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Abstract
We showcase the digital quantum simulation of the action of a Hamiltonian that
governs the interaction between a quantummechanical oscillator and an optical
field, generating quantum entanglement between them via gravitational effects. This
is achieved by making use of a boson-qubit mapping protocol and a digital gate
decomposition that allow us to run the simulations in the quantum computers
available in the IBM Quantum platform. We present the obtained results for the
fidelity of the experiment in two different quantum computers, after applying error
mitigation and post-selection techniques. The achieved results correspond to
fidelities over 90%, which indicates that we were able to perform a faithful digital
quantum simulation of the interaction and therefore of the generation of quantum
entanglement by gravitational means in optomechanical systems.
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1 Introduction
In the last years a novel approach to the open debate of quantum gravity has emerged,
where the focus has shifted to just prove the quantum nature of gravity, without disclos-
ing the underlying full quantum theory [1–4]. The key aspect is that, since two quantum
systems cannot be entangled via a classical channel if they were not entangled beforehand,
if we are able to show that the gravitational field is able to generate entanglement, we can
conclude that it must arise from genuine quantum properties, and therefore the field must
be a quantum entity.

While the prospects for an experimental implementation of these proposals are encour-
aging -as compared to a direct proof of the full quantum theory of gravity- actual experi-
mental results are still missing. In this context, a quantum simulation in a quantum com-
puter [5, 6] could be helpful by informing the ongoing experimental efforts, leveraging the
experimental amenability and tunability of modern quantum platforms [7–9].

Some of us have recently introduced a recipe for the digital quantum simulation of
bosonic Hamiltonians [10], which combines Trotter [6] and gate-decomposition tech-
niques with a boson-qubit mapping [11, 12] to encode the Hamiltonian into a sequence of
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single-qubit and two-qubit gates. We have applied this scheme to the high-fidelity digital
quantum simulation of paradigmatic quantum-optics interactions, such as beam-splitters
or single-mode and two-mode squeezers [13].

The procedure carried out in this project is similar to the recent work by one of the
authors in [14], with the main difference laying in the fact that, in that work, the author
reports the digital quantum simulation of the Hamiltonian involved in the generation of
quantum entanglement between a pair of quantum harmonic oscillators by gravitational
means [3], while here we apply this scheme in order to study the quantum gravitational
Hamiltonian that represents the interaction of a matter system and an optical field. The
study of this Hamiltonian is related to the field of gravitational optomechanics, which is a
term that was introduced in [4] as a way to refer to any optomechanical interaction that
has the gravitational field as its source.

This interaction gives rise to a bosonic two-mode Hamiltonian which we translate into
a multiqubit one and then decompose into one and two-qubit quantum gates in order
to launch it to IBM quantum devices. Even though the interaction studied in this work
is exactly solvable, it provides a framework towards simulating more complex scenarios
that could not be studied with analytic treatments. The techniques presented here are
the basic building blocks of interactions including more modes and more excitations per
mode, which would give rise to those scenarios.

We consider a simplified scenario allowing a maximum of one excitation per mode—a
sensible approximation given the weakness of the interaction—and leverage error mitiga-
tion and postselection techniques to achieve fidelities above 90%. Due to some technical
limitations, which are explained in detail later, we were not able to reproduce the current
experimental range of parameters, which purely depends on the particular experimental
setup that we have studied, so we consider slightly larger values, which amplify the amount
of quantum gravitational entanglement generated. Thus, these preliminary four-qubit ex-
periments can be considered as a first step towards larger and more elaborate quantum
simulations, with more modes and more photons per mode, beyond the capabilities of
classical computers.

The structure of the paper is the following. In the next section, we introduce the Hamil-
tonian of gravitational optomechanics and develop its digitization. After that, we show
how to realize a full quantum state tomography and compute the fidelity of this state with
respect to theoretical predictions. Then, we present experimental results for the fidelity of
the digital quantum simulation in IBM quantum computers. We conclude with a summary
and discussion of our results.

