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Abstract
In this study, a method for entangling two spatially separated output laser fields from
an optomechanical cavity is proposed. In the existing standard methods,
entanglement is created by driving the two-mode squeezing part of the linearized
optomechanical interaction;, however our method generates entanglement using
the quantum back-action nullifying meter technique. As a result, entanglement can
be generated outside the blue sideband frequency in both resolved and unresolved
sideband regimes. We further show that the system is stable in the entire region
where the Duan criterion for inseparability is fulfilled. The effect of thermal noise on
the generated entanglement is examined. Finally, we compare this technique with
standard methods for entanglement generation using optomechanics.
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1 Introduction
One of the most exciting features of quantum mechanics is entanglement [1, 2] which
is a prerequisite for most quantum technologies, such as quantum key distribution [3],
quantum metrology [4–6], quantum information [7, 8], and quantum teleportation [9, 10].
Entanglement has been observed in several microscopic systems such as atoms [11, 12],
ions [13, 14], and mechanical mirrors [15–17]. Entanglement can be created in localized
objects or propagating (also known as flying) modes. Entanglement in flying modes [18] is
more suitable for quantum communication [19, 20] applications, while the entanglement
between localized objects is applicable for quantum storage [21, 22]. The rate [18, 23]
of discrete entangled pair production is another critical parameter for quantum technolo-
gies. Instead of producing discrete entangled pairs, entanglement can also be created with
continuous variables. In this study, optomechanics is used to generate continuous variable
entanglement between two propagating laser fields.

An optomechanical cavity (OMC) couples [24–27] the optical degrees of freedom with
the mechanical degrees of freedom through an oscillating optomechanical mirror [28–31].
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The radiation pressure force inside the OMC displaces the optomechanical mirror, chang-
ing the cavity length and the properties of the output field from the OMC. The quantum
nature of the radiation pressure force can induce quantum mechanical perturbation on the
OMM and vice-versa. In particular, OMC has been used to create entanglement between
cavity fields [32–36], between cavity field and mechanical oscillator [37–42], and between
two mechanical oscillators [15–17, 43–48]. In optomechanics [32, 49–51], entanglement
is generated by reducing the interaction Hamiltonian into a beam splitter Hamiltonian
and a two-mode squeezing Hamiltonian. The beam splitter interaction transfers the two-
mode squeezing interaction with a third mode to create entanglement between two optical
modes. In this study, the quantum back-action nullifying meter technique is used to gen-
erate continuous variable entanglement between two propagating laser fields. This tech-
nique can create entanglement in both resolved and unresolved sideband regimes without
driving the blue sideband. For experimentally feasible parameters [52], the entanglement
generated between the optical modes using this technique can survive up to room tem-
perature. Although there are several mathematical conditions [53–59] for evaluating en-
tanglement, we specifically use Duan criterion [55] because it is a sufficient condition to
establish entanglement.

2 System
An optical cavity with a mirror in the middle (MIM) as shown in Fig. 1 is considered. The
partially transparent mirrors m1 and m2 are rigidly fixed, while the perfectly reflective
MIM oscillates simple harmonically with an instantaneous position ẑ. The MIM divides
the total cavity into subcavity 1 (SC1) and subcavity 2 (SC2) and each has an average length
l and an eigenfrequency ωe. The annihilation operators for the optical field in SC1 and SC2
are represented by â and ĉ, respectively. No tunneling of â into ĉ and vice-versa occurs
since, the MIM is perfectly reflective. SC1 and SC2 are driven by input laser fields with
annihilation operators âin and ĉin, respectively. The output fields from SC1 and SC2 are
represented by the annihilation operators âout and ĉout , respectively. The Hamiltonian Ĥ
of the optomechanical cavity is given [60] as follows:

Ĥ =
�(� – gẑ)

4
(
x̂2

a + ŷ2
a
)

+
�(� + gẑ)

4
(
x̂2

c + ŷ2
c
)

+
p̂2

2m
+

mω2
mẑ2

2
+ Ĥr , (1)

Figure 1 Optomechanical cavity with perfectly reflective mechanical mirror in the middle. The mirrorsm1

andm2 are rigidly fixed, while the center optomechanical mirror can oscillate. The instantaneous position of
the optomechanical mirror is given by ẑ. Entanglement in the output fields is confirmed using the Duan
criterion, which is a sufficient condition to establish entanglement
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where p̂, ωm and m are the momentum, eigenfrequency, and effective mass of the mechani-
cal oscillator, respectively. x̂o = ô† + ô and ŷo = i(ô† – ô), where o = a, c, are the dimensionless
amplitude and phase quadratures, respectively. Ĥr is the Hamiltonian for the environment
and its coupling with OMC and g = ωe/l [61–63] is the optomechanical coupling constant.
The detuning � = ωe – ωl with ωl as the frequency of the driving fields.

