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Abstract
The development of a universal fault-tolerant quantum computer that can solve
efficiently various difficult computational problems is an outstanding challenge for
science and technology. In this work, we propose a technique for an efficient
implementation of quantum algorithms with multilevel quantum systems (qudits).
Our method uses a transpilation of a circuit in the standard qubit form, which
depends on the characteristics of a qudit-based processor, such as the number of
available qudits and the number of accessible levels. This approach provides a
qubit-to-qudit mapping and comparison to a standard realization of quantum
algorithms highlighting potential advantages of qudits. We provide an explicit
scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit
gates taken from a particular universal set. We then illustrate our method by
considering an example of an efficient implementation of a 6-qubit quantum
algorithm with qudits. In this particular example, we demonstrate how using qudits
allows a decreasing amount of two-body interactions in the qubit circuit
implementation. We expect that our findings are of relevance for ongoing
experiments with noisy intermediate-scale quantum devices that operate with
information carriers allowing qudit encodings, such as trapped ions and neutral
atoms, as well as optical and solid-state systems.

1 Introduction
Progress in engineering coherent quantum many-body systems with a significant degree
of control makes it realistic to study properties of exotic quantum phases [1–6] and to
prototype quantum algorithms [7–10]. One of the key issue in the future scaling of such
systems is preserving their coherent properties when the system size is increased. Existing
prototypes of quantum computing devices are based on various physical platforms, such as
superconducting circuits [5], semiconductor quantum dots [11–13], trapped ions [3, 6, 9],
neutral atoms [1, 2, 4], photons [14, 15], etc. The use of such objects as two-level sys-
tems (qubits) in many cases is an idealization since underlying physical systems are es-
sentially multilevel. The idea of using additional levels of quantum objects for realizing
quantum algorithms is at the heart of qudit-based quantum information processing. This
approach has been widely studied last decades [16, 17], both theoretically and experimen-
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tally [18–60]. The most recent result is the pioneering realization of universal multi-qudit
processors with trapped ions [61–63], superconducting [59, 64] and optical systems [65].

Although manipulating with additional levels faces additional challenges, recent exper-
iments show dramatic progress in increasing the fidelities of qudit operations and mak-
ing them comparable with the ones for qubits. In particular, high-fidelity qutrit CZ and
CZ† gates, with estimated process fidelities of 97.3(1)% and 95.2(3)%, respectively, have
been recently demonstrated in Ref. [59]. Also with superconducting systems, fidelity of
97.7% for two-qutrit CPHASE gate have been achieved [64]. Two qudit MVCXd gate on two
photonic ququarts has been implemented with fidelity 95.2% in [65]. For the trapped ion
platform, on which a qudit processor with 8-level qudits was developed, two-qutrit gate
fidelity 97.5(2)% has been achieved [61]. Remarkably, 8-level qudits are controlled by a
single laser acousto-optic modulator (AOM) as reported in Ref. [61]

Quantum algorithms within the digital quantum computing model can be presented as
qubit-based circuits, so there are several approaches for processing them using qudits.
First of all, qudits can be decomposed of a set of qubits [19–21, 36, 37, 66]. This approach
may decrease the cost of realizing quantum algorithms by replacing some two-qubit oper-
ations requiring interaction between distinct physical objects by single-qudit ones, which
do not require an interaction between distinct physical objects. However, this method is
not universal in the sense that the total number of operations strongly depends on the
mapping, i.e. the way how qubits are encoded in qudits. As we demonstrate below, spe-
cific mappings applied to specific qubit circuits may even lead to a substantial increase in
the number of operations in comparison with the standard qubit-based approach. Second,
higher qudit levels can be used for substituting ancilla qubits [30, 41, 67, 68]. This is es-
pecially important for decomposing multiqubit gates, such as the generalized Toffoli gate.
In particular, an additional (third) energy level of a transmon qubit has been used in the
experimental realization of Toffoli gate [47] (see also Refs. [69, 70]), which is a key primi-
tive of many quantum algorithms, such as Shor’s and Grovers’s algorithms. While existing
quantum computing schemes that are based on qubits platform benefit from several ap-
proaches for the realization of quantum algorithms, which require compilers, transpilers,
and optimizers, qudit-based quantum computing remains described mostly at the level of
logic operations [71].

In the present work, we propose a technique for an efficient realization of qubit-based
quantum algorithms, which employs the combination of two aforementioned approaches
for the use of additional levels of qudits. The crucial element of our method is a transpi-
lation of a qubit circuit, which depends on the parameters of an accessible qudit-based
processor (e.g., number of levels and fidelity of operations). As a result, one obtains qubit-
to-qudit mapping and comparison to the standard qudit realization. A qudit circuit can
be executed via quantum processors or classical emulators, and corresponding outcomes
can be further post-processed in order to be interpreted as results of an algorithm. Clearly,
due to exponential complexity, classical emulation is possible only in the case of low-width
or low-depth circuits. We develop an explicit scheme of transpiling qubit circuits into se-
quences of single-qudit and two-qudit gates taken from a particular universal set, which
can be different for quantum processors based on various physical platforms. We pro-
vide an illustrative example of the qudit-based transpilation for a six-qubit quantum cir-
cuit, where we demonstrate the main features of our approach. We also discuss types of
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quantum algorithms, where the developed approach can show the greatest improvement
compared with a straightforward qubit-based implementation.

The paper is organized as follows. In Sect. 2, we revise the basic principles of quantum
computing with qubits. In Sect. 3, we discuss the general approach for implementing qubit
circuit on qudit-based processors. In Sect. 4, we provide a concrete realization of a qudit-
based transpiler. In Sect. 5, we present an example of applying the developed approach for
realizing 6-qubit circuits with four 4-level qudits. In Sect. 6, we discuss the scalability of
the developed approach and its most promising use cases. Finally, we conclude in Sect. 7.

2 Qubit-based approach
The essence of qubit-based quantum computation is applying a unitary operator Uqb

circ to
a set of n two-level particles (qubits), initialized in the fixed state |0〉⊗n, and the measur-
ing the resulting state in the computational basis to obtain a sample from the following
distribution:

pqb(x) =
∣
∣
〈

x|Uqb
circ|0

〉⊗n∣
∣
2. (1)

Here we denote computational basis states of qubits as |0〉 and |1〉, |x〉 ≡ |x0〉⊗· · ·⊗|xn–1〉,
and x = (x0, . . . , xn–1) ∈ {0, 1}n. Commonly, the same circuit is executed several times,
which results in a sequence of independent and identically distributed (i.i.d.) random n-bit
strings (x(1), . . . , x(N)), where N is the number of samples, and each sample x(i) is obtained
from distribution (1).

The operator Uqb
circ is originally represented in the form of a sequence of some standard

unitary operators (gates) Uqb
i constituting hardware-agnostic (idealized) circuit circqb. For

applying Uqb
circ to real physical objects, an additional transpilation step of decomposing

Uqb
circ to native (usually, single-qubit and two-qubit) operations is required [71–73]. One

of DiVincenzo’s criteria [74] to quantum processors is the requirement to realize a uni-
versal set of gates that allows obtaining an efficient approximation of an arbitrary unitary
operation up to a predefined accuracy. Although multiqubit processors based on various
physical principles have been demonstrated, the problem of limited quality of quantum
operations restricts the computational capabilities of such systems [75]. A particular issue
is the realization of high-quality two-qubit quantum operations that require interactions
between quantum information carriers. Another important factor that has to be taken
into account, is the restricted coupling map of information carriers, which represents the
opportunity to implement two-body interactions. This issue can be overcome by adding
additions SWAP operations. However, this problem is beyond the scope of our work, and
further we suppose that the quantum processor has an all-to-all coupling map.

