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Abstract
High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular
momentum (OAM) presents significant advantages in terms of information capacity.
However, perturbations caused by free-space atmospheric turbulence decrease the
performance of the system by introducing random fluctuations in the transmittance
of OAM photons. Currently, the theoretical performance analysis of OAM-encoded
QKD systems exists a gap when concerning the statistical distribution under the
free-space link. In this article, we analyzed the security of QKD systems by combining
probability distribution of transmission coefficient (PDTC) of OAM with decoy-state
BB84 method. To address the problem that the invalid key rate is calculated in the
part transmittance interval of the post-processing process, an intelligent threshold
method based on neural network is proposed to improve OAM-encoded QKD, which
aims to conserve computing resources and enhance system efficiency. Our findings
reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant
plays a crucial role in ensuring secure key generation. Meanwhile, the training error of
neural network is at the magnitude around 10–3, indicating the ability to predict
optimization parameters quickly and accurately. Our work contributes to the
advancement of parameter optimization and prediction for free-space OAM-encoded
HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the
development of free-space experimental setups.

Keywords: Statistical distribution; High-dimensional quantum key distribution;
Threshold selection; Neural network

1 Introduction
By utilizing the principles of quantum mechanics, quantum cryptography ensures secure
key distribution by focusing on physical properties rather than computational complexity.
Unlike traditional cryptographic approaches, quantum cryptography achieves provable
security at the level of information theory. As the core of quantum cryptography, quantum
key distribution (QKD) establishes a bit string of common true random bits between two
legitimate parties, to realize secure communication combined with One-Time Pad (OTP)
Vernam encryption algorithm [1–3]. Currently, most practical QKD uses the degree of

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-024-00251-z
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-024-00251-z&domain=pdf
mailto:liubo08@nudt.edu.cn
mailto:slfly2012@163.com
http://creativecommons.org/licenses/by/4.0/


Li et al. EPJ Quantum Technology           (2024) 11:40 Page 2 of 16

freedom such as polarization and phase of photon, the information capacity is limited to
1 bit per photon due to the intrinsically bounded Hilbert space [4–8]. To break through
the system information entropy threshold, high-dimensional QKD (HD-QKD) offers im-
proved communication capacity and enhanced noise resilience [9–14]. One common ap-
proach to achieve HD-QKD is through the utilization of the orbital angular momentum
(OAM) of photons [15–19]. The OAM freedom allows photons to be mapped to an infinite
dimensional Hilbert space, providing an effective resource for implementing HD-QKD.

Optical waves carrying OAM in the form of a helical phase front can be adversely af-
fected by turbulence, leading to distortions. These distortions cause the transmission coef-
ficient of the optical OAM channel to fluctuate randomly, resulting in random degradation
of the transmitted signal. However, the existing statistical distribution models primarily
focus on describing the intensity fluctuations of optical waves, which is insufficient for
accurately representing the complex nature of the transmission coefficient fluctuations in
turbulent optical OAM channels. Characterizing these fluctuations in the transmission
coefficient is crucial for analyzing the security of OAM-encoded QKD systems [20].

Currently, there is a notable absence of comprehensive theoretical analysis on the in-
tegration of the probability distribution of transmission coefficient (PDTC) of OAM and
QKD in atmospheric turbulence. The fluctuations in transmittance resulting from atmo-
spheric turbulence lead to time-varying quantum bit error rate (QBER), posing a signifi-
cant challenge in quantum communication systems [21, 22]. In order to address the chal-
lenge, enhancing the signal-to-noise ratio (SNR) through post-selection with high trans-
mittance has been proposed as a solution [23–26]. This approach involves optimizing the
transmittance threshold after receiving all signals. However, the calculation method often
imposes a substantial computational burden due to its complexity. To mitigate the compu-
tational challenge and enhance system performance, optimizing QKD system parameters
through machine learning techniques has emerged as a promising strategy [27–29]. By
utilizing neural network methods for parameter optimization, it becomes possible to im-
prove operational efficiency, facilitate parameter prediction, and ultimately enhance the
overall performance of the system [30]. Under the grand vision of promoting the real-
ization of global quantum Internet [31–33], the intelligent methodology holds particular
significance for applications such as airborne free space QKD missions, where speed, ac-
curacy, and reliability are paramount considerations.