The dynamics of the optomechanical interaction are given as follows:

˙̂xa = (� – gẑ)ŷa –
ζ

2
x̂a +

√
ζ x̂in

a , ˙̂xc = (� + gẑ)ŷc –
ζ

2
x̂c +

√
ζ x̂in

c , (2)

˙̂ya = –(� – gẑ)x̂a –
ζ

2
ŷa +

√
ζ ŷin

a , ˙̂yc = –(� + gẑ)x̂c –
ζ

2
ŷc +

√
ζ ŷin

c , (3)

m¨̂z + γ m ˙̂z + ω2
mmẑ =

�g
4

(
x̂2

a + ŷ2
a – x̂2

c – ŷ2
c
)

+ �̂ , (4)

where ζ is the cavity field decay rate, γ is the decay rate of the MIM and �̂ is the
thermal noise operator whose correlation is given [64] as 〈�̂ (ω)�̂ (ω′)〉 = �mωγ [1 +
coth(�ω/2kBT)]δ(ω+ω′) with kB the Boltzmann constant, T the temperature. x̂in

o = ô†
in + ôin,

and ŷin
o = i(ô†

in – ôin) with o = a, c. The operators âin and ĉin are the annihilation operators
for the input fields to SC1 and SC2, respectively. âin and ĉin are normalized such that their
optical powers are given as �ωl〈â†

inâin〉 and �ωl〈ĉ†
inĉin〉, respectively. We linearize Eqs. (2)-

(4) by writing Ô = Ō + δ̂O, for O = a, c, ain, cin, with Ō as the mean value and δ̂O as the
quantum fluctuation. By adjusting the optical fields in SC1 and SC2 such that x̄a = x̄c and
ȳa = ȳc, the classical radiation pressure forces on the MIM from SC1 and SC2 are equal
and opposite in direction. Then, the mean equilibrium position of the MIM is z̄ = 0. We
further set the optical fields in SC1 and SC2 to be real values by adjusting the phase of the
input fields as āin = c̄in = Ee–iφ , where φ = tan–1(–2�/ζ ), with Ē being a real quantity(see
the Appendix). Now, the equations of motion for the linearized quantum fluctuations can
be written as follows:

˙̂Xa + ˙̂Xc = �(Ŷa + Ŷc) –
ζ

2
(X̂a + X̂c) +

√
ζ
(
X̂in

a + X̂in
c

)
, (5)

˙̂Ya – ˙̂Yc = –�(X̂a – X̂c) –
ζ

2
(Ŷa – Ŷc) +

√
ζ
(
Ŷ in

a – Ŷ in
c

)
+ 2gx̄δ̂z, (6)

m ¨̂
δz + mγ

˙̂
δz + mω2

mδ̂z =
�g
2

x̄(X̂a – X̂c) + �̂ , (7)

where X̂O = δ̂
†
O + δ̂O, x̄O = Ō∗ + Ō, ȳO = i(Ō∗ – Ō) and ŶO = i(δ̂†

O – δ̂O) with O = a, c. Simi-
larly X̂in

O = δ̂
†
Oin

+ δ̂Oin , X̂out
O = δ̂

†
Oout + δ̂Oout , Ŷ in

O = i(δ̂†
Oin

– δ̂Oin ) and Ŷ out
O = i(δ̂†

Oout – δ̂Oout ). We
have used the relationships ȳa = ȳc = 0, x̄a = x̄c = 2ā := x̄ and z̄ = 0 in Eqs. (5)-(7) since, we
assumed that ā = c̄ and ā =

√
ζ |Ē|2/(�2 + ζ 2/4) are real. By using the Fourier transform

function F(Ô) =
∫ ∞

–∞ Ôeiωt dt/
√

2π , and Eq. (5)-Eq. (7), the quadratures of the output field
can be written in terms of the input field quadratures using the input-output relations [65]
as follows:

Ŷ out
a (ω) – Ŷ out

c (ω) = e1
[
Ŷ in

a (ω) – Ŷ in
c (ω)

]
– e2

[
X̂in

a (ω) – X̂in
c (ω)

]
+ �̂ (ω)e3, (8)

X̂out
a (ω) + X̂out

c (ω) = e4
[
X̂in

a (ω) + X̂in
c (ω)

]
– e5

[
Ŷ in

a (ω) + Ŷ in
c (ω)

]
, (9)
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where the following applies:

e1 = 1 +
ζ (iω – ζ /2)

(iω – ζ /2)2 – [α(ω) – �]�
, e2 =

[α(ω) – �]ζ
(iω – ζ /2)2 – [α(ω) – �]�

,

e3 =
2gx̄

√
ζ /[m(ω2

m – ω2 – iγω)]
(iω – ζ /2)(1 – �[α(ω)–�]

(iω–ζ /2)2 )
,

e4 = 1 +
(iω – ζ /2)ζ

(iω – ζ /2)2 + �2 , e5 =
ζ�

(iω – ζ /2)2 + �2 ,

with α(ω) = �g2x̄2/[m(ω2
m –ω2 – iγω)]. The Duan criterion, is a sufficient condition [55] to

establish entanglement, and its verification is sufficient to confirm the entanglement be-
tween âout and ĉout . Equations (9) and (8) are conducive to evaluating the Duan criterion
for verifying the entanglement between âout and ĉout . However, the commutation relation-
ships for these propagating fields [66, 67] are proportional to the Dirac delta distribution.
For example, in the case of input fields, [x̂in

a (t), ŷin
a (t1)] = 2iδ(t – t1). The divergence arising

from the Dirac delta can be approached by considering the finite time τ of the measure-
ment. This finite measurement time leads to a finite bandwidth of 1/2τ around the fre-
quency ωf at which the data are collected. The effect of the finite time of measurement
τ can be modeled by using the filter function φτ as described in Ref. [68]. An important
property of φτ is, that for a generic function f (ω), we can write the following:

lim
τ→∞

∫ ∞

–∞
dωφτ (ω + ωf )φτ

(
–ω – ω′

f
)
f (ω) = δωf ω

′
f
f (ωf ), (10)

where δωf ω
′
f

is the Kronecker delta. ωf in Eq. (10) is constant, and its value is chosen accord-
ing to our needs. We choose ωf = 0 because it corresponds to the output field frequency.
The relationship between the frequency filtered quadratures X̂out

af
and X̂out

a can be writ-
ten as X̂out

af
=

∫ ∞
–∞ dωe–iωtφτ (ω)X̂out

a (ω). Similarly Ŷ out
af

=
∫ ∞

–∞ dωe–iωtφτ (ω)Ŷ out
a (ω). We can

write similar relationships for the quadratures of ĉout . Then, we can write the following:

X̂out
af

(t) + X̂out
cf

(t) =
∫ ∞

–∞
dωe–iωtφτ (ω)

[
X̂out

a (ω) + X̂out
c (ω)

]
, (11)

Ŷ out
af

(t) – Ŷ out
cf

(t) =
∫ ∞

–∞
dωe–iωtφτ (ω)

[
Ŷ out

a (ω) – Ŷ out
c (ω)

]
. (12)

By assuming that τ is much larger than any other characteristic time of the system, and by
substituting Eq. (8) and Eq. (9) in Eq. (11) and Eq. (12), the Duan criterion can be expressed
as follows:

〈(
X̂out

af
+ X̂out

cf

)2〉 +
〈(

Ŷ out
af

– Ŷ out
cf

)2〉 = 2
[
mγ kBT |e3|2 + |ie1 – e2|2 + |e4 – ie5|2

]∣∣
ω=0. (13)

By using the stationary property of the input fields and Eq. (1), we can also verify that
[X̂out

af
, Ŷ out

af
] = [X̂out

cf
, Ŷ out

cf
] = 2i.