3 Quantum computing with qudits
The idea of using of qudits, i.e. d-level quantum systems with d > 2, have been widely
considered in the context of quantum information processing [18–31, 33–56]. Clearly, an
m-qudit system can be used in order to obtain the same result as in the case of qubit-based
computing—obtaining the number of samples coming from the distribution determined
by an n-qubit circuit, but potentially with fewer resources, e.g. smaller number of infor-
mation carriers and/or operations. The dimension of qudits and their number has to be
compatible with the given n-qubit circuit. In what follows, we assume that dm ≥ 2n.
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Figure 1 The main stages of implementing a qubit circuit with a qudit-based processor or emulator

A specific question that we are interested in is a transpilation of a circuit given in the
qubit form depending on the parameters of a qudit-based processor. A scheme of our ap-
proach is presented in Fig. 1. It consists of the three following stages: (i) qubit-to-qudit
circuit transpilation, (ii) circuit execution, and (iii) classical post-processing of the mea-
surement results. We note that stages (i) and (iii) are performed with a classical computer,
while stage (ii) is realized with an accessible qudit-based processor or its classical software
emulator.

The input for our scheme is a hardware-agnostic qubit circuit circqb, necessary runs
number N , and the general information about the accessible qudit-based processor, specif-
ically, the number of qudits m, their dimension d, and the set of native gates (usually, it
consists of single-qudit gates and a set of two-qudit gates within a certain connectivity
graph indicating the possibility of direct realization of a two-qubit/two-qudit operation).
The output of the transpilation step is an ‘optimized’ qudit circuit circqd

opt, which is a se-
quence of native qudit gates, and an ‘optimized qubit-to-qudit mapping’ that is an injective
function

φopt : {0, 1}n → {0, 1, . . . , d – 1}m, (2)

assigning a qudit’s computational basis state to each of the qubits’ ones. The general idea
is that running of circqd

opt and processing the output measurement outcomes according
to φopt provides bitstrings equivalent to ones obtained after running circqb on a standard
qubit-based quantum processor (we formulate the rigorous consistency condition below).
The term optimized appears here because various qubit-to-qudit mappings, which are
assignments between qubits’ and qudits’ levels, result in different qudit-based circuits that
are equivalent to the input qubit-based circuit under a particular mapping. In this way, the
goal of the qudit-based transpiler consists not only in transforming qubit gates of circqb

to native qudit ones but also in finding a favorable mapping such that the realization of
the resulting qudit-based circuit is beneficial over the straightforward realization of circqb

on a qubit-based processor. We note that the optimized mapping depends both on the
input circuit (it can be different for different circuits) and the architecture of the accessible
qudit-based processor.

The desirable characteristics of the mapping can be defined in different ways. Below, we
consider a particular implementation of a qudit-based transpiler, where we use the number
of two-qudit interactions as the main figure of merit for quantifying the performance of
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the transpilation (see Sect. 4). The reason for this is that usually, two-body gates are the
main source of errors during the process of executing quantum circuits. Nevertheless,
alternative metrics, such as circuit depth or resulting fidelity estimation, can be used.

To achieve the goal of reducing the number of two-body gates in going from qubits to
qudits, two main techniques, as well as their combination, can be implemented. The first
technique [19–21, 36, 37], employs a qudit’s d-dimensional space for embedding several
qubits (the technique works for d ≥ 2m′ with m′ > 1). Its main advantage is the possibility
to reduce the number of employed physical information carriers (e.g., particles, such as
atoms or ions). However, as we show in Sect. 4, this method is not universal in the sense
that the total number of operations strongly depends on the mapping, i.e. the way how
qubits are embedded in qudits. It appears that the cost of the realization of two-qubit
operations between two qubits inside one qudit may be close to a couple of single-qudit
operations, since it does not require any interaction between distinct physical particles. In
contrast, in the realization of a two-qubit operation between qubits belonging to different
qudits, additional entangling operations are required to presume the state of other qubits
inside these qudits but untouched by the two-qubit gate.

The second technique is to use ‘upper’ qudit levels (|a〉, a ≥ 2) for substituting ancillary
qubits within standard multiqubit gates decompositions [30, 41, 46, 67, 68]. This approach
allows decreasing both the number of required two-body interactions (entangling gates)
and the number of employed quantum information carriers by removing the necessity of
ancillary qubits and is useful in the case of quantum circuits containing multiqubit gates.
We would like to note that these two approaches can be combined in the case of d > 2t for
some t ≥ 2: The first 2t levels of a qudit can be used for embedding 	log2 d
 qubits, while
the remaining ones can be used for subsisting ancillas.

There are two main aspects regarding the qudit-based transpilation. The first is related
to the possibility of realizing qudit gates. As for qubits, a universal set of gates can be
composed of arbitrary single-qudit gates, supplemented with a two-qudit entangling gate
of a particular type. One of the approaches for making this two-qudit gate is to employ
the original two-qubit gate (used within the qubit-based architecture), yet considered in
the full qudit state space. We note that this approach has been successfully demonstrated
in experiments with trapped ions, and it has been shown that the resulting gate fidelities
are comparable with the ones for corresponding qubit-based architectures [61, 62].

The second aspect is related to finding an appropriate qubit-to-qudit mapping. In the
case of small- and intermediate-scale circuits, one may use an exhaustive search through
all possible mappings. However, this approach requires significant classical computational
resources for large-scale circuits. In this case, one is sufficed to find a mapping that is not
the best possible one, but still gives the lower number of two-body gates compared to the
standard qubit implementation (or gives a higher fidelity). If the number of available qu-
dits m is not less than the number of qubits in the input circuit n, then it can be assured
that the number of two-qudit gates in the resulting qudit circuit does not exceed the num-
ber of two-qubit gates in the input circuit. This follows from the fact that there is a trivial
mapping, where each qubit is embedded in its own qudit. In the qutrit case (d = 3) and
m ≥ n, there is no problem with searching for the appropriate mapping: One can employ
n qutrits, each used as a qubit plus the ancillary state. For more complex embeddings of
qubits in qudits we describe several approaches of the optimized mapping finding algo-
rithms in Sect. 4.1. The comparison between the number of two-body gates for the best-
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found mapping with the number of two-body gates for the straightforward qubit-based
implementation can serve as a benchmark for the efficiency of the qudit-based transpila-
tion process and could be placed in the supporting information.

Let us back to the description of the main stages of running the qubit-based circuit with
the qudit-based processor shown in Fig. 1. At stage (ii), the qudit circuit circqd

opt is the input
for the qudit-based processor (or emulator) that applies the gates from circqd

opt to the qudit
register initialized in the state |0〉⊗m, where we use {|l〉}d–1

l=0 to denote computational basis
states of each qudit. The resulting qudit state is measured in the computational basis, and
a sample from the following distribution is obtained:

pqd(y) =
∣
∣
〈

y|Uqd
circ

∣
∣0

〉⊗m∣
∣
2, (3)

where Uqd
circ is the resulting qudit unitary operator, y = (y0, . . . , ym–1), yi ∈ {0, . . . , d – 1},

and |y〉 ≡ |y0〉 ⊗ · · · ⊗ |ym–1〉. The circuit is run N times, that yields a N-length sequence
(y(1), . . . , y(N)), where each y(i) is the string of m numbers from {0, . . . , d – 1}.