The paper is organized as follows: In Sect. 2, we begin by generating random samples of
transmission coefficients using Monte Carlo simulation. Based on these samples, a suitable
transmission coefficient statistical distribution model is proposed which accurately cap-
tures the characteristics of turbulent optical OAM channels. Subsequently, we establish
a basic framework for calculating the key rate of OAM-encoded QKD systems in Sect. 3.
Finally, an artificial neural network method is used to forecast the optimal transmittance
threshold to improve system in Sect. 4. The conclusions of the present paper are given in
Sect. 5.

2 Preliminaries
Characterization of the statistical distribution of OAM transmission in turbulence is the
primary task of studying OAM-encoded QKD. In this section, we will use Monte Carlo
simulation and dual Johnsom SB distribution to get the PDTC model of OAM.
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2.1 Instantaneous transmittance of OAM channels
Given the initial normalization of light intensity, the transmission coefficient of OAM is
directly correlated with the received optical power. However, it is essential to note a funda-
mental distinction between the mathematical models for detecting power in OAM opti-
cal channels and traditional free-space channels. The variance implies that the probability
distribution function governing light intensity fluctuations induced by atmospheric turbu-
lence may not be applicable when describing the fluctuation of transmission coefficients
in turbulent OAM optical channels. Unlike classical Gaussian light, the transmission of
OAM in turbulent conditions does not conform to the commonly employed log-normal
and Gamma-Gamma distribution models.

In general, establishing a statistical distribution model directly tailored for turbulent op-
tical OAM channel transmission coefficients through analytical mathematical derivation
poses significant challenges. To overcome the limitation, our approach involves utilizing
Monte Carlo simulation to generate a random sample of transmission coefficients. This
methodology enables us to propose a suitable distribution model that accurately reflects
the fluctuations in the transmission coefficient. Drawing insights from existing Ref. [20],
we begin by theoretically deriving the instantaneous transmission coefficient:
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∫ ∞
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where r̂ = r/r0 represents the ratio of Laguerre-Gaussian (LG) beam width r to the Fried
constant r0, � = wz

√
(|l| + 1)/r0 denotes the nondimensional ratio between the root-mean-

square(RMS) OAM-beam radius and the Fried constant, and the RMS OAM-beam ra-
dius reflects the divergence characteristic [34]. l is the OAM index. The OAM beam un-
der consideration has a radial index set to zero. wz = w0

√
1 + z2/z2

R, w0 is the beam waist,
zR = 0.5kw2

0 is the Rayleigh range (here k = 2π/λ, k and λ represent wavenumber and wave-
length respectively).

The aforementioned data can be provided based on the actual scenario. The crucial as-
pect revolves around the implementation of the random phase screen ϕ(r, θ ). The random
generation of phase screens based on sparse spectrum is a commonly employed method
due to its ability to be easily adapted to uniform spatial sampling in polar coordinates. The
procedure for realizing ϕ(r, θ ) through sparse-spectrum-based method and Monte Carlo
simulation is detailed in Appendix A.1.