2 Digitization of gravitational optomechanics
We are interested in performing the digital quantum simulation of the interaction pre-
sented in [4] as the one that rules the interaction betweeen a matter-wave and a photonic
field mode. This interaction is governed by the following Hamiltonian:

V̂ = –g0
(
b̂ + b̂†

)
â†â, (1)

where g0 is an optomechanical coupling whose value is related to the parameters of the ex-
periment and b̂† (b̂) and â† (â) are the creation (annihilation) operators of the mechanical
oscillator and photon, respectively. What the authors in [4] realised is that (1) is formally
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the same as the Hamiltonian interaction that arises in the field of optomechanics when
studying a quantum system composed of a cavity field interacting with a movable mir-
ror [15, 16], which means we can apply existing protocols from quantum optomechan-
ics to our interaction. One of these procedures is usually performed when the cavity is
strongly driven to some large coherent amplitude α = 〈â〉 [17], and it consists in linearis-
ing the interaction by writing â → α + δâ, where δâ represents the small quantum fluctu-
ations around this mean value α. This approximation is only valid when two conditions

are met [18], |α| � 1 and μσ � 1, where μ ∼ g0t and σ ∼
√

Var(b̂ + b̂†). Both of them are
fulfilled in our case, so, by renaming δâ as â, we get:

Ĥ = –g
(
b̂ + b̂†

)(
â + â†

)
, (2)

with g = g0α. This is formally equivalent to the well-known cavity optomechanical interac-
tion of quantum optics in the linearized regime [15–17], but now the coupling is induced
by the interaction with the gravitational field encoded in the coupling g .

Thus, in order to perform and analyze the simulation of our Hamiltonian, our goal is
to develop a quantum circuit that replicates its action when applied on a certain initial
state with no entanglement—such as the ground state–, prove that it generates entangle-
ment between the matter and photonic systems and give an estimate of the accuracy of
the simulation by calculating the fidelity of the state with respect to an ideal theoretical
prediction.

We will now work upon the Hamiltonian presented in (2). The time evolution of the
initial state will be (� = c = 1):

∣
∣ψ(t)

〉
= e–iHt|ψ0〉 = eigt(b̂+b̂†)(â+â†)|ψ0〉. (3)

The main goal of this work will be the digitalization of the following unitary operator:

Uε = eiε(b̂+b̂†)(â+â†), (4)

where we have defined:

ε = gt. (5)

For this purpose, we will need to use the boson mapping techniques presented in [11, 12].
It is shown there that it is possible to map N bosonic modes with NP excitations each to
N(NP + 1) qubits. In our case, we are dealing with two modes, corresponding to the matter
and photon states in (2). For the rest of this work, we will consider NP = 1 for both bosonic
modes. We then will need four qubits in all our quantum circuits, which we will label from
0 to 3. Following [11, 12], we will have that:

|0〉m ↔ |0011〉,
|1〉m ↔ |1001〉,
|0〉p ↔ |0213〉,
|1〉p ↔ |1203〉,

(6)



Carmona Rufo et al. EPJ Quantum Technology           (2024) 11:31 Page 4 of 14

where the subscripts m and p refer to the matter and photonic states, respectively. The
mapping of the operators for NP = 1 leaves us with:

b̂† → σ 0
–σ 1

+ ,

b̂ → σ 0
+σ 1

– ,

â† → σ 2
–σ 3

+ ,

â → σ 2
+σ 3

– .