The final post-processing stage takes the read-out results (y(1), . . . , y(N)) and a mapping φ

in order to obtain equivalent qubit outcomes (φ–1(y(1)), . . . ,φ–1(y(N))) as output, where φ–1

outputs n-length bit strings out of y(i). The general condition for the scheme’s correctness
is as follows:

pqd(y) = pqb(φ–1(y)
)

, y ∈ image(φ), (4)

where image(φ) is the set of all possible outputs of the mapping φ. The consistency
condition (4) guarantees that only y ∈ image(φ) can appear as measurements results of
the qudit circuit, and the obtained bit strings (φ–1(y(1)), . . . ,φ–1(y(N))) are indistinguish-
able from ones that can be obtained with a qubit-based processor. The set of bitstrings
(φ–1(y(1)), . . . ,φ–1(y(N))) together with the supporting information is the final output of our
approach. One can see that from the viewpoint of classical processing, the most challeng-
ing is the qudit-based transpilation stage. We discuss it in detail below.

4 Qudit-based transpilation
Here we describe the concrete realization of the qudit-based transpiler designed for a spe-
cific model of a qudit-based processor. We assume that the available processor consists of
m d-dimensional qudits, labeled as Q1, . . . , Qm. As a set of native qudit gates, we consider
single-qudit operations

Rα,β
Qj (ϕ, θ ) = exp

(

–ıθσ α,β
ϕ /2

)

,

Phα
Qj(θ ) = diag

(

1, . . . , 1, eıθ , 1, . . . , 1
)

,
(5)

where eıθ is located in αth position, and a two-qudit operation

CZα,β
Qj1,Qj2 = 1Qj1 ⊗ 1Qj2 – 2|αβ〉Qj1,Qj2〈αβ|, (6)
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which applies a fixed phase factor –1 to the pair of levels given by α and β . Here we use
the following notations:

σα,β
ϕ = σα,β

x cosϕ + σα,β
y sinϕ,

σ
α,β
ξ = 〈0|σξ |0〉|α〉〈α| + 〈0|σξ |1〉|α〉〈β|

+ 〈1|σξ |0〉|β〉〈α| + 〈1|σξ |1〉|β〉〈β|, ξ ∈ {x, y, z},
(7)

σx, σy, σz are standard single-qubit Pauli matrices, α,β ∈ {0, . . . , d – 1} denote levels in
qudits’ space, ϕ, θ are real-valued arbitrary angles, and 1 stands for the identity matrix.
In what follows, we use subindices over unitary operators to specify quantum informa-
tion carriers or carriers (qubits or qudits) on which this operator acts. We assume that
two-qudit gates can be implemented for every pair of qudits within the all-to-all coupling
map. Note that CZ1,1

Qj1,Qj2 realizes a standard qubit controlled-phase gate acting in the four-
dimensional subspace spanned by the first two levels of Qj1 and Qj2, and acts as identity
in the remaining subspace. Moreover, CZα,β

Qj1,Qj2 with arbitrary α and β can be realized by
surrounding a single instance of CZ1,1

Qj1,Qj2 with single-qudit operations.
We note that to realize the considered single-qudit gates in Eq. (5), it is enough to have

a connected (but not fully connected) coupling graph of allowed transitions between lev-
els, as shown in Ref. [76]. Knowing the exact coupling map between levels, single-qudit
operations can be easily reformulated in terms of accessible transitions. This is the case
for superconducting [77, 78], ion-based [43, 61, 62], and neutral-atom-based [60] qudits.
Moreover, in real existing experimental setups, transitions within a given coupling graph
are usually addressed with a single laser. For example, in Ref. [61], 10 allowed transitions
inside 8-level qudit realized by 40Ca+ ions are accessed by a single narrowband laser at
729 nm with AOM. The employed two-qudit gate (6) can be realized via Rydberg block-
ade neutral atom-based [60] qudits, and via common quantized motion mode in ion-based
platform [79].

The input for the designed transpiler n-qubit hardware-agnostic qubit circuit circqb, act-
ing on qubits denoted by q1, . . . , qn, is assumed to consist of single-qubit gates

rqi(ϕ, θ ) = exp(–ıθσϕ/2), (8)

where σϕ = σx cosϕ + σy sinϕ, and a κ-qubit gates

CZqi1,...,qiκ = 1qi1 ⊗ · · · ⊗ 1qiκ – 2|1 . . . 1〉qi1,...,qiκ 〈1 . . . 1| (9)

with κ ∈ {2, 3, . . . , n}. One can see that multi-body operations (9) and (6) correspond to
acquiring a phase factor of –1 on a particular multi-body state. We note that a multi-qubit
operation (9) can be transformed into a generalized Toffoli gate by applying single-qubit
gates. We also note that both the considered qudit-based and qubit-based sets of gates are
universal.

Without loss of generality, we assume that circqb terminates with read-out measure-
ments in a computational basis acting on each of n qubits. The initial state of the qubit
register is assumed to be |0〉⊗n. We note, however, that the developing technique of trans-
forming qubit gates into qudit gates is independent of the chosen initial state, and can be
applied in the same way within other types of initialization.
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Figure 2 Example of a mapping in the form, given by Eq. (10) and (11), between n = 5 qubits andm = 3
qudits of dimension d = 5. Within the presented mapping, position_in_qudit[q4] = 2, qudit_index[q4] = Q2,
and qubit_index[Q2, 2] = q4

For possible mappings between qubits’ and qudits’ spaces, we restrict ourselves with
embeddings of the whole computational space of one or several qubits into a space of
a particular qudit. Specifically, each possible mapping φ can be defined in the following
form:

φ = (φQ1, . . . ,φQm), φQj = (qij,1, . . . , qij,#j), (10)

meaning that qudit Qj contains #j qubits qij,1, . . . , qij,#j (given that the condition 2#j ≤ d is
fulfilled). The assignment of computational basis states of qubits to computational basis
states of qudits is governed by the corresponding binary representation:

|int(x1, . . . , x#j)〉Qj ↔ |x1〉qij,1 ⊗ · · · ⊗ |x#j〉qij,#j , (11)

where x1, . . . , x#j ∈ {0, 1} are bit values and int(x1, . . . , x#j) ∈ {0, 1, . . . , 2#j –1} outputs an inte-
ger number from its binary representation x1, . . . , x#j. We note that within the considered
mappings, the ‘address’ of each qubit is defined by an index of qudit Qj ∈ {Q1, . . . , Qm} and
a ‘position’ pos ∈ {1, . . . , #j} of the qubit inside the qudit. An example of a possible mapping
between n = 5 qubits and m = 3 qudits of the dimension d = 5 is shown in Fig. 2.

To simplify operations within the considered special case of mapping φ, it is convenient
to introduce the following functions:

position_in_qudit[qi] �→ pos,

qudit_index[qi] �→ Qj,

qubit_index[Qj, pos] �→ qi,

(12)

where the first two functions provide the address of a given qubit with the qudits’ space,
and the third function returns an index of a qubit given its address. We also introduce the
following functions:

indices_of_qubits[Qj] → {qij,1, . . . , qij,#j},
number_of_qubits[Qj] → #j

(13)
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Figure 3 Data transfer scheme in the developed qudit-based transpiler

that return indices of qubits located in a given qudit and the total number of qubits in a
given qudit correspondingly.

The considered ‘qubit-to-qudit’ mapping, in particular Eq. (10), implies that the compu-
tational basis measurement at the end of the qubit circuit corresponds to a computational
basis measurement of qudits, also assumed to be realizable on the qudit-based processor.

