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Abstract
In this paper, the synthesis of robust memory modes for linear quantum passive
systems in the presence of unknown inputs has been studied, aimed at facilitating
secure storage and communication of quantum information. In particular, we can
switch on decoherence-free (DF) modes in the storage stage by placing the poles on
the imaginary axis via a coherent feedback control scheme, and these memory
modes can further be simultaneously made robust against perturbations to the
system parameters by minimizing the condition number associated with imaginary
poles. The DF modes can also be switched off by tuning the controller parameters to
place the poles in the left half of the complex plane in the writing/reading stage. We
develop explicit algebraic conditions guiding the design of such a coherent quantum
controller, which involves employing an augmented system model to counter the
influence of unknown inputs. Examples are provided to illustrate the procedure of
synthesizing robust memory modes for linear optical quantum systems.

Keywords: Linear quantum passive systems; Unknown inputs; Robust memory
modes

1 Introduction
Quantum communication networks, described by quantum stochastic differential equa-
tions and the associated (S, L, H) framework, contain environmental noise whose intensity
is sufficiently high in reality. Due to the existence of environmental noise, open quantum
systems suffer from loss of coherence. In more concrete terms, the degradation of the su-
perposition of distinct quantum states into a classical mixture under the action of the en-
vironment is often called decoherence, which is detrimental to the processing and storage
of quantum information [1, 2]. Therefore, it is important to develop tools for the engineer-
ing of decoherence-free (DF) modes [3–10], aimed at improving the resilience of quantum
communication systems to environmental and channel distortions. When being put in a
DF mode which is immune to noise, the quantum information associated with the target
quantum state can be preserved, making it an ideal candidate for the implementation of
quantum memory [11]. Moreover, quantum computation can also be protected against
decoherence if implemented within a DF mode [12].

It is thus of much importance to consider the writing, holding (storage) and reading
stages of quantum information concerning reliable quantum communication and compu-
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tation at a relatively abstract level. First of all, the target quantum system can be made to
contain a memory mode that can store quantum states without loss over a long period
of time. Ideally, this mode should be completely decoupled from other system compo-
nents and the surrounding environment while it stores the state; i.e., it is a DF mode. In
particular, in the storage stage, this DF mode is decoupled even from the channel used
for transferring an input state or retrieving the stored state. Secondly, during the writ-
ing/reading stage, the system should be tuned so that the memory mode couples to the
associated transportation channel.

On the one hand, memory qubits can be used to faithfully preserve quantum coherence
and correlations where control pulses may be involved to improve the memory’s robust-
ness [13–16]. On the other hand, optimal control for perfect state transfer in linear quan-
tum memory has also been considered in order to directly take advantage of DF modes
[17]. Apart from the environment dissipation, uncertainties inevitably exist in open quan-
tum systems [18–21], and therefore we focus on the synthesis of robust memory modes in
the presence of unknown inputs, using only passive optical components like phase shifters,
beam splitters and mirrors, by means of coherent feedback control in this paper. In fact,
linear quantum passive systems are relevant to information processing of various systems
such as optical cavities and nano-mechanical oscillators, for which a systematic theory has
been derived to model the dynamics of the corresponding quantum operators, or quan-
tum modes, in the Heisenberg picture [22, 23]. In particular, linear quantum systems can
usually be interconnected to create a network by using optical fields as inputs and outputs
[24–26]. If a quantum mode is directly or indirectly coupled to the input field, then this
mode can be affected by external noise. Additionally, if a quantum mode is coupled to the
output field, then the information stored in this mode can leak out [6, 8, 27, 28]. Conse-
quently, in this case only quantum states governed by the DF modes as mentioned above
could be protected from decoherence.

The system setup concerning the synthesis of robust memory modes is demonstrated
in Fig. 1. The original plant may not have DF modes, as each one of its modes may be
coupled to the input and thus not isolated from the environment. To create DF modes,
another linear quantum system, playing the role of a Luenberger-type coherent controller,

Figure 1 Coherent feedback design for the synthesis of robust memory modes in the presence of unknown
inputs (βp included in b̃p). The Luenberger-type coherent controller is realized by another linear quantum
system, which is interconnected with the original plant via optical fields as the input and output (e.g. y and u).
An inner model associated with the auxiliary variable (ua) is employed to handle unknown inputs in the plant
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is introduced such that DF modes corresponding to tunable memory modes can be con-
structed in the augmented system. An auxiliary inner model will be employed in order to
handle unknown inputs in the plant which characterize uncertainties in open quantum
systems. More precisely, by tuning controller parameters, we can switch between opening
and closing of DF modes; namely the memory modes are DF during the storage period
while they are not DF in the writing/reading process. We are particularly interested in lin-
ear quantum passive systems where energy generation is not involved. It has been proven
in [29] that every purely imaginary pole of a linear quantum passive system indicates the
existence of a DF mode that is isolated from the inputs and outputs, thereby turning the
original synthesis problem into a pole placement problem.