(7)

Now, we need to express the (b̂ + b̂†) and the (â + â†) terms in (2) with respect to the Pauli
matrices σx,σy,σz . For the first one, we have:

b̂† → σ 0
–σ 1

+ =
1
4
(
σ 0

x – iσ 0
y
)(

σ 1
x + iσ 1

y
)

=
1
4
(
σ 0

x σ 1
x + iσ 0

x σ 1
y – iσ 0

y σ 1
x + σ 0

y σ 1
y
)
,

b̂ → σ 0
+σ 1

– =
1
4
(
σ 0

x + iσ 0
y
)(

σ 1
x – iσ 1

y
)

=
1
4
(
σ 0

x σ 1
x – iσ 0

x σ 1
y + iσ 0

y σ 1
x + σ 0

y σ 1
y
)
,

(8)

and therefore:

b̂ + b̂† → 1
2
(
σ 0

x σ 1
x + σ 0

y σ 1
y
)
. (9)

Similarly:

â + â† → 1
2
(
σ 2

x σ 3
x + σ 2

y σ 3
y
)
, (10)

and finally we get the expression for the full Hamiltonian:

Ĥ = –g
(
b̂ + b̂†

)(
â + â†

)

→ –
g
4
(
σ 0

x σ 1
x σ 2

x σ 3
x + σ 0

x σ 1
x σ 2

y σ 3
y + σ 0

y σ 1
y σ 2

x σ 3
x + σ 0

y σ 1
y σ 2

y σ 3
y
)
.

(11)

It can be shown that all of the terms in (11) commute with each other, so we can factorize
the unitary without the need of Trotter approximations. For instance, let us consider the
first and last terms. Clearly, the operators acting on different qubits commute, so we have:

[
σ 0

x σ 1
x σ 2

x σ 3
x ,σ 0

y σ 1
y σ 2

y σ 3
y
]

=
[
σ 0

x σ 1
x ,σ 0

y σ 1
y
]
σ 2

x σ 3
x σ 2

y σ 3
y + σ 0

x σ 1
x σ 0

y σ 1
y
[
σ 2

x σ 3
x ,σ 2

y σ 3
y
]
. (12)

In a similar way:

[
σ 0

x σ 1
x ,σ 0

y σ 1
y
]

=
[
σ 0

x ,σ 0
y
]
σ 1

y σ 1
x + σ 0

x σ 0
y
[
σ 1

x ,σ 1
y
]
,

[
σ 2

x σ 3
x ,σ 2

y σ 3
y
]

=
[
σ 2

x ,σ 2
y
]
σ 3

y σ 3
x + σ 2

x σ 2
y
[
σ 3

x ,σ 3
y
]
.

(13)

Recalling the commutation relationships of Pauli matrices, we get:

[
σ (k)

x σ (l)
x ,σ (k)

y σ (l)
y

]
=

[
σ (k)

x ,σ (k)
y

]
σ (l)

y σ (l)
x + σ (k)

x σ (k)
y

[
σ (l)

x ,σ (l)
y

]

= 2σ (k)
z σ (l)

z – 2σ (k)
z σ (l)

z = 0,
(14)
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and thus the two terms in (12) vanish and so does the full commutator. An equivalent
procedure can be carried out for the rest of the terms. Therefore we can write:

Uε =
4∏

i=1

U (i)
ε =

4∏

i=1

e–iĤit , (15)

where the U (i)
ε are obtained as the exponential of each of the terms in (11). For instance:

U (1)
ε = eiε̃σ 0

x σ 1
x σ 2

x σ 3
x , (16)

with ε̃ = ε/4. In principle, these are already unitary gates that we could implement in a
quantum circuit to simulate our Hamiltonian. However, these unitary gates are not avail-
able in the IBM quantum devices, which means that we have to carry out a gate decom-
position to express each of them in terms of gates that are actually available in the IBM
software [10, 13, 14].