The developed qudit transpiler consists of two modules: (i) the mapping finder and (ii)
the qudit circuit constructor (see Fig. 3). Both of them take as input a qudit processor de-
scription (values of m and d) and a hardware-agnostic qubit-based circuit circqb. The goal
of the mapping finder is to search for mapping φopt ∈ {φ}, which minimizes a chosen figure
of merit, while the purpose of the qudit circuit constructor is to generate a qudit circuit
circqd

φ that is equivalent to circqb under a mapping φ. Finally, the qudit-based transpiler
outputs the optimized mapping φopt and the corresponding circuit circqd

opt := circqd
φopt . The

mapping finder can also output some supporting information, which contains, e.g., the
exact number of single and two-qudit gates in circqd

opt and its comparison with the number
of single- and two-qubit gates is in the qubit circuit circqb

stand resulted from the standard
qubit-based transpilation of circqb. Below we describe the operation of modules in more
detail.

4.1 Mapping finder
Here we introduce several approaches of how the optimized qubit-to-qudit mapping can
be obtained. As a figure of merit for a mapping φ we consider the number of two-qudit
gates in circqd

φ . This choice is motivated by the fact that entangling gates typically repre-
sent the main source of fidelity loss. However, as mentioned before, one can alternative
other figures of merits, e.g., circuit depth or fidelity estimations, which can be efficiently
calculated given the classical representation of the corresponding qudit-based circuit.

4.1.1 Finding the optimal mapping with an exhaustive search
The straightforward way for optimizing qubit-to-qudit mapping is to employ an exhaus-
tive search over all possible mappings 
 ≡ {φ} of the form Eq. (10). This approach is ap-
plicable if the number of available qudits m and their dimension d are reasonably small.

The first step of the exhaustive search is to construct a set of all non-equivalent map-
pings 
̃ ⊂ 
. Here we call two mappings equivalent if they are different only up to per-
mutations of qubits indices within a particular qudit, or up to permutation of whole sets



Nikolaeva et al. EPJ Quantum Technology           (2024) 11:43 Page 10 of 25

Figure 4 The total number of non-equivalent mapping |
̃| depending on the number of quditsm for
d ∈ {4, . . . , 31}. To maximize the number of nonequivalent mappings, we take the number of qubits n the
same as the number of quditsm

of qubits’ indices belonging to different qudits (and thus definitely provide the same num-
ber of entangling gates). Then, the mapping finder sequentially inputs each φ ∈ 
̃ to the
qudit circuit constructor to get the corresponding qudit circuit circqd

φ . By comparison of
two-qudit gate numbers in circqd

φ while going through all mappings, the mapping finder
chooses the one (φopt), which provides the smallest number of two-qudit gates.

As we show below, the complexity of generating circqd
φ is linear with respect to the num-

ber of gates in the original qubit-based circuit circqb, so the possible bottleneck is in the
number of mappings in 
̃. We note that this issue does not appear in the case of qutrits
(d = 3), where there is only a single non-equivalent mapping: each qubit qi is mapped to a
qutrit Qi.

In Fig. 4 we show the behavior of the total number of non-equivalent mappings |
̃| for
different values of n and d ≥ 4. Given the fact for d ≤ 31 and n ≤ 7, the resulting number
of non-equivalent mappings is no more than thousand, it is possible to go through all
φ ∈ 
̃ within a reasonable time. We note that in Fig. 4 we take the number of qudits m
to be equal to the number of qubits n, to maximize the number of possible mappings.
Since we deal with a special case of mappings, where each qubit is entirely embedded in
a single qudit, the number of mappings for different qudit dimensions taken from a range
d = 2n′ , . . . , 2n′+1 – 1 for certain n′ is the same.

4.1.2 Searching for optimized mappings with polynomial heuristic algorithms
When the exhaustive search is not applicable, some approximate polynomial methods can
be employed. We emphasize that the problem of finding a mapping from 
, providing
an advantage of using a qudit-based approach compared to the standard qubit-based ap-
proach, is much easier than finding the best mapping among all mappings in 
. Indeed,
in the case of m ≥ n, the one-to-one mapping φ(0) definitely provides no more entan-
gling gates compared to the standard qubit-based transpilation, since upper qudit levels
are used only for multiqubit gates decomposition. We emphize that in the case of φ(0),
two-qubit entangling CZ gates from the input qubit circuit are realized within the qudit-
based version exactly in the same way as in the qubit-based one. If the input qubit circuit
has at least one Toffoli gate, then the number of entangling gates in the corresponding
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qudit circuit circqd
φ(0) is strictly smaller compared to the one in the standard qubit-based

transpilation result circqb
stand. Comparing φ(0) with some limited number candidates from


 definitely doesn’t make things worse. In the case of m < n, yet m	log2 d
 ≥ n, the devel-
oped qudit-based transpilation method makes it possible to run an n-qubit circuit with m
d-level qudits, which is not possible with m qubits at all.

In the case of m ≥ n, the choice of candidates from 
 can be directed by the following
observations. First, it is advisable to consider embedding a pair of two qubits into the space
of a single qudit, if there is a relatively huge amount of two-qubit gates connecting these
qubits within the given circuit, and there is a relatively small amount of gates affecting
each of these qubits separately. Second, it is reasonable to put qubits affected by multiqubit
gates into qudits with free upper levels to use these levels as ancillas for multiqubit gates
decomposition.

One can also consider an iterative “greedy” approach of poly(n) complexity for finding
an optimized mapping, where a sequential joining of qubits in the space of qudit is con-
sidered. We sketch the idea for the case of m ≥ n and d = 4, . . . , 7 (each qudit can embed
no more than two qubits). Initially, the one-to-one mapping φ(0) is considered, and the
resulting number of entangling gates N (0)

ent is stored. At the first step, all n(n – 1)/2 map-
pings, where one qudit embeds a qubit pair and n – 2 other qudits embed remaining n – 2
qubits are considered. If the minimal number of entangling gates among these mappings
N (1)

ent < N (0)
ent , then the corresponding mapping φ(1) with the fewest entangling gates is cho-

sen as a starting point for the next step. Otherwise, φopt := φ(0) is the output. In the second
step, (n – 2)(n – 3)/2 mappings with two-qubit pairs (the previously selected pair and a
newly tested one) are considered, and so on. The algorithm proceeds until the number
of entangling gates starts to grow, or a mapping with the maximal number 	n/2
 of qubit
pairs is obtained. Although this algorithm does not guarantee getting the best possible
mapping, it provides the resulting number of entangling gates to be no more than the one
for a straightforward qubit-based realization, and the maximal number of iterations scales
as O(n3). Given the polynomial complexity (in the number of qubits and number of gates)
of the transpilation procedure for a given mapping, we obtain a polynomial complexity of
the whole qudit-based transpiler.

It is also worth noting an interesting approach for finding a qubit-to-qudit mapping
recently proposed in Ref. [80]. The goal of this algorithm is also to lower the number of
non-local operations within the realization of qubit circuits with qudits. For this purpose,
the authors use a weighted graph representation of a given qubit circuit, where qubit levels
represent nodes, graph edges—local and nonlocal operations, and weights—the number
of corresponding operations. The authors propose to use an adaption of the K-means
algorithm to cluster the graph to place edges of the highest weights in distinct clusters.
This clusterization is then interpreted in terms of the qubit-to-qudit mapping. We note
that this algorithm is applied to input qubit circuits already transpiled down to single- and
two-qubit gates, and therefore does not utilize the full potential of qudits for operating with
multiqubit gates, which of the central features of the approach considered in our work.