Pole placement within the scope of coherent feedback as depicted in Fig. 1 has been
studied in our previous work, under a coherent observer-based framework [30, 31]. Al-
though the pole placement problem has been tackled in [30] by solving an algebraic equa-
tion, robust pole placement applied to the synthesis of memory modes in the presence
of unknown inputs is not yet considered [21]. For practical quantum control systems, it
is critical to attain robustness due to prevalent uncertainties in open quantum systems
[32–34]. Considering the linear quantum passive system, the poles of such a system can
be made either purely imaginary or in the open left-half complex plane. However, any per-
turbation involved in the system coefficient matrices may move the poles away from the
imaginary axis, causing the memory mode to decay information to the external environ-
ment. For this reason, the sensitivity of desired imaginary poles to perturbations should
be minimized. There exist a variety of eigenstructure assignment algorithms [35–39] pro-
viding a candidate set of closed-loop eigenvalues and the associated eigenvectors that can
achieve desired characteristics. For example, robust pole placement can indeed be realized
by minimizing the condition number of the eigenvector matrix which renders the eigen-
values as insensitive to perturbations in the closed-loop system matrices as possible. Since
each DF mode is associated with a purely imaginary pole, the sensitivity of DF modes to
perturbations in the system parameters is minimized accordingly if the poles are robustly
assigned. We follow this rule to solve the robust placement problem by assigning the poles
to the imaginary axis for the synthesis of DF modes in the storage stage within the closed-
loop quantum system. A coherent quantum controller is thus designed and included in
the feedback loop, whose physical realizability conditions have been taken into account,
with desired robustness achieved by assigning the imaginary poles appropriately. In ad-
dition, an analytical form of solution has been obtained for the design of such a coherent
controller, which may involve optional input and output channels. The memory modes
that are DF in the storage stage can be tuned to couple to the associated transportation
channels during the writing and reading stages.

Notations. In this paper, ∗ is used to indicate the adjoint X∗ of an operator X, as well as
the complex conjugate z∗ = x – iy of a complex number z = x + iy (i =

√
–1 and x, y are real).

|z| denotes the modulus of z. The conjugate transpose A† of a matrix A = {aij} is defined
by A† = {a∗

ji}. ‖A‖p denotes the p-norm of a matrix A. The commutator of two operators
X, Y is defined by [X, Y ] = XY – YX. In (n ∈N) denotes the n-dimensional identity matrix.

2 Linear quantum passive systems
The dynamics of an open quantum system can be described by the triplet (S, L, H). The
unitary matrix S is a scattering matrix, and the column vector L with operator entries is
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defined as the coupling operator. S and L together specify the interface between the sys-
tem and its external environments. In addition, the self-adjoint operator H denotes the
Hamiltonian (self-energy) of the system. In the Schrödinger picture of quantum mechan-
ics, the master equation for a density state ρ of the quantum system can be formulated
from the triplet as

dρ =
(
i[ρ, H] + L∗(ρ)

)
dt, (1)

where the scattering matrix S is assumed to be identity without loss of generality. By con-
trast, given an operator X defined on the Hilbert space H, the corresponding Heisenberg-
picture evolution is given by

dX =
(
L(X) – i[X, H]

)
dt + dW †[X, L] +

[
L†, X

]
dW , (2)

with

L(X) =
1
2

L†[X, L] +
1
2
[
L†, X

]
L. (3)

Here L(·) is called the Lindblad superoperator (Lindbladian), and L∗(·) denotes the ad-
joint of the Lindbladian. The operator W is defined on a special Hilbert space F called
Fock space. When the input fields are in the vacuum states, the fundamental annihilation
process W and creation process W † are quantum Wiener processes satisfying the quan-
tum Itô rule

dW dW † = Im dt, (4)

if the number of inputs is m (namely W = [W1 · · · Wm]T ) [40–43].
In this paper we focus on linear quantum passive systems. A linear quantum passive

system can be modeled by a set of harmonic oscillators coupled to bosonic fields, where
interactions between the system and the field are passive. In other words, the dynamics
of a linear quantum passive system are completely characterized by its annihilation op-
erators since no external source of quanta is required to be implemented. Such a system
can be realized using only passive optical components like phase shifters, beam splitters
and mirrors, widely applied in linear optical quantum memories. To be specific, the type
of passive systems defined in terms of only annihilation operators can be described by the
following stochastic differential equations that can be derived from Eq. (2)