Let U be some unitary operation such that, for a Hamiltonian H , it satisfies:

H = U†H0U , (17)

where H0 is some convenient single-qubit operation. Then, we can always write:

e–iH ε̃ = U†e–iH0 ε̃U . (18)

Our goal is now to carry out this procedure for each piece of our Hamiltonian. For exam-
ple, for U (1)

ε , by defining H0 = –σ 0
z , we have that, using (17):

e–i π
4 σ 0

x
(
–σ 0

z
)
ei π

4 σ 0
x = σ 0

y ,

e–i π
4 σ 0

z σ 1
x σ 0

y ei π
4 σ 0

z σ 1
x = –σ 0

x σ 1
x ,

e–i π
4 σ 0

z σ 2
x
(
–σ 0

x σ 1
x
)
ei π

4 σ 0
z σ 2

x = –σ 0
y σ 1

x σ 2
x ,

e–i π
4 σ 0

z σ 3
x
(
–σ 0

y σ 1
x σ 2

x
)
ei π

4 σ 0
z σ 3

x = σ 0
x σ 1

x σ 2
x σ 3

x .

(19)

Thus, we find that U (1)
ε can be rewritten as:

U (1)
ε = U†eiε̃σ 0

z U , (20)

with

U = ei π
4 σ 0

x ei π
4 σ 0

z σ 1
x ei π

4 σ 0
z σ 2

x ei π
4 σ 0

z σ 3
x . (21)

The decompositions for the rest of the U (i)
ε can be found by adding the necessary eiπ/4σ

(i)
z

to the operator in (21), in order to turn the corresponding σx into σy in each case. As
stated earlier, the purpose of this gate decomposition technique was to be able to express
our Hamiltonian operator in terms of gates that can be implemented in the IBM quantum
computers. Taking a look at the decomposition of each of our terms (see Table 1), it can be
noticed that there are only three different types of operators that were needed throughout
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Table 1 Gate decomposition of each term in our Hamiltonian evolution operator

H0 U

U(1)
ε = e–iε̃σ

0
x σ1

x σ2
x σ3

x –σ 0
z ei

π
4 σ0

x ei
π
4 σ0

z σ1
x ei

π
4 σ0

z σ2
x ei

π
4 σ0

z σ3
x

U(2)
ε = e–iε̃σ

0
x σ1

x σ2
y σ3

y –σ 0
z ei

π
4 σ0

x ei
π
4 σ0

z σ1
x ei

π
4 σ0

z σ2
x ei

π
4 σ0

z σ3
x ei

π
4 σ2

z ei
π
4 σ3

z

U(3)
ε = e–iε̃σ

0
y σ1

y σ2
x σ3

x –σ 0
z ei

π
4 σ0

x ei
π
4 σ0

z σ1
x ei

π
4 σ0

z σ2
x ei

π
4 σ0

z σ3
x ei

π
4 σ0

z ei
π
4 σ1

z

U(4)
ε = e–iε̃σ

0
y σ1

y σ2
y σ3

y –σ 0
z ei

π
4 σ0

x ei
π
4 σ0

z σ1
x ei

π
4 σ0

z σ2
x ei

π
4 σ0

z σ3
x ei

π
4 σ0

z ei
π
4 σ1

z ei
π
4 σ2

z ei
π
4 σ3

z

the whole process: The ones with σ i
x, σ

j
z or σ i

xσ
j
z in the exponent. All three of these oper-

ators can be converted into gates available in the IBM architecture [13, 14]. For the first
two, we can use the single-qubit rotations Rx(θ ) and U1(λ):

Rx(θ ) = e–i θ
2 σx , (22)

U1(λ) =

(
1 0
0 eiλ

)

= ei λ
2 e–i λ

2 σz , (23)

where the U1 gate takes the particular form of the S gate for λ = π/2:

S =

(
1 0
0 i

)

= ei π
4 e–i π

4 σz . (24)

For the last type of gates, the conversion is given by:

ei π
4 σ i

zσ
j
x = ei π

4 σ
j
x ei π

4 σ i
z e–i π

4 CNOTi–j, (25)

where the CNOT gate is available in IBM for some pairs of qubits, depending on the par-
ticular device connectivity.