3 Results
Eq. (9) is independent of the optomechanical coupling constant g and cannot be influenced
by the radiation pressure coupling. A straightforward calculation shows that |e4 – ie5|2 = 1
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and 〈(X̂out
af

+ X̂out
cf

)2〉 = 2. On the other hand, g enters into Eq. (8) through α(ω). Hence,
tweaking the radiation pressure force can modify the 〈(Ŷ out

af
– Ŷ out

cf
)2〉 term. The presence

of g in the e2 term of Eq. (8) leads to radiation pressure noise (RPN). Here, we can use
RPN suppression techniques to suppress the X̂ quadrature strength in Eq. (9). While sev-
eral techniques [69–73] for suppressing the RPN are available, we implement the quan-
tum back-action nullifying meter (QBNM) technique [74] since, it allows the suppression
of quantum back-action when ω → 0. Without going into the details [75] of the RPN sup-
pression, it is simpler to prove entanglement by minimizing e1 and e2. To achieve this, we
redefine α(0) – � = u� and � = vζ /2 where u and v are arbitrary real numbers. Then, we
can write the following:

〈(
Ŷ out

af
– Ŷ out

cf

)2〉 = 2|ie1 – e2|2 =
(1 + uv2)2 + 4u2v2

(1 – uv2)2 . (14)

Note that we disregard the thermal noise term in Eq. (14). Since we already estimated that
〈(X̂out

af
+ X̂out

cf
)2〉 = 2, according to the Duan criterion, the sufficient condition for âout and

ĉout to be entangled is 〈(Ŷ out
af

– Ŷ out
cf

)2〉 < 2. From Eq. (14), this condition can be satisfied only
if v2u(1 + u) < 0. For u 	= 0 and v 	= 0, Duan’s criterion for entanglement is satisfied when
–1 < u < 0. The stability of the system is examined using Eq. (2) to Eq. (4) for generic OM
parameters. After rewriting ẑ and p̂ in terms of the dimensionless position and momentum
operators, the number of eigenvalues with positive real values for the drift matrix is shown
in Fig. 2. Since no eigenvalues exists with a positive real part in the region –1 < u < 0, the
stability of the system is ensured in the region where the Duan criterion for inseparability
is satisfied. Minimizing the RHS of Eq. (14) further reveals that the smallest possible value
for Eq. (14) is 2/[1 + (2�/ζ )2] at α(0) = �[1 + (2�/ζ )2]/[2 + (2�/ζ )2]. Since α(0) stems from
the radiation pressure force, the input laser power P corresponding to the lowest value of
Eq. (14) is as follows:

P =
1 + (2�/ζ )2

2 + (2�/ζ )2
mω2

m�ζ

16�g2

((
2�

ζ

)2

+ 1
)
�ωl. (15)

Figure 2 Number of eigenvalues with positive real values as functions of u, v and Q where Q =ωm/γ . The
simulation parameters are as follows: ζ /2π = 15.9× 106 Hz, γ /2π = 1.09× 10–3 Hz, and α(0) = (u + 1)vζ /2.
The blue (black) legend represents the area with two (one) eigenvalues with positive real parts. The colorless
area represents no (or zero) eigenvalues with a positive real part
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Figure 3 Duan criterion as a function of input laser power for 2�/ζ = 5. Entanglement is created when the
Duan criterion is less than 4. The inset figure shows a magnified plot of the marked area. The simulation
parameters are as follows [52]:m = 2.3× 10–12 kg, ζ /2π = 15.9× 106 Hz, ωm/2π = 1.14× 106 Hz,
g = 4.45× 1017 Hz/m, ωl/2π = 3.77× 1014 Hz, γ /2π = 1.09× 10–3 Hz, and T = 300 K

We reevaluate Eq. (13) by substituting Eq. (15) and rewrite it as follows:

〈(
X̂out

af
+ X̂out

cf

)2〉 +
〈(

Ŷ out
af

– Ŷ out
cf

)2〉
min = 2 +

2
1 + (2�/ζ )2 + 8

�

ζ

γ kBT
�ω2

m

2 + (2�/ζ )2

1 + (2�/ζ )2 , (16)

where the LHS of Eq. (16) is the Duan criterion when the input laser power determined
using Eq. (15).