2.2 Model of PDTC
In order to conduct a mathematical characterization of the PDTC, a dual Johnson SB dis-
tribution with four independent control parameters is fitted to the random fluctuations of
the measured signal in the turbulent optical OAM channel. The probability density func-
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tion (PDF) of dual Johnson SB distribution can be expressed as:

Pd(η|γ1, δ1,γ2, δ2) =
1
2
[
PJ (η|γ1, δ1) + PJ (η|γ2, δ2)

]
, (4)
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where PJ (η|γ , δ) is the PDF of Johnson SB distribution. The four independent control pa-
rameters γ1,γ2, δ1, δ2 > 0, statistically characterize the simulated samples. For practical ap-
plication of the dual Johnson SB distribution, it is advisable to establish a direct correlation
between four control parameters and the propagation conditions along with OAM modes.
The connection between (�, l, r0) and (γ1, δ1,γ2, δ2) can be perceived as a mapping from
three to four dimensions. While formulating a mathematical expression to articulate the
mapping remains challenges, Monte Carlo simulations and probability distribution fitting
utilizing maximum likelihood estimation (MLE) can elucidate the relationship.

To further investigate the mechanism of how � and r0 influence the PDTC, we analyze
the PDF of transmission coefficients under different � and r0 conditions. As shown in
Fig. 1, when keeping � constant and varying r0, the PDF curve of the transmission coeffi-
cient exhibits a similar trend with slight differences. However, when keeping r0 constant
and varying �, there is a significant discrepancy in the PDF curve. It indicates that the
impact of � on the PDF of the transmission coefficient is stronger than r0. Moreover, as �

increases, the PDF curve’s “peak” gradually shifts to the left, indicating a decrease in the
probability of achieving high transmittance η. It suggests that turbulence-induced channel
attenuation is intensified. Notably, when � is close to 1 (as depicted in Fig. 1(b)), the PDF
curve exhibits a pronounced tailing phenomenon that is difficult to describe with existing
mathematical models.

Considering the transport properties of OAM in the atmosphere and practical imple-
mentation, it is more reasonable to set r0 = 10 cm. As depicted in Fig. 2(a), the PDF curves
of different OAM indices are essentially merged, suggesting that when � is small, l has no
discernible influence on the PDF. However, in Fig. 2(b) and Fig. 2(c), when � ≥ 1, differ-
ences between the curves are evident, indicating that the PDTC of OAM exhibits a notable
state-dependent effect. The state-dependent turbulence in this scenario comes from two

Figure 1 PDFs of transmission coefficient η with l ≡ 1 and different � and r0. (a) � = 10–1.0 ; (b) � = 100; (c)
� = 100.6
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Figure 2 PDFs of transmission coefficient η with r0 ≡ 10 cm and different � and l. (a) � = 10–1.0 ; (b) � = 100;
(c) � = 100.6

folds: (1) high order OAMs have larger beam cross section which leads to a worse turbu-
lence; (2) high order OAMs have multi-fold phase structures which are more sensitive to
phase distortions.

3 Secure key rate analysis
Currently, the relationship between the security key generation rate R and the transmit-
tance coefficient η in turbulent optical OAM channels lacks theoretical substantiation.
Under the premise of fixed QKD system parameters, building upon the analysis in Sect. 2
and incorporating the Gottesman-Lo-Lütkenhaus-Preskill (GLLP) formula, we formulate
the key rate of the decoy-state BB84 protocol as a function of R(η). Consequently, assess-
ing the system security rate in turbulent channels involves determining the integral of R(η)
over the probability distribution of η.

Ratewise integration is a prevalent method for determining the secure key rate, involv-
ing the integration of R(η) over the entire range of the PDF, incorporating all available
information regarding the channel transmission probability distribution. Initially, we ex-
amine the asymptotic scenario of transmitting an infinite number of pulses. As depicted
in Fig. 1 and Fig. 2, we have measured the channel transmittance η corresponding to each
signal transmission period and acquired comprehensive transmittance information. The
rate of the ratewise integration model can be expressed as:

RRatewise =
∫ 1

0
R(η)P(η) dη. (6)

As the spatial degree of freedom of the light field, OAM possesses the ability to map
an infinite-dimensional Hilbert space. In the quantum state space of high dimensions, the
SUP basis and the OAM basis form two mutually unbiased bases (MUBs), which guaran-
tees the unconditional security of QKD. OAM basis is composed of different OAM states,
and the Fourier conjugate SUP basis consists of an equal superposition of OAM states
with fixed relative phase between adjacent OAM components. The OAM basis and SUP
basis can be represented as:
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Table 1 Parameters used for the numerical simulation of OAM-encoded HD-QKD

Parameters Value

Dark count rate Y0 1× 10–5 (per signal)
Detector efficiency ηd 0.25
Misalignment ed 0.03
Error-correction efficiency f 1.22
Signal wavelength λ 1550 nm
Signal state intensity μ 0.3
Decoy state intensity v 0.05

where d is the dimension of the Hilbert space and L is the maximum OAM quantum
number in use, which satisfies the relation 2L + 1 = d. Subsequently, Bob uses the results
with OAM basis as the key bits and the results with SUP basis as the testing bits, and
then they testify the security of the key distribution. After error correction and privacy
amplification, they can distill a secure key [35]. For weak coherent sources (WCS), the
secure key rate of decoy-state HD-QKD can be estimated by [16]:

R ≥ qm
{

–fEC
(
EOAM

μ

)
QOAM

μ Hd
(
EOAM

μ

)
+ QOAM

1
[
log2d – Hd

(
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1
)]}

(8)

where qm represents the probability of choosing basis and depends on the QKD protocol.
fEC(EOAM

μ ) is the error correction efficiency of the signal state. QOAM
μ and EOAM

μ are the gain
and QBER of the signal states, respectively. QOAM

1 and eSUP
1 are the gain and the error rate

of the single-photon states, which can be estimated using decoy-state, see Appendix A.2
for detailed analysis. Hd(x) = –(1 – x)log2(1 – x) – xlog2[x/(d – 1)] is the d-dimensional
Shannon entropy.

Due to the rotation invariance of the vortex light field, it effectively avoids the problem
of the reference frame alignment, and provides a new coding scheme for the construc-
tion of high-speed and stable mobile quantum communication networks. The most likely
application in the future is, for example, the scenario of drone-based quantum commu-
nication, with a typical distance range of kilometers. According to the above theoretical
analysis, targeting 10 km free space link scenarios, the simulation method is used to ana-
lyze the performance of OAM-encoded HD-QKD system. The settings of the QKD system
parameters [36] are outlined in Table 1.

We initially simulate the impact of the OAM index on the security key rate. Figure 3 illus-
trates the correlation between � and the security key rate R. As � increases, the security
key rate exhibits a gradual decline, suggesting that � to some degree reflects the distur-
bance and attenuation characteristics of atmospheric turbulence channel. Nonetheless,
variations in the OAM index l result in negligible effects on the secure key rate. There-
fore, it can be further considered to apply a high-dimensional quantum system to improve
the information capacity under the condition of changing �, especially when � ≤ 1.

Figure 4 depicts the correlation between the security key rate R and � within a d-
dimensional QKD system. The figure exclusively illustrates the trend in the variation of the
security key rate surface for d-dimensional QKD as � changes. From the visualization, it
is evident that with an increase in the dimensionality of the QKD system, both the security
key rate and the transmission distance rise. The observation suggests that the QKD system
can effectively leverage the benefits of high-dimensional coding when � is considered a
variable. Due to the existence of state-dependent diffraction (SDD) [35] and other effects
in high-dimensional QKD system transmission in the atmosphere, the receiving efficiency
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Figure 3 Secure key rate R of � with different l

Figure 4 Secure key rate R of � with different dimension d

mismatch leads to security vulnerabilities and security key rate decrease. According to the
results of Fig. 3 and Fig. 4, we can use more high-dimensional quantum systems in the sce-
narios of minor �, because OAM index l has a subtle influence on key generation at this
time. To get closer to practicality, the finite-size effect is analyzed in Appendix A.3.