We can now put all this together to express each of the terms of the unitary with a com-
bination of these three types of gates. For U (1)

ε , we will have that, up to an irrelevant global
phase and after some cancellations and simplifications:

U (1)
ε = CNOT0–3 S0 CNOT0–2 S0 CNOT0–1 S0R0

x

(
π

2

)
U0

1

(
ε

2

)
R0

x

(
–

π

2

)
S†0

× CNOT0–1 S†0 CNOT0–2 S†0 CNOT0–3 .
(26)

For the sake of completeness, we leave the rest of the digital decompositions for the U (i)
ε

in Appendix A.
It is also worth mentioning that when we send a quantum circuit to an IBM quantum

computer, the circuit where the measurements are actually performed is usually not ex-
actly the same as the one we designed, since the circuit is first transpiled, that is, optimized
to the particular quantum architecture used.

The gate set of the computers that our computations are being carried out in can be
checked accessing their configuration. All of the accessible quantum computers possess
the same gate set, formed by the X, CNOT, SX (also referred to as

√
X, and equivalent to

a Rx(π/2) gate) and Rz gates, on top of the identity and the reset gates. Therefore, every
single gate we place in our circuit will be transformed to a combination of some of these
gates.
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Figure 1 Quantum circuit for the simulation of Uε

Figure 2 Transpiled quantum circuit in IBM Belem for ε = 0.1

The transpilation of a circuit might increase or decrease the number of gates that are
needed to fulfill the action of the circuit with respect to the original one. We are in gen-
eral interested in having the circuit simplified after the transpilation, in order to reduce
the number of gates and therefore the global error. However, connectivity issues might
translate into additional gates.

In Figs. 1, 2 and 3, we show the full quantum circuit that is implemented to simulate
the action of our time evolution operator and the transpiled version of said circuit in the
quantum computers IBM Belem and IBM Nairobi. The transpiled circuits look different
due to the different number of qubits and connectivity. It is also worth remarking that the
value of ε does not affect the structure of the original quantum circuit or the transpiled
versions, but only results in changes in the parameters in some of the quantum gates.
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Figure 3 Transpiled quantum circuit in IBM Nairobi for ε = 0.1

Note that the initial two X-gates in Fig. 1 are introduced in order to prepare the system
into the initial state which we worked with, which is the ground state:

|0〉m|0〉p → |00110213〉. (27)

By observing these three images, we can see that the transpilation process helps slightly
simplify the circuit by decreasing the total number of single-qubit gates required to simu-
late the action of Uε without increasing the number of two-qubit gates. For both quantum
computers, the circuit consists of 32 single-qubit gates and 24 CNOT gates after the tran-
spilation.

3 Fidelity
In order to determine the quality of our digitalization, we calculate the fidelity as [13, 14,
19]:

F
(|ψ〉,ρ)

= 〈ψ |ρ|ψ〉, (28)

where |ψ〉 is the state at which the system will be after the action of the full quantum
circuit (that is, after the action of Uε), while ρ will be the density matrix that represents
the state actually obtained in the experiment. We will now analyze the procedure that is
required to obtain an expression for the fidelity as a function of ε.

Considering again Uε , if we restrict ourselves to perturbative values of ε, we can perform
a Taylor expansion of Uε up to second order in ε and provide an estimate to the state of
the system after a certain time, by applying this expression for Uε to our initial state |ψ0〉.
We arrive to:

|ψ〉 =
(

1 –
ε2

2

)
|0〉m|0〉p + iε|1〉m|1〉p, (29)

which is, as we can see, an entangled state involving the ground and first excited states
of the matter system and the optical field. In particular its concurrence, defined for pure
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states as [20, 21]:

C ≡
√

2
(
1 – tr

(
σ 2

m
))

, (30)

where σm is the reduced density matrix of the matter oscillator subsystem, can be quiqkly
found to be, up to second order:

C = 2ε = 2gt. (31)

Let us now consider the experimental density operator. We perform a full state tomogra-
phy of ρ . For a two qubit state, we have [19]:

ρ =
1
4

∑

�v
tr(σv1 ⊗ σv2ρ)σv1 ⊗ σv2 , (32)

where the sum is over vectors �v = (v1, . . . , vn) with entries vi chosen from the set 0, 1, 2, 3.
Plugging this into (28), we have:

F
(|ψ〉,ρ)

=
1
4

∑

i,j

tr(σi,m ⊗ σj,pρ)〈ψ |σi,m ⊗ σj,p|ψ〉, (33)

where i, j = 0, 1, 2, 3 and σ0 is defined as the identity matrix. Using Eq. (29) we obtain that
the nonzero terms in Eq. (33) are:

〈ψ |1m ⊗ 1p|ψ〉 = 1,

〈ψ |1m ⊗ σz,p
∣∣ψ〉 = 1 – 2ε2,

〈ψ∣∣σz,m ⊗ 1p
∣∣ψ〉 = 1 – 2ε2,

〈ψ∣∣σz,m ⊗ σz,p|ψ〉 = 1,

〈ψ |σx,m ⊗ σy,p|ψ〉 = 2ε,

〈ψ |σy,m ⊗ σx,p|ψ〉 = 2ε,

(34)

which leads us to:

F
(|ψ〉,ρ)

=
1
4
(
1 + tr(σz,m ⊗ σz,pρ) + 2ε

(
tr(σy,m ⊗ σx,pρ) + tr(σx,m ⊗ σy,pρ)

)

+
(
1 – 2ε2)(tr(1m ⊗ σz,pρ) + tr(σz,m ⊗ 1pρ)

))
.

(35)
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The traces in Eq. (35) are expected values of observables of the form σi,m ⊗σj,p over ρ , and
we can express them as [13]:

tr(σz,m ⊗ σz,pρ)

= pZZ
(|0〉m|0〉p

)
+ pZZ

(|1〉m|1〉p
)

– pZZ
(|0〉m|1〉p

)
– pZZ

(|1〉m|0〉p
)
,

tr(σy,m ⊗ σx,pρ)

= pYX
(|0〉m|0〉p

)
+ pYX

(|1〉m|1〉p
)

– pYX
(|0〉m|1〉p

)
– pYX

(|1〉m|0〉p
)
,

tr(σx,m ⊗ σy,pρ)

= pXY
(|0〉m|0〉p

)
+ pXY

(|1〉m|1〉p
)

– pXY
(|0〉m|1〉p

)
– pXY

(|1〉m|0〉p
)
,

tr(1m ⊗ σz,pρ) = pZ
(|0〉p

)
– pZ

(|1〉p
)
,

tr(σz,m ⊗ 1pρ) = pZ
(|0〉m

)
– pZ

(|1〉m
)
,

(36)

where these quantities are the probabilities of each mode being in state |0〉 or |1〉 of the
corresponding basis in each case. For instance, pXY (|0〉m|0〉p) represents the probability
of the matter and photon systems of being in the |0〉 state of bases X and Y respectively.
Nonetheless, the measuring operator available in the IBM system is equivalent to mea-
suring in the Z basis and there is no way to perform a measure directly in the other two.
This can be solved by implementing quantum gates in the relevant qubits before the mea-
surement, flipping them to X or Y basis. In particular, we apply a Hadamard gate before
measurement in the case of X-measurements, and S† and Hadamard for Y -measurements.

With this, we are already able to perform all the necessary measurents for the com-
putation of the fidelity of our experiment. Moreover, in order to improve the fidelity, we
apply error mitigation in the readout measurements and postselect the results to the sub-
space of the 4-qubit Hilbert space with physical meaning in our simulation, namely the
one spanned by the four states in (6).

4 Results
We have now developed all the necessary tools to implement the quantum simulation of
the Hamiltonian in (2), but we still must consider an appropriate range of values of ε.