ȧ(t) = Aa(t) – C†b(t), a(0) = a0,

bout(t) = Ca(t) + b(t).
(5)

Here a(t) = [a1(t) · · · an(t)]T is a vector of annihilation operators, with the j-th mode
represented by aj(t) satisfying the canonical commutation relations [aj, a∗

k] = 1 for j = k and
[aj, a∗

k] = 0 for j �= k. The function of aj is to annihilate one photon in the j-th mode, while
the function of a∗

k is to create one photon in the k-th mode according to the underlying
physics. Indeed, the coefficient matrices A and C in Eq. (5) can be obtained from Eq. (2)
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by letting X = a and

H = a†�a, L = Ca,

respectively. Here � ∈ C
n×n is a Hermitian matrix (�† = �), A ∈ C

n×n, and C ∈ C
m×n are

complex matrices. Furthermore, we have

A = –i� –
1
2

C†C, (6)

and thus the condition for physical realizability can be established as follows

A + A† + C†C = 0. (7)

The term physical realizability corresponds to the algebraic physical realizability condi-
tion given by Eq. (7), which stems from the non-commuting nature of quantum observ-
ables, associated with stochastic differential equations Eq. (5) describing the dynamics
of physically meaningful open quantum systems [24, 44]. Or rather, the physical realiz-
ability condition guarantees that the commutation relations can be preserved as required
by unitary evolution in quantum mechanics. Unlike the classical case where every system
model characterized by stochastic differential equations can be physically realized in prin-
ciple, not every system model of the form like Eq. (5) can be physically realized as linear
quantum systems corresponding to quantum harmonic oscillators unless the physical re-
alizabity condition is satisfied; see e.g. [24, 43] and the references therein for more details.
Moreover, b(t) = [b1(t) · · · bm(t)]T is a vector of bosonic annihilation operators defined
on F satisfying

W (t) =
∫ t

0
b(s) ds,

[
bj(t), b∗

j (s)
]

= δ(t – s),

where δ(·) is the Dirac delta function. Similarly, bj(t) annihilates one photon in the j-th
input field at time t.

When there exist unknown inputs to the linear quantum passive system, the following
stochastic equations can be used to describe the altered dynamics:

ȧ(t) = Aa(t) – C†b̃(t), a(0) = a0,

bout(t) = Ca(t) + b̃(t). (8)

When there are unknown signals in the bosonic fields, this type of uncertainty could be
described by an adapted process β , representing signals defined on a space distinct from
that of a and the quantum Wiener processes interacting the quantum plant via system-
field interplay. This amounts to b̃ = b + β . To be more precise, the signal β , which is also
assumed to be bounded, commutes with b̃ and a for all t ≥ 0 [21, 24].

3 Coherent robust pole placement in the presence of unknown inputs
Inspired by the work [21, 30, 31], in this section, we will introduce the technique dealing
with coherent robust pole placement including unknown input signals. Consider a lin-
ear quantum passive system as the plant whose dynamics are governed by the following
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Figure 2 Realization of robust pole placement using a Luenberger structure coherent quantum controller for
a linear quantum passive system as the quantum plant, in the presence of unknown inputs

equations

ȧp(t) = Apap(t) – C†
pb̃p(t) – C†

f u(t), (9)

y(t) = Cpap(t) + b̃p(t), (10)

with the coefficient matrices denoted by Ap ∈ C
n×n, Cp ∈ C

mp×n and Cf ∈ C
mk×n. Here

b̃p(t) = bp(t) + βp(t). In particular, the system matrix of the quantum plant can be deter-
mined by

Ap = –i�p –
1
2
(
C†

pCp + C†
f Cf

)
. (11)

Equivalently, the physical realizability condition can be given by

Ap + A†
p + C†

pCp + C†
f Cf = 0. (12)

The structure of a quantum coherent controller is described by the following stochastic
differential equations

ȧk(t) =
(
Ap – LCp – C†

f K
)
ak(t) – K†bk(t) + Ly(t) – C†

o v(t), (13)

u(t) = Kak(t) + bk(t), (14)

z(t) = –L†ak(t) + y(t). (15)