The above analysis provides a theoretical basis for the performance optimization
method of threshold selection. First, by combining the transmission PDF of OAM with
HD-QKD, a theoretical model is found for the statistical distribution of OAM-encoded
QKD; Second, the advantages of HD-QKD encoding are explored in incorporating the
finite-size effects, and a theoretical reference is provided for the practical airborne appli-
cation of OAM-encoded QKD.

4 Performance optimization
In addressing the challenges posed by random fluctuations in channel transmission and
low key generation rates resulting from atmospheric turbulence in free-space experi-
ments, this section presents strategies and recommendations aimed at enhancing system
performance. Through the implementation of optimal threshold selection, computational
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resource consumption is minimized. Additionally, a neural network model is employed to
train and predict discrete datasets, thereby enhancing operational efficiency.

4.1 Threshold selection method
During the process of ratewise integration method, there are instances where key gener-
ation can be negligible under certain transmission efficiency conditions due to the PDTC
in turbulent OAM optical channels. However, in practical scenarios, the data segment
necessitates post-processing, leading to a squandering of computational resources. Con-
sidering the time-varying transmission characteristics induced by free-space atmospheric
turbulence, employing threshold selection method as a simplified method to filter infor-
mation and post-selection becomes imperative. This approach helps diminish the volume
of data computation, thereby enhancing the secure key rate per pulse and overall system
performance. The simplified security key rate for threshold selection can be expressed as
follows:

RSimplified =
∫ 1

ηT

R(η)P(η) dη. (9)

According to the Eq. (9), adjusting the threshold value ηT and observing the resultant
alteration in the security key generation rate is imperative. As depicted in Fig. 5, when
the OAM index l = 1, the security key rate that we set the threshold is almost the same
as the static value obtained by the ratewise integration in the initial range, followed by a
marked decline. We can find an optimal ηT according to the actual scenario to simplify the
calculation, for example, in the scenarios of minor �, opting for a higher threshold can be
advantageous in enhancing the efficiency of data processing.

In order to further depict the selection of thresholds more vividly, we set up three-
dimensional images of �, l and ηT to visually observe the effects of different variables
on ηT . As illustrated in Fig. 6(a), it is evident that the impact of � on ηT surpasses that
of l, with the optimal threshold gradually diminishing as � increases, aligning with the
findings in Fig. 5. However, when � exceeds 1, a more intricate relationship among the

Figure 5 Secure key rate R of ratewise integration method and threshold selection simplified method
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Figure 6 Optimal threshold ηT under different � and l conditions. (a) –2 ≤ log10(�) ≤ 2; (b)
0≤ log10(�) ≤ 2

Figure 7 A comparison of traditional and intelligent procedures

three variables is discerned, as depicted in Fig. 6(b), signifying a shift in their interplay. At
this juncture, both l and � exert a significant influence on the determination of ηT , and
with the escalation of l, the selection of the optimal threshold declines correspondingly.
Consequently, when � is less than 1, the influence of l on the selection of the optimal
threshold may be disregarded. Conversely, when � surpasses 1, due consideration must
be given to the impact of l on the optimal threshold selection.

4.2 Neural network method
The PDTC of OAM in turbulence is based on data obtained through Monte Carlo sim-
ulation, which is discrete and exhibits a degree of volatility. To further enhance the opti-
mization of the threshold, an adaptive threshold selection method employing an artificial
neural network is proposed. The error back propagation (BP) neural network, as a widely
utilized model, has been chosen for optimization and prediction.