4.2 Qudit circuit constructor
Here we consider in detail how the qudit circuit constructor transpiles qubit circuit circqb

to the qudit circuit circqd
φ according to the given qubit-to-qudit mapping φ. The transpila-

tion process of circqb into circqd
φ is performed in a gate-by-gate principle, shown in Fig. 5.
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Figure 5 Qudit circuit transpilation algorithm implemented in the qudit-based circuit constructor. Gates
from circqb are sequentially classified by the number of qudits in qudit_set and then transpiled to
qudit-based gates depending on the number of qudits in qudit_set

At the very beginning of the process, circqd
φ is initialized as empty. Then, for each gate from

the qubit circuit circqb, the constructor takes a set

qubit_set = {qi1, . . . , qiκ}. (14)

of qubits, affected by this gate, and finds the set of corresponding qudits, possessing qubits
from qubit_set:

qudit_set =
{

qudit_index[qi1], . . . , qudit_index[qiκ ]
}

. (15)

We note that qudit_set does not contain duplicates of qudit indices. Thus, the number
of elements in qudit_set, which we denote by |qudit_set|, can be less than the number
of involved qubits κ if several affected qubits are located in the space of the same qudit
according to the mapping φ.

The processing of the gate is determined by the value of |qudit_set|. If |qudit_set| = 1,
then the qubit gate under processing can be realized on the qudit processor as a sequence
of single-qudit gates (see Sect. 4.2.1). In the case of |qudit_set| > 1, two-qudit gates be-
come necessary. It is convenient to distinguish the case of |qudit_set| = 2 and the case of
|qudit_set| ≥ 3 that we describe in detail in Sects. 4.2.2 and 4.2.3, correspondingly. For
all these cases, we obtain a sequence of qudit gates that implement the processed qubit
gate. This sequence is added to the end of circqd

φ , and then the procedure is repeated for
the next gate from circqb until all gates have been processed. Below we describe the exact
decomposition of qubit gates into the sequence of qudit gates for all possible values of
|qudit_set|.
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4.2.1 Single-qudit case
The case of |qudit_set| = 1 can appear in two situations: (i) the processed gate is a single-
qubit one (κ = 1), and (ii) the processed gate in a multi-qubit (κ ≥ 2) with all affected
qubits being located in the same qudit according to the mapping φ.

First, let us consider the case of a single-qubit gate, acting on a qubit qi1. Let Qj =
qudit_index[qi1], pos = position_in_qudit[qi1], and #j = number_of_qubits[Qj]. Remind
that in our realization, the only type of single-qubit gates is rotation rqi(ϕ, θ ), defined in
Eq. (8). To implement this unitary in the qudit’s space, we need to consider a tensor prod-
uct of a 2 × 2 unitary acting in a subspace of affected qubits with an identity operation
acting in the remaining space of a qudit. The resulting correspondence between the qubit
gate and a sequence of qudit gates is given by

rqi(ϕ, θ ) →
∏

(α,β)

Rα,β
Qi (ϕ, θ ), (16)

where the product is made over all possible pair levels (α,β) satisfying the following con-
dition:

bin(α) = x1 . . . xpos–10 xpos+1 . . . x#j,

bin(β) = x1 . . . xpos–11 xpos+1 . . . x#j.
(17)

Here bin(α) and bin(β) are #j-length binary representation of α and β , correspondingly
(let us remind that α,β ∈ {0, 1, . . . , d – 1} and #j ≤ log2 d), and x1 . . . xpos–1xpos+1 . . . x#j are
all possible bitstrings of length #j – 1. The sequence of qudit unitaries, given by Eqs. (16)
and (17), is in agreement with the employed structure of qubit-to-qudit mappings shown
in Eq. (11) [see also Fig. 6(a) for an intuitive explanation].

Let us then consider the case of a multi-qubit gate CZqi1,...,qiκ , where all qubits qi1, . . . , qiκ
are located in the same qudit Qj. Let posik = position_in_qudit[qik] for k = 1, . . . ,κ . Then
the desired gate CZqi1,...,qiκ can be realized with the following sequence of single-qudit
phase gates:

CZqi1,...,qiκ →
∏

α

Phα
Qj(π ), (18)

where qudit levels α satisfy the following condition:

bin(α)[posik ] = 1 foreach k = 1, . . . ,κ (19)

(here bin(α)[posik ] stands for posik th bit in a #j-length binary representation of α). As in
the case of a single-qubit gate, the resulting sequence provides a proper transformation at
the required qudit levels [see Fig. 6(b)]. Clearly, the processing of the single-qudit case is
of O(1) space and time complexity on a classical computer.

4.2.2 Two-qudit case
Here we consider the case where qubits, which are involved in certain multi-qubit gate
CZqi1,...,qiκ , are located (according to φ) in two different qudits, namely Qj1 and Qj2. Let
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Figure 6 (a) Qudit-based realization of a single-qubit gate rqi(ϕ ,θ ) in the case where qi is embedded into
8-level qudit Qj at the 2nd position (Qj contains three qubits in total). The involved transitions within the
8-level qudit Qj are shown. (b) Qudit-based realization of a two-qubit gate CZqi1,qi2 in the case where the
affected qubits qi1 and qi2 are embedded into the same qudit Qj at the 1st and 3rd positions,
correspondingly. The levels acquiring the phase factor of -1 are shown

{posl
1} and {posl′

2 } be positions, according to position_in_qudit[·], of qubits located at Qj1
and Qj2, correspondingly.

As in the case of a single-qubit gate, the resulting transformation performed in the space
of two qudits is obtained as a tensor product of the unitary corresponding to CZqi1,...,qiκ

in the proper subspace of the two-qudits space and identity operator in the remaining
subspace. This operation reads

CZqi1,...,qiκ →
∏

(α,β)

CZα,β
Qj1,Qj2 , (20)

where pairs of levels (α,β) are all possible admissible pairs satisfying the condition

bin(α)
[

pos�
1
]

= 1, bin(β)
[

pos�′
2
]

= 1. (21)

According to Eqs. (20) and (21), the number of CZα,β
Qj1,Qj2 gates in the resulting sequence

is determined by the number of qubits located in qudits Qj1 and Qj2 and not involved by
CZqi1,...,qiκ (see an example for two-qudit case in Fig. 7). Each unused qubit doubles the
number of pairs (α,β) satisfying Eq. (21), and so the resulting number of two-qudit gates
is given by

2#j1+#j2–κ , (22)
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Figure 7 Qudit-based realization of a three-qubit gate CZqi1,qi2,qi3 in the case where qi1 and qi2 are
embedded into Qj1 and qi3 together with some other qubit are embedded into Qj2 correspondingly (Qj1 and
Qj2 are 4-level systems)

where #j1 and #j2 are the number of qubits in Qj1 and Qj2, correspondingly.
Equation (22) captures an intuition behind qudit CZ gate. On the one hand, implemen-

tation of, e.g., two-qubit gates (κ = 2) in the case where qudits Qj1 and Qj2 contain other
qubits (#j1 + #j2 > 2) costs more two-body CZ-type interactions than in the case of direct
qubit-based realization (2#j1+#j2–1 compared to 1). Recall, however, that in the case of the
one-to-one mapping φ(0), #j1 = #j2 = 1 and κ = 2, so there in no overhead in the number
of entnagling gates. On the other hand, in the case of multi-qubit gates with κ > 2, the
resulting number of two-body CZ-type interactions can become smaller compared to the
one obtained from known multi-qubit gates decompositions into single-qubit and two-
qubit gates (see e.g. Ref. [81]). We also remind that in the case where all qubits affected by
CZqi1,...,qiκ fall into the same qudit, there is no need for two-body interactions at all.