The coefficient matrix K ∈ C
mk×n is associated with the input-output channel described

by Eq. (14), with the corresponding output u(t) fed back to the plant, as shown in Fig. 2.
The coefficient matrix L ∈C

n×mp is associated with the input-output channel described by
Eq. (15), which receives the input y(t) from the plant. The coefficient matrix Co ∈C

mo×n is
linked to an optional input v(t), which may be involved to ensure the physical realizability
of the controller. By interconnecting the plant and controller jointly via u(t) and y(t), the
dynamical equations for the closed-loop system can be obtained as

[
ȧp(t)
ė(t)

]

=

[
Ap – C†

f K C†
f K

0 Ap – LCp

][
ap(t)
e(t)

]

+

[
–C†

p –C†
p –C†

f 0
–(C†

p + L) –(C†
p + L) –(C†

p + L) C†
o

]
⎡

⎢
⎢⎢
⎣

bp(t)
βp(t)
bk(t)
ν(t)

⎤

⎥
⎥⎥
⎦

, (16)
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where the discrepancy e(t) is defined as e(t) = ap(t) – ak(t). Therefore it can be concluded
that the poles of the closed-loop system are indeed the eigenvalues of Ap – C†

f K and Ap –
LCp. The sufficient and necessary condition for the physical realizability of the coherent
controller is then given by

Ap – LCp – C†
f K = –i�k –

1
2

K†K –
1
2

LL† –
1
2

C†
o Co, (17)

with �k ∈C
n×n being a Hermitian matrix.

In the rest of this paper, we assume that the pair (Ap, C†
f ) is controllable and the pair

(Ap, Cp) is observable. According to the separation principle as discussed in [30], the eigen-
values of Ap – C†

f K and Ap – LCp can be designed independently of each other given that
(Ap, C†

f ) is controllable and (Ap, Cp) is observable.

Assumption 1 For linear quantum passive systems described by Eqs. (9) and (10) with
unknown input signals, we assume that

• (Ap, Cp) is observable.
• (Ap, C†

f ) is controllable.

Bearing in mind Assumption 1, the precise definition of the coherent robust pole place-
ment problem considered in this paper can be speculated as follows.

Definition 1 The robust pole placement problem is to find L and K such that the following
conditions hold.

• Ap – LCp = Xo�oX–1
o with the eigenvector matrix Xo ∈C

n×n such that
‖Xo‖2‖X–1

o ‖2 = χo for a condition number χo, where �o = diag{λo1 , . . . ,λon} with λoj

(j ∈ [1, n] ∩N) being the desired poles.
• Ap – C†

f K = Xk�kX–1
k with the eigenvector matrix Xk ∈C

n×n such that
‖Xk‖2‖X–1

k ‖2 = χk for a condition number χk , where �k = diag{λk1 , . . . ,λkn} with λkj

(j ∈ [1, n] ∩N) being the desired poles.
In particular, when χj = 1 (j ∈ {o, k}), Xj is said to be perfectly conditioned with maximal
robustness.

Please note that according to Definition 1, the matrices Ap – LCp and Ap – C†
f K are

designed to be non-defective. In the following theorem, we show a concrete procedure to
design a coherent controller to achieve the goal of robust pole placement for the quantum
plant described by Eqs. (9) and (10) where unknown inputs exist.

Theorem 1 A solution to the robust pole placement problem for the linear quantum pas-
sive system described by Eqs. (9)-(10) in the presence of unknown inputs, by means of a
coherent controller described by Eqs. (13)-(15), is given by

L = –C†
p , (18)

K = TK Ĉ + Cf , (19)

Co = ToĈ, (20)
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if the following conditions hold

Ĉ†Ĉ = C†
f Cf – C†

pCp ≥ 0,

ϒK = –i�p –
1
2

C†
pCp –

3
2

C†
f Cf – C†

f TK Ĉ = Xk�kX–1
k .

Here Ĉ ∈C
n×n and TK ∈ C

mk×n, together with To ∈C
mo×n, satisfying

T†
K TK + T†

o To = 2In.

The best choice of TK is obtained when χk = ‖Xk‖2‖X–1
k ‖2 = 1. The optional input-output

channel is not needed when To = 0.