Based on the analysis in Sect. 2, 3 and 4.1, Fig. 7 shows the procedure of obtaining
the optimal threshold ηT from the initial parameters (�, l, r0). This procedure involves
a clear concept, but it entails significant computational complexity. By employing intelli-
gent methods to train the initial parameters, it is possible to not only obtain the final result
ηT but also achieve data prediction, showcasing its practical advantages.
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Figure 8 The process of model training and parameter prediction by BP neural network

Figure 9 The structure of BP neural network

The process of using BP neural network to achieve model training and parameter pre-
diction is shown in Fig. 8. First, the data set is divided into three parts, the training set, the
testing set, and the primary set. The BP neural network model is obtained by inputting
the large-capacity data which can embody the data characteristics into the trainer. In or-
der to verify the performance of the model, the testing set is brought into the network for
calculation, and the predicted set is obtained. Finally, the data of the predicted set and the
primary set are compared to judge the performance of the system.

The network architecture, as illustrated in Fig. 9. The parameters of the input layer rep-
resent the main characteristics of OAM and turbulence, which shows the effect of random
disturbance. The number of hidden layers is 3, and the number of neurons is 15, 10 and 1,
respectively. The data of the output layer is the optimal threshold ηT . The transfer func-
tion for the hidden layer is the tansig transfer function, while the output layer employs
a purelin function. The learning algorithm employed is the Levenberg-Marquardt (LM)
variable gradient algorithm, with the mean square error (MSE) function used as the per-
formance metric. The training process includes 2000 iterations, with a learning rate set
at 0.01.

The dataset with the optimal threshold ηT of 18*17 samples has been constructed, where
the ratio � of the RMS OAM-beam radius and Fried constant ranges from 10–2 to 101.4 and
the OAM index l varies from 0 to 16. (ηT ,�, l) (2 × 18 × 16) is selected as the training set
to train the neural network model. The last 18 data [l = 16,� = 10–2.0 ∼ 101.4] are selected
for prediction. The Imitative effect and training error between the predicted data and the
primary data are compared, as shown in Fig. 10.

Figure 10(a) shows the fitting curve. The horizontal axis represents the number of sam-
ples selected by the neural network, while the vertical axis illustrates the sample value of
the optimal threshold selection. By standardizing the data in training, normalization fa-
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Figure 10 Optimal threshold prediction results using BP neural network. (a) Imitative effect; (b) Training error

cilitates effective data processing and contributes to faster convergence during program
execution. The practice is fundamental for ensuring that the neural network can efficiently
learn and adapt to the given dataset, ultimately improving its performance in prediction
and analysis tasks. The solid blue line with dots corresponds to the primary data, whereas
the solid red lines with triangles depict the predicted data. Figure 10(b) shows the training
error curve, and the ordinate represents the training error between the model’s predicted
value and the primary data value.

From Fig. 10(a), it can be analyzed that the change pattern of the primary data and
the predicted data follows a periodic trend. The imitative effect can be attributed to the
method of selecting the optimal threshold during the collection of original data, where
the thresholds are chosen in increasing order of the same OAM index l. In other words,
when selecting � for a specific OAM index, the subsequent OAM index with � values is
considered until 18 OAM index points have been covered.

The fitting curve effect of the predicted data generated by the BP neural network aligns
closely with the primary data curve, underscoring the model’s accuracy in capturing and
predicting the trends within the dataset. Moreover, Fig. 10(b) reveals that the training er-
ror of the sample set is around 10–3, indicating the high prediction accuracy of the neural
network. It should be noted that in the scenario of high �, the optimal threshold accu-
racy at this time reaches 1 × 10–2, so the training error at this time is also an important
basis for judging the network performance. The training error of the last three predicted
data is in the order of 10–4, which proves the training effect of the network. The intelli-
gent model can effectively support the adaptive optimal threshold selection in the OAM-
encoded QKD system, enhancing data processing speed and providing valuable guidance
for system parameter prediction and optimization.