As in the single-qudit case, the described processing is of O(1) space and time complex-
ity on a classical computer. We also note that for other types of two-qudit interactions,
different from CZα,β

Qj1,Qj2 , Eqs. (20) and (22) have to be modified. For example, as shown
in [82], in a trapped-ion platform with native parametric two-qudit Mølmer-Sørensen
gate, to implement two-qubit CZ gates (κ = 2) in the case, where qudits Qj1 and Qj2 contain
two qubits each, a single two-qudit Mølmer-Sørensen gate with increased value of effec-
tive rotation angle, compared to the rotation angle used within the qubit-based verstion,
is needed.

4.2.3 Multi-qudit gate case
Here we describe the most complicated case, where qubits affected by the gate CZqi1,...,qiκ ,
fall into more than two qudits. To make the decomposition description more clear, let
us introduce new notations. For each qudit Qj, we define states |0〉Qj ≡ |0〉Qj and |1〉Qj ≡
|d2 – 1〉Qj that corresponds to multi-qubit states |0 . . . 0〉qij,1,...,qij,#j and |1 . . . 1〉qij,1,...,qij,#j , cor-
respondingly, with respect to the considered mapping φ (remind that qij,1, . . . , qij,#j denote
labels of qubits located in the space of qudit Qj). If qudit dimension d > 2#j, we also define
an ancillary state |a〉Qj ≡ |2#j〉Qj that is beyond the qubits’ subspace in the space of Qj, and
a flag, indicating whether the ancillary level is available in this qudit:

ancilla[Qj] =

⎧

⎨

⎩

True if d ≥ 2#j,

False otherwise.
(23)
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Figure 8 (a) Intermediate qudit circuit circqd-intφ used for the decomposition of CZqi1,...,qiκ with

|qudit_set| ≥ 3. Each gate of circqd-intφ is then transpiled down to native single-qudit and two-qudit gates. (b)
The scheme of transforming an inversion operation between levels |1〉 and |a〉 to the phase accruing
operation at level |1〉 via single-qudit operations. (c) The scheme of transforming a control at level |a〉 to the
control at level |1〉 via single-qudit operations. (d) An example of the qubit-based ancilla-free decomposition
of three-qubit CZp0,p1,p2 gate according Ref. [81] that can be used as a template to decompose multi-qudit
CZ type gates at Steps (i), (iii), and (v). (e) Decomposition of a three-qudit gate used in Steps (i) and (v) to
single-qudit and two-qudit gates according to the template, shown in (d). (f ) Decomposition of a three-qudit
gate used in Step (iii) to single-qudit and two-qudit gates according to the template, shown in (d)

Let qudit_set be a set of qudit indices involved in the realization of CZqi1,...,qiκ , see
Eq. (15). We assign each qudit from qudit_set to one of three possible types labeled as
A, B, or C .

We say that Qj belongs to type A, if all qubits, located in this qudit, are affected by
CZqi1,...,qiκ and Qj has no ancillary level, that is

(

indices_of_qubits(Qj) ⊂ qubit_set
) ∧ ancilla[Qj], (24)

where ancilla[Qj] stands for ancilla[Qj] = False. If all qubits located in qudit Qj are involved
in the decomposed qubit gate and Qj has ancillary level, that is

(

indices_of_qubits[Qj] ⊂ qubit_set
) ∧ ancilla[Qj], (25)

then we say that qudit Qj belongs to type B. Qudit Qj ∈ qudit_set belongs to type C if there
is at least one qubit located in Qj but not affected by CZqi1,...,qiκ :

(Qj ∈ qudit_set) ∧ (

indices_of_qubits[Qj]/qubit_set �= ∅

)

. (26)

We denote the number of qudits of types A, B, and C as |A|, |B|, and |C|, correspondingly.
The transpilation of CZqi1,...,qiκ is performed by, first, constructing an intermediate qudit

circuit circqd-int
φ presented in Fig. 8(a), and then decomposing circqd-int

φ down to single-qudit
and two-qudit gates.

We then split circqd-int
φ into five steps: (i) multi-qudit controlled gate with controls on

type A qudits and target on the first qudit of type B; (ii) down-step ladder-like sequence
of two-qudit gates on all qudits of type B; (iii) multi-qudit gate acting on the last qudit of
type B and all qudits of type C ; (iv) up-step ladder-like sequence that is the uncomputation
of step (ii); (v) the uncomputation of step (i).
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The general idea of this structure is as follows. According to CZqi1,...,qiκ , we have to add a
phase factor of –1 to all basis states of involved qudits such that all corresponding qubits
qi1, . . . , qiκ , embedded in these qudits, are in the state 1. We note that for qudits of types A
and B, there is a single level that is a candidate for acquiring the phase factor, namely |1〉.
For type C qudits, the situation is different. Since the presence of unaffected qubits, the
phase factor is acquired or not acquired (depending on the state of other involved qudits),
to several levels of type C qudit, namely to all levels α satisfying the condition

bin(α)[pos] = 1, (27)

where pos values correspond to positions of affected qubits in the considered qudit.
Roughly speaking, we need to add a phase factor of –1 to a computational basis state of
involved qudits, if all type-A and type-B qudits are in the state |1〉, and all qubits encoded
in type-C qudits are in the state |1〉.

The important feature of type B-qudits is that they possess an ancillary level that can
be employed for storing temporary information within the gate decomposition. We use
an ancillary level of type B qudit for storing a ‘flag’ whether this qudit and all ‘previous’
qudits are in the proper state for acquiring the phase factor: this is the way how the lad-
der type sequences [parts (ii) and (iv)] appear in our construction. As we discuss further,
the operation with qudits of type A and C is based on standard schemes of reconstruct-
ing multi-qubit controlled gates down to single-qubit and two-qubit gates. At the same
time, the implementation of a two-qubit operation for qubits in qudits, possessing other
uninvolved qubits (qudits of type C), results in overhead in the number two-qudit opera-
tion (as we discussed in Sect. 4.2.2). In order to avoid the doubling of this overhead in the
uncomputation, we put the operation with C type qudits in the middle of our circuit.

However, it is a possibly realizable situation when the number of two-qudit gates re-
quired for processing C type qudits is lower than the number of two-qudit gates for pro-
cessingA type qudits. In this case, it is preferable to swapA and C-type qudits in the struc-
ture of circqd-int

φ . In order to simplify our description, next we consider the processing of
the original circuit presented in Fig. 8(a). The possible improvement related to swapping
A and C qudits in the structure of circqd-int

φ is discussed in Appendix B. We also consider
modifications of the described scheme in cases where one or two types of qudits are miss-
ing (e.g. |B| = 0) in Appendix A.

Below we consider the decomposition of each of the described groups of gates to the set
of basic single-qudit and two-qudit gates for our transpiler.

a. Processing the multi-controlled gate of Step (i) The idea of its decomposition is as
follows. First, by employing single-qudit rotations R0,1

Qj (φ, θ ) and R0,a
Qj (φ, θ ) where Qj is an

affected type-B qudit, and notations 0 ≡ 0, 1 ≡ d2 – 1, and a ≡ 2#j are used, we turn the
desired multi-qudit gate into the gate of CZ type [see Fig. 8(b)]. Namely, it adds the phase
factor –1 to the state |1〉 ⊗ · · · ⊗ |1〉 of the affected qudits and leaves the remaining states
unchanged.

Then we take an ancilla-free decomposition of (|A| + 1)-qubit gate CZp0,...,p(|A|) gate,
acting on abstract qubits p0, . . . , p|A|, to single-qubit gates rpk(φ, θ ) and two-qubit gates
CZpk1pk2 . This decomposition is used as a ‘template’ for reconstructing the desired multi-
qudit gate into a single-qudit and two-qudit gate. As an example, one can take a stan-
dard decomposition from Ref. [81] shown in Fig. 8(d). Next we turn each single-qubit gate
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rpk(φ, θ ) into a single-qudit gate R0,1
Qj (φ, θ ), and each CZpk1pk2 into CZ1,1

Qj1Qj2 , where the corre-
spondence between qubits p0, . . . , p|A| and affected qudits is realized via a straightforward
ordering (see Fig. 8 (e)). One can see that this construction provides the realization of CZ
operation in the space spanned by a tensor product of states |0〉 and |1〉 of affected qudits.