Proof In the presence of unknown inputs, it is straightforward to require L = –C†
p . The

physical realizability condition for the coherent controller can then be written as

(
Ap + C†

pCp – C†
f K

)
+

(
Ap + C†

pCp – C†
f K

)† + K†K + LL† + C†
o Co = 0. (21)

By substituting the physical realizability condition for the plant, i.e.,

Ap + A†
p = –

(
C†

pCp + C†
f Cf

)

into Eq. (21), one can obtain that

(K – Cf )†(K – Cf ) + C†
o Co = 2Ĉ†Ĉ, (22)

where Ĉ ∈ C
n×n can be calculated by Ĉ†Ĉ = C†

f Cf – C†
pCp using Cholesky decomposition

when C†
f Cf – C†

pCp ≥ 0. It can be verified that Eqs. (19) and (20) constitute a solution
to Eq. (22). By appropriately choosing TK , χk = |Xk‖2‖X–1

k ‖2 can be made close to 1 or
exactly 1.

Especially, if T†
K TK = 2In, the optional input v(t) does not have to be fed to the coherent

controller. �

Please note that the inner model (as shown in Fig. 1) is not considered yet in the system
setup in this section.

Remark 1 In particular, when mp ≥ n, one can make

T†
K TK = |sK |2In,

with sK a complex number. Then Co can be determined by Co = ToĈ with

T†
o To =

(
2 – |sK |2)In.
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4 Synthesis of robust DF modes in the presence of unknown inputs
As aforementioned, either (Ap, C†

f ) being controllable or (Ap, Cp) being observable implies
that there exist no DF modes in the plant. Since the synthesis of robust DF modes is equiv-
alent to placing the target poles of linear quantum passive systems at the imaginary axis
[29], a natural application of Theorem 1 regarding the synthesis of DF modes robustly in
the presence of unknown inputs is presented in the following theorem.

Theorem 2 DF modes can be synthesized robustly for the linear quantum passive system
described by Eqs. (9)-(10) in the presence of unknown inputs, by means of a coherent con-
troller described by Eqs. (13)-(15), if

• at least one assigned pole λj∗ (j∗ ∈ {k1, . . . , kn}) is purely imaginary with the condition
number χk ;

• the other poles λj ({j �= j∗|j ∈ {k1, . . . , kn}}) which are not purely imaginary have negative
real parts.

Proof According to Theorem 1, since L = –C†
p , one can have that

Ap – LCp = Ap + C†
pCp = –i�p +

1
2
(
C†

pCp – C†
f Cf

)
. (23)

In addition, it is required that C†
f Cf – C†

pCp ≥ 0 in Theorem 1. As Ap – LCp is assumed
to be non-defective and the Hermitian matrix �p is usually defined to be diagonal, the
eigenvalues of Ap – LCp are then guaranteed to be imaginary or have negative real parts.

In terms of K , one can make the diagonal elements in �k have negative real parts ex-
cept for at least one being purely imaginary. Then K can be determined by following the
procedure given in Theorem 1. �

In addition, the controller matrix K can be tuned in different stages. Specifically, in the
holding stage, K can be chosen to make Ap – C†

f K have at least one imaginary eigenvalue
with the others having negative real parts. In the writing or reading stage, Ap – C†

f K is
made to only have eigenvalues in the left half of the complex plane. In addition, the real
parts of these poles can be made larger in order to make the dynamics faster.

By contrast to the results in [30], our main goal here is to synthesize DF modes robustly
in the presence of unknown inputs. Therefore, it is of much importance to make the con-
dition number χk exactly 1. The following corollary shows that further restriction on the
choice of K will be introduced if perfect robustness can be achieved.

Corollary 1 The condition number χk(o) equals 1 if and only if Xk(o)X†
k(o) = X†

k(o)Xk(o) = σ 2In

where σ > 0 is a positive real number.

Proof According to Definition 1, when the condition number equals 1, perfect robustness
of DF modes can be obtained by making at least one diagonal element of �k(o) purely
imaginary with the others all having negative real parts. Namely,

χk(o) = ‖Xk(o)‖2
∥∥X–1

k(o)
∥∥

2 = 1, (24)
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or equivalently,

χk(o) =
σmax

σmin
= 1, (25)

where σmax and σmin are the largest and smallest singular values of the eigenvector matrix
Xk(o) respectively. Therefore, by setting σmax = σmin = σ , the eigenvector matrix Xk(o) can
be written as

Xk(o) = σUV †, (26)

where both U and V are unitary matrices, with σ a positive real number denoting the
identical singular value. It can then be concluded that the eigenvector matrix equals 1 if
and only if

Xk(o)X†
k(o) = X†

k(o)Xk(o) = σ 2In. (27)
�

Remark 2 According to Theorem 2, it can be obviously seen that the presence of unknown
inputs brings in new challenge, which mathematically puts more constraints on the choice
of L. Consequently, There is not adequate degree of freedom for assigning the poles of
Ap – LCp = –i�p + 1

2 (C†
pCp – C†

f Cf ) at desired locations.
In order to allow for more degrees of freedom for synthesizing robust memory modes, in

the following section an auxiliary mode will be included to generate an augmented system
model.