From (5), we recall that the value of ε is determined by that of the gravitational op-
tomechanical coupling g in the Hamiltonian and the experimental time for which we are
assuming we would let the system evolve. In [4], it is mentioned that, with the currently
available experimental setups, a value of 2π · 10–11 for g could be reached and adequate
values of t would be of the order of seconds, giving rise to a value of ε around 10–10. How-
ever, IBM’s Qiskit approximates to 0 any number smaller than 10–9. Notice, however, that
the amount of entanglement generated by the quantum gravitational field is proportional
to ε, according to Eq. (31). Thus, it would be of interest to simulate the system for values
of ε that magnify the generated entanglement while lying beyond current experimental
reach—but remaining in the perturbative regime. In Fig. 4, we show the results for the fi-
delity of the state after the action of the circuit for values of ε that range from 10–7 to 10–2.
The corresponding measurements were carried out in two different IBM quantum com-
puters, namely Belem and Nairobi, with 5 and 7 qubits and 16 and 32 quantum volume [22]
respectively. The average error rates of the IBM Belem (Nairobi) quantum computer are
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Figure 4 Fidelity results of the digital quantum simulation procedure in the IBM Belem and IBM Nairobi
computers

of around 2.76 (3.28) × 10–4 for the single-qubit gates, 8.75 (14.92) × 10–3 for the CNOT
gates and 2.11 (3.06) × 10–2 for the readout—however, recall that we have made use of an
error mitigation technique for our measurements. It is important to remark that these pa-
rameters change on a daily basis. The experiments in Belem were carried out on June 10,
2023, while the ones in Nairobi were done on June 18, 2023. The error bars in the graphs
are related to the readout error and the way they are computed is detailed in Appendix B.

As we can see, we have achieved values for the fidelity between 0.9 and 0.95 in both
cases, after applying error mitigation and postselection. The results are improved to a
small extent when the measurements are done in the IBM Nairobi computer, raising the
average fidelity from around 92% to 94%, due to its larger quantum volume.

5 Conclusions
In this work, we carry out the digital quantum simulation of a Hamiltonian governing the
interaction between a mechanical oscillator and an optical field which interact through a
quantum gravitational field generating entanglement between them. Therefore, we simu-
late an experiment for the generation of gravitational entanglement to prove the quantum
nature of gravity.

This is achieved by implementing the corresponding boson-qubit mapping and per-
forming a suitable gate decomposition in order to write our time evolution operator Uε

in terms of gates that can be used in the IBM Quantum platform computers. Exploiting
post-selection and error mitigation techniques, we achieve high-fidelity—above 90%—in
two different devices, and observe an improvement of the fidelity in the device with larger
quantum volume. Given the rate at which IBM is increasing the quantum volume, it could
soon be possible to increase the number of qubits while keeping high fidelity. This would
allow us to relax the restriction to one maximum excitation per mode. While this should
be a very good approximation given the weakness of the coupling, increasing the allowed
excitations and thus the number of qubits will enable to reach the post-classical regime,
going beyond the capabilities of classical computers. As mentioned in the introduction,
this is the reason why we found that it would be convenient to carry out this simulation
protocol in a quantum computer: While the interaction that was presented here can be
studied analytically, it would be computationally harder to do so with more complex ver-
sions of the process, either with more modes or excitations per mode. For instance, with
the currently available 127-qubit computers, we could consider more than 50 excitations



Carmona Rufo et al. EPJ Quantum Technology           (2024) 11:31 Page 12 of 14

per mode, which would also allows us to consider larger coupling values and therefore
simulate the gravitational entanglement generated by large gravitational fields. While the
quantum volume of these devices have already raised to 128, it is likely that it would not
be enough to compensate for the dramatic improvement in the number of quantum gates
that would be required to simulate such a large number of excitations. However, novel
and more sophisticate error mitigation techniques are currently available [23], enabling
error mitigation in the full circuit and not only in the readout, which would presumably
improve the fidelity of those large post-classical experiments. Meanwhile, our preliminary
four-qubit results represent a first step along that direction, since larger simulations would
essentially require the same techniques described here.