5 Conclusion
The analysis of the statistical distribution of OAM transmission characteristics in the at-
mosphere plays a pivotal role in advancing high-dimensional quantum communication.
The benefits offered by OAM-encoded QKD, such as communication capacity and ro-
tationally invariant property, have propelled its application in short-distance informa-
tion transmission within local hotspots. Due to the complex attenuation and disturbance
caused by OAM transmission in atmospheric turbulence, it is difficult to use classical
mathematical models to characterize the statistical distribution of transmission charac-
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teristics at the receiver. Currently, there remains a gap in comprehensive theoretical anal-
ysis concerning the statistical distribution of OAM-encoded QKD in free space. In this
paper, the transmittance PDF of OAM transmitted in the atmosphere is integrated with
the HD-QKD secure key rate formula, incorporating the finite-size effects to effectively
evaluate system performance. The results show that the ratio � of RMS OAM-beam ra-
dius to Fried constant plays the most prominent role in determining control parameters
and security key generation. If the value of � exceeds 1, the effect of OAM index l cannot
be ignored. Furthermore, the study briefly explores the coding advantages of HD-QKD,
shedding light on the potential benefits and applications of high-dimensional quantum key
distribution in secure communication protocols. The comprehensive analysis contributes
valuable insights into the optimization and performance enhancement of OAM-encoded
QKD systems in challenging atmospheric environments.

Aiming at the problem of the free space OAM-encoded QKD system that the invalid
key rate is calculated in the part transmittance interval of the post-processing process and
the high-dimensional protocol needs to accumulate a large amount of data, the method
combining threshold selection and neural network is used to train discrete data points.
The results indicate a close alignment between the original data curve and the predicted
data, with a training error around 10–3. This achievement signifies the model’s capability
to perform intelligent parameter prediction effectively. Furthermore, the model’s success
in achieving high accuracy showcases its potential to enhance system running speed and
key distribution performance. Ultimately, this approach offers a practical solution for the
intelligent advancement of quantum secure communication systems.

Appendix
A.1 Generation of random phase screen
It should be emphasized that ϕ(r, θ ) in Eq. (3) actually denotes the phase perturbation
described via a random phase screen, resulting in η(t) taking on a random value. Clearly,
the key to obtaining random samples of η(t) is to acquire a random implementation of the
phase screen ϕ(r, θ ). Due to the advantageous feature of integration over θ , we have opted
for sparse-spectrum-based method [37] to generate the phase screen:

ϕ(	r) = Re

[ N∑
n=1

an exp(i 	K · 	r)

]
, (A1)

where an represents a random complex amplitude, 	r = (r, θ ) is a position vector in a two-
dimensional plane, and Re(z) denotes the real part of z. 	K signifies a random wavenumber
vector, the probability density function (PDF) for the magnitude of vector 	K is:

pn(K) =
5
3

1
K–5/3

n–1 – K–5/3
n

K–8/3, (A2)

where Kn–1 ≤ K ≤ Kn, Kn = κ0 exp[(n/N) ln(κm/κ0)] and 1 ≤ n ≤ N , κ0 = 2π/L0, κm = 2π/l0,
l0 and L0 are the inner and outer scales of turbulence, respectively. The direction angle of
vector 	K is assumed to follow a uniform distribution between π and –π . Moreover, an is
a random complex amplitude that follows a normal distribution and obeys:

〈an〉 = 0, 〈anam〉 = 0,
〈
ana∗

m
〉

= 3.695r–5/3
0

(
K–5/3

n–1 – K–5/3
n

)
δmn, (A3)
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where the angle brackets indicate statistical averages, and δmn = 1 if m = n and δmn = 0
otherwise. By utilizing N to generate a random implementation of an and 	K , it becomes
straightforward to calculate ϕ(r, θ ) at any given position 	r = (r, θ ) based on Eq. (A1).

It is noteworthy that in the Monte Carlo simulation, to align our spectral intervals with
the standard pure Kolmogorov spectrum, we have set the inner and outer scales of the
turbulence to 1 mm and 100 m, respectively.