5 Inner model method to weaken the constraints for synthesizing robust
memory modes

In order to weaken coherent controller design constraints when unknown inputs are taken
into account, in this section we employ the method of inner model as discussed in [21] to
allow for more degrees of freedom regarding the choices of controller coefficient matrices.
The resulting augmented system, as shown in Fig. 1, enables us to be less dependent on
the structure of the original quantum plant. In more concrete terms, we introduce a new
variable defined by the integral of βp over time as

u̇a(t) = βp. (28)

We then consider the following augmented system including the auxiliary signal ua(t)
as one of the state variables

[
ȧp(t)
u̇a(t)

]

=

[
Ap Q
0 0

][
ap(t)
ua(t)

]

–

[
C†

p

–Imp

]

βp –

[
C†

p

0

]

bp –

[
C†

f

0

]

u, (29)

y =
[

Cp N
][

ap(t)
ua(t)

]

+ bp + βp, (30)

where the coefficient matrices Q and N create new degrees of freedom for one to design
DF modes. To simplify the derivation, we use the following notations

˙̄ap(t) = Āāp(t) – B̄1βp – B̄2bp – B̄3u, (31)
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y = C̄āp(t) + bp + βp, (32)

where the coefficient matrices Ā =
[ Ap Q

0 0

]
, B̄1 =

[ C†
p

–Imp

]
, B̄2 =

[ C†
p

0

]
, B̄3 =

[ C†
f

0

]
, C̄ = [ Cp N ].

The following theorem shows that DF modes can be synthesized in the augmented plant-
controller feedback system even if a DF mode cannot be synthesized in the original closed-
loop system. Moreover, the unknown inputs can be tracked via a coherent observer-based
controller in such a scenario, and thus further robustness can be provided in this sense.

Theorem 3 In the presence of unknown inputs, even if a DF mode cannot be synthesized
robustly for the linear quantum passive system described by Eqs. (9)-(10) in the closed-loop,
by incorporating the inner model, a Luenberger-type coherent controller can be designed
for the resulting augmented system described by Eqs. (29)-(30) in order to synthesize robust
memory modes.

Proof The dynamics for the Luenberger-type coherent controller can be written as

˙̄ak(t) =
(
Ā – L̄B̄†

1 – B̄3F̄
)
āk(t) – F̄†b̄k + L̄y – C̄†

o v. (33)

Similar to our analysis in the previous section, we have that

˙̄ap(t) = (Ā – B̄3K̄ )āp(t) + B̄3F̄ ē(t) – B̄1βp – B̄2bp – B̄3bk(t), (34)

and

˙̄ap(t) – ˙̄ak(t) = (Ā – L̄C̄)
(
āp(t) – āk(t)

)
+

(
F̄† – B̄3

)
bk(t)

– (B̄1 + L)βp – (B̄2 + L)bp + C̄†
o v(t).

In order to eliminate the influence of unknown inputs in the system, one can choose B̄1 +
L = 0. The physical realizability condition for the coherent controller can be equivalently
written as

(
Ā + B̄1B̄†

1 – B̄3F̄
)

+
(
Ā + B̄1B̄†

1 – B̄3F̄
)† + F̄†F̄ + L̄L̄† + C̄†

o C̄o = 0. (35)

In this case, one can further compute that

Ā + B̄1C̄ =

[
Ap Q
0 0

]

+

[
C†

p

–Imp

]
[

Cp N
]

=

[
Ap + C†

pCp Q + C†
pN

–Cp –N

]

. (36)

Apparently, Eq. (36) offers us more freedom to assign the poles to desired locations. Espe-
cially, one can choose Q + C†

pN = 0, and thus the augmented system matrix Ā + B̄1C̄ turns
into

[
Ap + C†

pCp 0
–Cp –N

]

.

We can then locate the eigenvalues of N either at the imaginary axis or in the left half of
the complex plane. Therefore, N can not only increase the freedom of degrees, but N can
also help us assign the poles of the augmented system on the imaginary axis.
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On the other hand, please note that

Ā – B̄3K̄ =

[
Ap Q
0 0

]

–

[
C†

f

0

]
[
K1 K2

]
=

[
Ap – C†

f K1 Q – C†
f K2

0 0

]

.