We note that it is possible a situation, where the taken qubit-based decomposition of
CZp0,...,p|A| realizes the gate up to a global phase. In our case, where we embed this de-
composition into qudit space, the global phase turns into a relative one between the CZ
operation in the subspace spanned by a tensor product of |0〉 and |1〉 states and the iden-
tity operation in the remaining subspace. However, this relative phase is removed in the
uncomputation Step (v), given that all operations in the uncomputation are Hermitian
conjugates of ones in Step (i).

b. Processing the ladder-like sequence on type-B qudits of Step (ii) Remind that each
type-B qudit has an ancillary level |a〉 that we use to store the information about whether
‘previous’ (according to the ordering in Fig. 8(a)) qudits are in the state |1〉. The idea be-
hind employed gates in the ladder-like sequence of Step (ii) is quite straightforward: Each
gate turns the state of the target qudit from |1〉 to |a〉 if and only if the control qudit is in
the state |a〉. One can see that by realizing the sequence of Step (ii), following Step (i), the
last type-B qudit appears in the state |a〉 if and only if all type-A and type-B qudits were
initially in the state |1〉. The decomposition employed in Step (ii) two-qudit gates using
native qudit gates can be performed according to schemes of Fig. 8(b) and (c).

c. Processing the multi-controlled gate of Step (iii) The goal of the considered gate is to
acquire the phase factor of –1 to the input state if the last type-B qudit is in the ancillary
state |a〉, and type-C qudits are in a such state that all qubits embedded in the type-C
qudits and affected by the decomposed gate are in the state |1〉. As has been mentioned,
the important point of type-C qudits is that they also contain unaffected qubits, which
results in the fact that the gate of Step (iii) has to acquire the phase factor of –1 to several
computational basis states. Specifically, the phase factor of –1 has to be acquired to 2#unaff

states, where #unaff is a total number of unaffected qubits in type-C qudits. The intuition
behind this fact is exactly the same as behind Eq. (22) of the required number of two-qudit
gates for realizing an operation between qubits embedded in these qudits.

The idea of decomposing the gate of Step (iii) is very similar to the one of decomposing
the gate at Step (i). First, we turn the gate at Step (iii) to a multi-controlled gate of CZ type by
adding R1,a

Qj (π/2,π ) and R1,a
Qj (π/2, –π ) rotations on the last qudit Qj of type B. Then we take

an ancilla-free decomposition of (|C| + 1)-qubit CZp0,...,p(|C|) gate (acting on virtual qubits
p0, . . . , p|C|) to single-qubit rotations rpk(φ, θ ) and two-qubit CZpk1pk2 gates [see Fig. 7(f )].

Each single-qubit gate rpk(φ, θ ) is transformed into the sequence of single-qudit gates

∏

(α,β)

Rα,β
Qj (ϕ, θ ), (28)

where Qj is a qudit corresponding to pk according to the straightforward ordering, and
(α,β) are all appropriate level pairs satisfying the condition

bin(α)[pos] = 0, bin(β)[pos] = 1 for pos ∈ {pos�};
bin(α)[pos] = bin(β)[pos] for pos /∈ {pos�},

(29)
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and {pos�} is a set of position of qubits embedded in Qj and affected by the multi-qudit
gate of Step (iii).

Two-qubit gates CZpk1pk2 are transformed according to Sect. 4.2.2. Namely, we take qu-
dits Qj1 and Qj2 corresponding to pk1 and pk2, chose the set of qubits qi′1, . . . qi′κ that are
embedded in Qj1 and Qj2 and are affected by the multi-qudit gate of Step (iii), and trans-
form CZqi′1,...qi′κ according to (20) and (21).

In contrast to the decomposition of the multi-controlled gate of Step (i), here we should
also take into account the global phase factor that may appear from the qubit-based de-
composition. Though it is insignificant in the qubit case, when we use this decomposition
for qubit embedded into qudits, the phase turns from the global to the relative one (this is
the relative phase between the CZ operation in the subspace of affected qubits, and iden-
tity operation in the remaining subspace). To compensate for this phase explicitly, we add
a phase single-qubit gate

Php0(γ ) =

[

eıγ 0
0 eıγ

]

(30)

to the qubit p0. The value of γ is chosen to make the whole sequence of gates, applied to
p0, . . . , p|C|, to realize CZp0,...,p|C| without any global phase.

From the viewpoint of the qudit circuit, p0 corresponds to the type-B qudit Qj involved
in the multi-controlled gate of Step (iii). The qubit phase gate Php0(γ ) transforms into

Ph0
Qj(γ )Ph1

Qj(γ ). (31)

d. Uncomputation steps (iv) and (v) By its construction, the implementation of Steps
(i)–(iii) realizes an acquiring of the phase factor of –1 to such qudits input state, where all
embedded qubits affected by the decomposed gate CZq1,...,qκ are in state |1〉. However, we
employ ancillary level |a〉 of type-B qudits. To remove the population from |a〉 to original
levels, we employ uncomputation, which is a ‘mirror reflection’ of steps (i) and (ii). Namely,
Steps (iv) and (v) are obtained as a Hermitian conjugate of a sequence of steps (i) and (ii):
their order is reversed, and each rQj(ϕ, θ ) i s transformed to rQj(ϕ, –θ ) (note that CZQj1Qj2 =
CZ†

Qj1Qj2 ). As it was already mentioned, the uncomputation also removes the relative phase
between the subspace of affected qubits and the remaining subspace of type-A qudits,
possibly acquired in Step (i).

We see that all routines during the processing of the multi-qudit case are efficient, and
the resulting complexity has no more than quadratic growth with an increase the degree
of the processed generalized Toffoli gate (the quadratic asymptotics can appear from the
used template for ancillary-free decomposition [81]). That is why the whole complexity
of transpiling an n-qubit circuit consisting of L gates scales linearly L and no more than
polynomially with n.

5 Realizing 6-qubit quantum circuit with ququarts
As an example, we consider the realization of an n = 6 qubit circuit, which is presented in
Fig. 9(a), with a qudit-based processor consisting of m = 4 ‘ququarts’ (qudits with d = 4).
First, let us consider a straightforward implementation of the input circuit with a qubit-
based processor. To simplify the transpiration of multi-qubit gate CZq1,...,q6, we use two
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Figure 9 (a) Example of a qubit circuit that is an input to the developed qudit-based transpiler. The circuit
acts on n = 6 qubits q1, . . . , q6, two additional qubits q7, q8 are used for decomposing five-qubit CZq1,...,q5
gate. (b) Decomposition of five-qubit CZq1,...,q5 gate with two ‘clean’ ancillas down to Toffoli gates. For the
decomposition of Toffoli gates, the circuit identity shown in (c) and then the scheme of Fig. 8(d) can be used.
(d) Qubit-to-qudit mapping that is used for the realization of the given qubit circuit withm = 4 qudits of d = 4
levels. (e) Equivalence of read-out results that are obtained with qudit-based emulator and post-processed
outputs that can be interpreted as results of the qubit circuit implementation. (f ) The result of qudit-based
transpilation of the input qubit circuit

additional ancillary qubits q7, q8. Using schemes shown in Fig. 9(b,c) together with one
from Fig. 8(d), CZq1,...,q6 can be realized with 5 × 6 = 30 two-qubit gates and a number
of single-qubit gates. In this way, the straightforward qubit-based decomposition of the
input circuit results in Nqb

2-body = 33 two-qubit operations. We note that no restrictions on
the coupling map between qubits are considered here.

