment, resulting
in the quantum state become incoherence state. However, by pre-processing the quantum
image, we can make its gray scale information satisfy the condition of frozen coherence,
which greatly protects the coherence during transmission / process and maintains the
clarity of the image at the same time. This process can be depicted as shown in Fig. 12.
This performance enhancement in coherence protection will not only enable more secure
and reliable quantum communication / process, leading to higher resolution and clearer
images, but will also advance the development of some application fields such as quantum
cryptography and so on.

The quantum image representation models proposed in the paper are also applicable to
various other noise channels, such as bit-flip, bit-phase flip, phase-flip channels, and the
phase damping channel. Their action on the quantum image model is described below
in terms of a parameter q ∈ [0, 1] which encodes the strength of the noise. The bit-flip,
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bit-phase flip, and phase-flip channels can be represented in operator form by

EFk
0 =

√
1 –

q
2

I and EFk
k =

√
q
2
σk ,

with k = 1, 2 and 3, respectively, and σj being the j-th Pauli matrix. Finally, the phase damp-
ing channel can be characterized by

E0 =

[
1 0
0

√
1 – γ

]
and E1 =

[
0 0
0 √

γ

]
.

6 Conclusion
The focus of this paper is to address the problem of quantum image representation en-
countered in the field of open quantum systems. In the paper, the shortcomings of these
existing quantum image models are first identified by analyzing the quantum systems that
exist in reality. Since the quantum system inevitably interacts with other quantum sys-
tems around it and becomes an open quantum system, the previous image representation
methods are only applicable to closed quantum systems. To overcome this problem, we in-
troduce a density matrix to store the gray values of all the pixels in the image instead of the
probability amplitude or the information of the qubit sequence. Inspired by incoherent-
coherent states, we propose three models for quantum image representation. When en-
countering the preparation of mixed states, unlike the previous approach of introducing
a reference system to make the mixed system a purely entangled state, we deal with the
preparation of mixed states through the mapping relation between mixed and pure states
on the Bloch sphere, and utilize the rotation operator acting on the Bloch sphere in the
preparation process. These models can better capture the coherence and entanglement
between pixels in an image, leading to more accurate image representations. However, our
proposed model has some limitations, such as the geometrical relations required during
the preparation of the MSR-QCI model, which is so complex that the preparation pro-
cess is relatively difficult. In addition, we investigate the transmission process of quantum
images in noisy channels. This is of great significance to the field of quantum communi-
cation and image transmission. The results can help us understand how quantum images
are affected by noise and provide corresponding error correction and freezing methods.
Through these studies, we give a quantum image representation with practical signifi-
cance in open quantum systems and provide a theoretical basis and practical method for
quantum image transmission.

With comparative analysis in our research, we demonstrate the advantages of the new
approach over traditional quantum image representation methods, this provides an im-
portant background for future related work. Specifically, the use of density matrices rep-
resenting the quantum images can advance the quantization of quantum images in the
coherence domain, enabling the features of coherence changes to be captured in a mathe-
matically rigorous manner. In quantum communication or evolution, we want the trans-
mitted or evolved quantum information to maintain a certain degree of coherence, i.e., not
to be distorted by the interference of the external environment that causes the information
to be distorted. And frozen coherence helps to obtain a relatively long decoherence time
to ensure that the coherence is maintained during gate operation. By studying the frozen
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coherence, one can design more stable and reliable quantum communication systems and
promote the development of quantum technology in practical applications.

The quantification of coherence generally uses three functions: l1-norm coherence, rel-
ative entropy, and quantum fidelity [38]. Similar to the frozen coherence process that we
will discuss in the future, the general conditions for frozen coherence based on quantum
fidelity could be explored based on the change of quantum fidelity coherence distance
before and after quantum image evolution. These different methods of coherence quanti-
zation provide us with a more comprehensive view, allowing us to better understand the
properties of quantum images and providing new ideas and methods for future researches.
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