We can then choose K2 to make Q – C†
f K2 = 0 such that ap is decoupled from ua. And

since (Ap, C†
f ) is controllable, K1 can be appropriately chosen by assigning the eigenvalues

of Ap – C†
f K1 either at the imaginary axis or in the left half of the complex plane. �

It is worth mentioning that N can also be chosen to be Hurwitz. The controller matrix
K1 can be tuned in different stages. Specifically, in the holding stage, K1 can be chosen to
make Ap – C†

f K1 have at least one imaginary eigenvalue with the others having negative
real parts. The condition number can be made 1 following the rules in Corollary 1. In the
writing or reading stage, Ap – C†

f K1 is made to only have eigenvalues in the left half of the
complex plane. In addition, the real parts of these poles can be made larger in order to
make the dynamics faster.

6 Examples of synthesizing robust memory modes for optical cavities
In this section we consider optical systems whose structure can be illustrated by Fig. 3,
in which the plant cavity has in general no DF modes due to its coupling to the external
environment via the optical field signal b̃p. A controller cavity, which additionally has input
bk , is then designed to generate robust DF modes that are shared in the composite plant-
controller coherent feedback control system.

Specifically, the plant in the following example is a linear quantum passive system whose
dynamics correspond to a single-mode cavity.

Example 1 The positive real numbers � and κ are used to quantify the cavity Hamilto-
nian and coupling strength between the cavity and optical fields. The coefficient matrices
describing the quantum plant characterized by Eqs. (9) and (10) are given by

Ap = –(i�p + 2κ), Cp =
√

κ , Cf =
√

3κ . (37)

Figure 3 Coherent feedback network for the synthesis of robust memory modes concerning an optical
cavity as the quantum plant, where the input b̃p to the plant contains uncertainty. The coherent quantum
controller is another optical cavity interconnecting with the original plant via optical fields. Optional input v
may be fed to the coherent controller to satisfy the physical realizability condition if necessary
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It is not difficult to verify that (Ap, Cp) is observable and (Ap, C†
f ) is controllable. There-

fore, there does not exist a DF mode in the original quantum plant with coefficient matrices
provided in Eq. (37).

Following the procedure in Theorems 1 and 2, we are supposed to choose L = –
√

κ , and
thus in this case

Ap – LCp = Ap + C†
pCp = –i�p – κ .

In order to create a DF mode in the feedback control system via a coherent controller, one
has to choose 	(K) = –

√
4κ
3 such that Ap – C†

f K can be made purely imaginary. However,
according to Theorems 1 and 2, we have that

2Ĉ†Ĉ – (K – Cf )†(K – Cf ) ≤ –4.33κ < 0,

which indicates the controller is not physically realizable. Therefore, DF modes cannot
be synthesized concerning the original quantum plant in Example 1 in the presence of
unknown input, unless the augmented system is considered by allowing for more degrees
of freedom.

One now can follow the procedure in Theorem 3 to synthesize robust DF modes by
incorporating an inner model. For example, we can choose N = i�N and Q = –C†

pN , it can
then be found that

Ā + B̄1C̄ =

[
–i�1 – κ Q + C†

pN
–
√

κ –N

]

=

[
–i�1 – κ 0

–
√

κ –i�N

]

.

In addition, regarding the choice of the controller parameter K = [ K1 K2 ], we can simply
choose K2 = C–1

f Q in this example by referring to Theorem 3. K1 can then be appropri-
ately chosen by assigning Ap – C†

f K1 either at the imaginary axis or in the left half of the
complex plane, provided that the physical realizability conditions are satisfied. Hence, by
introducing the inner model method, we are enabled to synthesize DF modes for the stor-
age stage in the coherent feedback control system. On the other hand, N and Ap – C†

f K1 in
this example can be easily tuned to have negative real parts for the writing/reading stage.

In Example 2, we aim to show tuning of controller parameters which leads to different
values of the condition number, towards robustly synthesizing DF modes in the presence
of unknown inputs.