Appendix A: Gate decomposition
The decompositions of the U (i)

ε in terms of gates that are available in the IBM software are:

U (1)
ε = CNOT0–3 S0 CNOT0–2 S0 CNOT0–1 S0R0

x

(
π

2

)
U0

1

(
ε

2

)
R0

x

(
–

π

2

)

× S†0 CNOT0–1 S†0 CNOT0–2 S†0 CNOT0–3 .

U (2)
ε = S3S2 CNOT0–3 S0 CNOT0–2 S0 CNOT0–1 S0R0

x

(
π

2

)
U0

1

(
ε

2

)
R0

x

(
–

π

2

)

× S†0 CNOT0–1 S†0 CNOT0–2 S†0 CNOT0–3 S†2S†3.

U (3)
ε = S1S0 CNOT0–3 S0 CNOT0–2 S0 CNOT0–1 S0R0

x

(
π

2

)
U0

1

(
ε

2

)
R0

x

(
–

π

2

)

× S†0 CNOT0–1 S†0 CNOT0–2 S†0 CNOT0–3 S†0S†1.

U (4)
ε = S3S2S1S0 CNOT0–3 S0 CNOT0–2 S0 CNOT0–1 S0R0

x

(
π

2

)
U0

1

(
ε

2

)
R0

x

(
–

π

2

)

× S†0 CNOT0–1 S†0 CNOT0–2 S†0 CNOT0–3 S†0S†1S†2S†3.

(37)

Appendix B: Fidelity error
In order to estimate the error of the fidelity for each value of ε, we recall the expression
in (35), in which we express the fidelity in terms of probabilities that are determined ex-
perimentally by performing measurements on the circuit in different bases. These mea-
surements have an associated error, which we can use to estimate the error in the fidelity
through standard error propagation:

�F =
(∑

i

(
∂F

∂(tri ρ)
�(tri ρ)

)2)1/2

, (38)

As a good approximation, we can consider that the readout error is the same for all qubits
-the averager readout error provided by IBM- and doesn’t depend on whether the mea-
surement is meant to result in 0 or 1. Let us refer to this magnitude as λ. Since these erorr
rates are small, the rate of error in the process of measuring n qubits can be taken, in the
perturbative regime, as δ = n · λ. Therefore, every time that we perform N measures on
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the circuit to calculate each of these probabilities, the number of “counts” that carry along
a mistake in the readout will be � = δ · N .

Let us now consider the trZZ ρ term as an example. It was calculated as:

trZZ ρ =
N + N ′ – N ′′ – N ′′′

N + N ′ + N ′′ + N ′′′ ≡ a
b

, (39)

where the N represent the counts associated to each of the probabilities that are calculated
to estimate the value of the trace. Through linear error propagation, we can see that the
error associated to both the numerator and the denominator will be �tot ≡ �a = �b =
� + �′ + �′′ + �′′′. The total error associated to this term will be:

�(trZZ ρ) = |∂ trZZ ρ

∂a
|�a + |∂ trZZ ρ

∂b
|�b =

a
b
�tot

(
1
a

+
1
b

)
=

a
b
δNtot

(
1
a

+
1
b

)
, (40)

with Ntot = N + N ′ + N ′′ + N ′′′ = b. Thus:

�(trZZ ρ) = δ + δ
a
b

= δ(1 + trZZ ρ) = nλ(1 + trZZ ρ). (41)

Finally, we can write an expression for the uncertainty in the fidelity, which is what is
displayed as the error bars in the figures:

�F =
1
4

√
�(trZZ ρ)2 + 4ε2

(
�(trXY ρ)2 + �(trYX ρ)2

)
+

(
1 – 4ε2

)(
�(trZI ρ)2 + �(trIZ ρ)2

)
. (42)
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