In contrast, the qubit-to-qudit mapping, shown in Fig. 9(d), allows realizing the input
qubit circuit with only Nqd

2-body = 6 two-qudit gates. In Fig. 9(e) we show a transformation
of 1024 measurement outcomes, obtained with a qudit-based classical emulator, to the
read-out measurement outcomes performed in the input qubit circuit. The transpiled qu-
dit circuit is shown in Fig. 9(f ). One can see that the qudit-based realization provides an
advantage both in the circuit width and depth.

Recall that the results of the qudit-based transpilation, shown in Fig. 9, remain also valid
for initial qubit states other than |0〉⊗n. To realize the qubit circuit with respect to another
initial state using qudits, the only thing that is required is to update the initial state of
qudit’s register in accordance with the qubit-to-qudit mapping. We note that within the
considered mappings of the form (10), any separable state of qubits corresponds to a sep-
arable state of qudits (but not vice-versa).

6 Discussion
Here we stress some important points related to the developed qudit-based transpilation
approach. First, we emphasize its scalability with respect to the width and depth of a pro-
cessed input qubit circuit. The scalability is assured by the facts that (i) the complexity
of transpiling of a given single-, two-, or multi-qubit gate to its qudit version grows no
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more than polynomially with the number of qubits affected by the gate, (ii) the complex-
ity of transpiling the whole qubit circuit with respect to the given qubit-to-qudit mapping
grows linearly with a number of gates, and (iii) a polynomial in qubit number n algorithm
for mapping finding, which provides an advantage (or at least doesn’t make things worse)
compared to a standard qubit-based transpilation, can be used. In particular, a greedy al-
gorithm for the mapping finder of O(n3) complexity for 4 ≤ d ≤ 7 is shown. Therefore,
the resulting qudit-based transpilation complexity is polynomial in the number of qubits
n in the processed circuit and linear in the number of gates.

We also recall that in the case of m < n ≤ m	log2 d
, where m is the number of available
d-dimensional qudits, the developed transpilation approach makes it possible to run an
n-qubit circuit, which cannot be launched at all with m qubits. Thus, our approach allows
one to expand the range of algorithms suitable for running in terms of the required number
of qubits. On the other hand, if m ≥ n, then the corresponding qudit circuit definitely has
no more entangling gates than the transpiled in a standard qubit-based version and strictly
less number of entangling gates, if there is at least one multiqubit gate in the original qubit
circuit.

An important feature of the developed approach is its adaptiveness to qudit dimension
in the processing of multi-qubit gates. It allows leveraging the power of extra levels in
qudits to a greater extent compared to the approaches (see, e.g., [80]), where first a given
qubit circuit is transpiled down to single- and two-qubit gates, and then a qubit-to-qudit
mapping is obtained.

These features together demonstrate the applicability of our approach to useful near-
term quantum algorithms. The main application area of our approach is quantum algo-
rithms, which typically contain multi-qubit gates. A clear example of two-particle gate
reduction provided by qudit-based realization is Grover’s search algorithm. As shown in
Ref. [83], a thousandfold reduction in entangling gate number starting from eight qubits
implementation can be achieved with ququints (d = 5). Multi-qubit gates are inherent in
solving factorization [84] and discrete logarithm [85] problems. It’s worth emphasizing
that decompositions of general multiqubit unitaries, e.g. Haar-random, are also based on
generalized Toffoli gates [86]. We also note that the presented qudit-based transpilation
approach is promising within the employing Toffoli + Hadamard universal gate set [87],
where new interesting results were reported recently [88].

7 Conclusion and outlook
We have presented the approach for an efficient implementation of qubit circuits with
qudit-based processors. The proposed approach consists of finding the optimized qubit-
to-qudit mapping, transpiling a qubit circuit according to this mapping, running a tran-
spiled circuit on a qudit-based processor (or emulator), and then reassigning read-out
measurement results back to the qubit-based representation. We have developed a qudit-
based transpilation algorithm with respect to a particular universal set of single-qudit and
two-qudit gates and proposed an idea of a mapping finder algorithm with polynomial com-
plexity. Then we have shown an example of applying the developed approach for realizing
a 6-qubit circuit with four 4-level qudits. We have demonstrated that the resulting number
of two-particle operations required for implementing the given circuit with qudits appears
considerably smaller than the one within a straightforward qubit-based implementation.
Taking into account recent progress in improving the fidelity of qudit gates, we expect an
overall increase in the resulting fidelity of implementing qubit circuits with qudits.
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Figure 10 Alternative intermediate qudit circuit circqd-int-altφ for the decomposition of CZqi1,...,qiκ gate. The
difference from the described in the main text scheme (see Fig. 8) is the locations of swapping operations of
type-A and type-C qudits

We note that the main goal of the current work is to provide a general approach for
qubit circuit execution with qudit-based hardware. The considered example of qudit-
based transpilation has to be modified for each particular physical platform with a specific
set of native gates and qudits’ connection topology. We leave these particular platform-
specific problems for further consideration. Although the realization of d′-ary circuits
with qudits is beyond the scope of this work, their transpilation for qudit processors with
d ≥ d′ + 1 levels is also an improvement option for the developed qudit transpiler.

We also note that one can consider a refinement of the optimized qudit circuit criterion.
It can be defined not only by the number of two-particle operations but also as a total
qudit circuit fidelity (or its estimation), which takes into account both single-qudit and
two-qudit gates fidelities. Although recent papers demonstrate that fidelities of single-
and two-qudit gates are comparable with qubit gates’ fidelities, this metric allows one to
more accurately take into account the effects of decoherence arising from the usage of
upper levels.

Appendix A: Intermediate circuit in the case of incomplete set of type-A,B,C
qudits

While processing multi-qubit gates CZqi1,...,qiκ with |qudit_set| ≥ 3, it is possible a situa-
tion, where one or two types (A, B, C) are missing. In this case, the described decompo-
sition needs some slight corrections.

If there are no type-B qudits, then the intermediate circuit consists of a single multi-
qudit CZ gate acting on all |qudit_set| qudits. To decompose this gate we take a stan-
dard multi-qubit gate decomposition as a template as it is described in Sect. 4.2.3a and
4.2.3c. Then each qubit gate is replaced with the corresponding qudit gate(s) taking into
account the type of involved qudits (type A or type C). The phase correction, discussed in
Sect. 4.2.3c, has to be applied if it is necessary.

If there are no type-A qudits, yet there is at least one type-B qudit, the ladder-like part
of decomposition is started with the control on the first qudit in the state |1〉. If type-C
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qudits are also missing, then the ladder-like part of the decomposition ends with a target
on the last type B qudit in the state |1〉.

Appendix B: Alternative form of the intermediate circuit
The structure of the intermediate qudit circuit circqd-int-alt

φ , which is presented in Fig. 10 is
similar to the structure of the previously described circqd-int

φ . The main difference between
them is the location of type A and C qudits in the scheme. In the alternative version, the
multi-qudit gate on type-C qudits is employed twice, and the multi-qudit gate on type A
is employed once in the central part of the scheme. We note that operations on type B
qudits remain the same as in the previously described scheme in Fig. 8(a).

Taking into account invariability of operations on type B qudits and the symmetry of CZ
type operation in the core of type-A and C multi-qudit gates, realization of the CZ type
operation on A and C qudits reduces to the procedures described in Sects. 4.2.3a and
4.2.3c, correspondingly.
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