Example 2 Consider a linear quantum passive system as the quantum plant physically
realized as a two-mode cavity. Without loss of generality, let

� =

[
�1 0
0 �2

]

, (38)

and �1 > �2. Here �1, �2 represent the optical frequencies of the two cavity modes. We
assume that the coupling constant κ is the same for the input and output fields. The pa-
rameters �1, �2 and κ are positive real numbers. The coefficient matrices describing the
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quantum plant can thus be written as

Ap =

[
–(i�1 + κ) – κ

–κ – (i�2 + κ)

]

, Cp =
[√

κ
√

κ

]
, Cf =

[√
κ
√

κ

]
. (39)

It can be easily verified that

det

[
Cp

CpAp

]

= iκ(�1 – �2) �= 0,

which indicates that (Ap, Cp) is observable. Also, (Ap, C†
f ) is controllable since

det
[
C†

f ApC†
f
]

= iκ(�1 – �2) �= 0.

As a result, there does not exist a DF mode in the original plant. For the synthesis of robust
DF modes in the presence of unknown inputs with the quantum coherent controller as
stated in Theorem 3, we parameterize L and K1 as

L =

[
l1

l2

]

, K1 =

[
k11

k12

]T

,

with l1, l2, k11 and k12 complex numbers. Then we have

Ap – LCp =

[
–(i�1 + κ) – l1

√
κ –κ – l1

√
κ

–κ – l2
√

κ –(i�2 + κ) – l2
√

κ

]

,

Ap – C†
f K1 =

[
–(i�1 + κ) – k1

√
κ –κ – k2

√
κ

–κ – k1
√

κ –(i�2 + κ) – k2
√

κ

]

.

Following the procedure in Theorem 1 and Corollary 1, an obvious choice of K1 to achieve
the minimum condition number of χk = 1 is K1 = [ –

√
κ –

√
κ ] with TK = [ –1 –1]. In this case,

we obtain the perfectly-conditioned imaginary poles as

�k =

[
–i�1 0

0 –i�2

]

. (40)

In order to eliminate the influence of unknown inputs, the matrix L is chosen to be L =
[ –

√
κ –

√
κ ]T . The matrices Q, N and K2 can be appropriately determined by following the

rules given in Theorem 3, so that the poles of the closed-loop feedback systems are located
either at the imaginary axis or in the left half of the complex plane. Therefore, by choosing
K1 = [ –

√
κ –

√
κ ], the imaginary poles –i�1 and –i�2 corresponding to robust DF modes

are perfectly conditioned.
In order to see the influence of K1 on the condition number χk , we let

k11 = –
√

κ +
ε(�1 – �2)√

κ
, k12 = –

√
κ ,
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Figure 4 Changes of the condition number χk when ε (a controller parameter) varies according to Eq. (41) .
As ε increases, the robustness characterized by χk becomes weaker

with ε being a non-negative real number that can be varied. Then we have that

Ap – C†
f K1 =

[
–ε(�1 – �2) – i�1 0

–ε(�1 – �2) –i�2

]

,

and the corresponding condition number

χk = ε +
√

ε2 + 1. (41)

It can be obviously seen from Fig. 4 that as ε increases, the condition number χk moves
further from 1. The strongest robustness is achieved with respect to the imaginary pole
–i�2 when ε = 0, which is indeed indicated by Corollary 1.

7 Conclusions
In this paper, we have proposed a coherent feedback control scheme with an explicit de-
sign method for the synthesis of robust DF modes concerning linear quantum passive
systems in the presence of unknown inputs. To be more specific, if the original system
(referred to as the quantum plant) does not possess any DF modes, a coherent quantum
controller can be constructed whose output is fed to the plant, with the aim of assign-
ing the poles of the closed-loop system onto the imaginary axis or into the left half of the
complex plant robustly. Please note that the imaginary poles directly correspond to DF
modes. In particular, robust DF modes, quantified by the condition number, mean that
the purely imaginary poles are robust against perturbations to the system parameters by
appropriately designing the controller, which can thus minimize the information leakage
of DF modes to the environment in practice. In Example 1, by following the rules in The-
orems 1-3, it has been demonstrated that even if a DF mode cannot be synthesized by the
conventional coherent feedback scheme, DF modes can be synthesized in the presence of
unknown inputs by employing the inner model method. It has been shown in Example 2
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that it is convenient to improve the robustness of DF modes by adjusting the controller
parameters which tune the condition number corresponding to the imaginary poles, from
an ill-conditioned case to a well-conditioned (perfect) case. Furthermore, by appropriately
tuning the controller parameters, the robust DF modes can be switched on and off, which
allows for storing as well as writing and reading of quantum information. It is thus promis-
ing that the approach proposed in this paper for the synthesis of robust memory modes
can be applied to facilitate secure storage and communication of quantum information.
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