A.2 Decoy-state HD-QKD rate model
For decoy-state HD-QKD system, the total system transmittance ηsys of single photon
signal consists of the transmission efficiency η and detector efficiency ηd . Thus, QOAM

μ

can be calculated by:

QOAM
μ = Y0 + 1 – e–μηsys , (B1)

where Y0 = 2pd is the yield when Alice does not send a photon. pd is the dark count of the
detector. μ and v are the mean photon number of signal state and decoy state respectively.
Meanwhile, EOAM

μ can be given as

EOAM
μ =

e0Y0 + ed(QOAM
μ – Y0)

QOAM
μ

. (B2)

Different from the general two-dimensional QKD system, e0 = (d – 1)/d is the error rate
of the dark count in HD-QKD. By using “vacuum + weak decoy state” method, the yield
and the error rate of the single-photon states Y OAM

1 and eSUP
1 can be estimated by:

Y OAM
1 ≥ μ

μv – v2

(
QOAM

v ev – QOAM
μ eμ v2

μ2 –
μ2 – v2

μ2 Y0

)
, (B3)

eSUP
1 ≤ ESUP

v QSUP
v ev – e0Y0

Y L,v,0
1 v

. (B4)

A.3 Finite-size analysis
Due to the disparity between HD-QKD and 2D-QKD in terms of key analysis, we con-
ducted a security analysis of HD-QKD under asymptotic conditions. However, in practical
QKD systems, the number of pulses transmitted by the quantum signal is limited, lead-
ing to statistical fluctuations between observed and measured values. To further validate
the security of the HD-QKD system, it becomes crucial to analyze the finite-size effects
resulting from statistical fluctuations. To obtain the expected confidence interval of the
observed parameter, the Chernoff inequality is employed [38]. The upper and lower limits
of the confidence interval EU [ζ ] and EL[ζ ] can be expressed as:

EL[ζ ] =
ζ

1 + δL , EU [ζ ] =
ζ

1 – δU , (C1)

with

[
eδL

(1 + δL)1+δL

] ζ

1+δL
=

ε

2
,

[
e–δU

(1 – δU )1–δU

] ζ

1–δU
=

ε

2
, (C2)
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Figure 11 Secure key rate R of � with finite-size effects

where ζ > 0 is an observed value, δ is the statistical fluctuation which used to represent
the estimated interval of the expected value. ε is the failure probability to estimate the
confidence interval of the expected value.

Based on Eq. (C1)-(C2) and Eq. (B3)-(B4), the upper and lower bounds of the statistical
fluctuations for Y OAM

1 and eSUP
1 can be obtained. The security key length of OAM-basis of

HD-QKD system under finite-size effect is obtained:

[KOAM,L ≥ MOAM,L
1μ

[
1 – Hd

(
eSUP,U

1μ

)]
– MOAM

μ fEC
(
EOAM,U

μ

)
Hd

(
EOAM,U

μ

)
(C3)

where MOAM,L
1μ is the lower limit number of OAM-basis sifted key from the single-photon

signal state. MOAM
μ is the number of OAM-basis sifted key from the overall signal state.

eSUP,U
1μ is the upper limit of the phase error rate. EOAM,U

μ is the upper limit of the QBER in
the OAM-basis sifted key. Therefore, for a given data size N , the final secret key rate of
the practical HD-QKD system is:

RFinite-size(η, N) ≥ KOAM,L

N
. (C4)

Consequently, the formula for the security key rate of the system with finite-size effects
can be recalculated:

RFinite-size =
∫ 1

0
RFinite-size(η, N)P(η) dη. (C5)

Figure 11 examines the security key rate under finite-size effects. The figure presents a
comparison of key rate curves across various data sizes and asymptotic (N = ∞) condi-
tions. It is evident from the illustration that as the data size gradually increases, the secu-
rity key rate follows suit. When the number of quantum pulses N reaches or exceeds 1012,
the key rate curve closely aligns with the asymptotic case. Taking into account practical
implementation and cost optimization, we can select N = 1012 as the pulse transmission
scheme for the HD-QKD system in practical scenarios to conserve photon resources.
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