As 2�/ζ → ∞, the RHS of Eq. (16) approaches 2 when the thermal noise is disregarded.
Hence, practically, the Duan criterion can never be less than or equal to 2 for the technique
described in this study. For 2�/ζ 
 1, α(0) will be approximately equal to �; this is the
same condition required for QBNM [74]. The e2 term disappears from Eq. (8) for α(0) = �,
and this leads to the suppression of radiation pressure noise. The entanglement condition
α(0) = �[1 + (2�/ζ )2]/[2 + (2�/ζ )2], leads to quantum cross-correlations between Ŷ out

a

and Ŷ out
c such that the output fields from SC1 and SC2 are entangled. By using Eq. (13),

Fig. 3 is plotted with the Duan criterion on the vertical axis and input laser power on the
horizontal axis for 2�/ζ = 5. The Duan criterion has an exact minimum value when the
input laser power is determined using Eq. (15). Similarly, the lowest value of the Duan
criterion for the curve is determined using Eq. (16). The thick green curve in Fig. 4 shows
the plot of Eq. (16) as a function of 2�/ζ with thermal noise at T = 300 K. The input
laser power in Fig. 4 is determined using Eq. (15) for each point of 2�/ζ . According to
the red dotted curve, the value of Eq. (16) gradually decreases to 2 with increasing 2�/ζ
when thermal noise is not considered. However, increasing the 2�/ζ value also increases
the thermal noise, and eventually the Duan criterion value is increased to a value greater
than four, as shown by the green curve. The effect of thermal noise on entanglement is
examined in the next section.

3.1 Comparison with existing methods
To show the novelty of the technique described in this article, we compare it with the
existing methods [16, 32, 35, 37, 45, 51, 76–80] for entanglement generation using op-
tomechanics. In this paragraph, we describe how the existing method can generate en-
tanglement for OMC, as shown in Fig. 1. In the next paragraph we compare and con-
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Figure 4 Plot of Eq. (16) as a function of 2�/ζ . Entanglement is created when the Duan criterion is less than
4. All the simulation parameters [52] are the same as those in Fig. 3 except for the 2�/ζ ratio

Figure 5 â (b̂) is the annihilation operator for the cavity
(mechanical) mode. The center peak is the cavity mode with
linewidth ζ . The blue and red arrows are the sidebands at
frequencies ωe +ωm and ωe –ωm , respectively. As shown in
the blue sideband, driving the OMC at the ωe +ωm

frequency enhances the two-mode squeezing (entangling)
interaction. Similarly, as shown in the red sideband, driving
the OMC at the ωe –ωm frequency enhances the quantum
state transfer (beam splitter) interaction. The sidebands are
resolved when ωm 
 ζ

trast the method described in this study with the existing method. The existing method
theorizes entanglement by linearizing the optomechanical interaction Hamiltonian into
a beam splitter and two-mode squeezing Hamiltonians. As shown in Fig. 5, driving the
OMC on the blue (ωe + ωm) or red (ωe – ωm) sidebands enhances, the two-mode squeez-
ing â†b̂† + âb̂ or beam splitter â†b̂ + b̂†â interaction, respectively, where b̂ is the annihila-
tion operator for the mechanical oscillator. Thus, driving SC1 (see Fig. 1) at the ωe + ωm

frequency enhances the two-mode squeezing interaction between the mechanical mode b̂
and the optical mode â. This leads to entanglement between â and b̂. Driving SC2 at its red
sideband enhances the beam-splitter interaction between b̂ and ĉ. This leads to the trans-
fer of entangled state from b̂ to ĉ, thus creating entanglement between the optical fields â
and ĉ. The same technique has also been used for other bosonic systems [81, 82]. Prop-
agating fields are entangled using the same physics in the unresolved regime (ωm � ζ ),
as shown in Ref. [76]. Ref. [76] used two driving fields to create four sidebands leading to
quadripartite interactions in the unresolved regime. Since the sidebands are not resolved,
resonantly driving the OMC entangles the output fields.

Overall, driving the blue sideband is an essential requirement for entanglement in the ex-
isting methods. No such requirement exists for the technique described in this study since,
the optomechanical interaction Hamiltonian does not need to be reduced to a two-mode
squeezing Hamiltonian. In our method, under appropriate detuning, the optical restoring
force will counteract the linearized quantum radiation pressure force. This modifies the
radiation pressure force contribution in the output field quadratures leading to entangle-
ment. The maximum violation of the Duan criterion for separability is observed in our
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Figure 6 Plot of Eq. (16) as a function of temperature T . The plot shows entanglement up to 300 K. All the
simulation parameters [52] are the same as those in Fig. 3 except temperature and 2�/ζ ratio

method when the input power is calculated using Eq. (15), which is close to the QBNM
condition. Both the sideband driving, and the resolved and unresolved regimes (or ωm/ζ
values) are also unimportant in our method. In our scheme, two tone driving is not re-
quired because both optical modes can be equally detuned from the cavity resonance.

3.2 Temperature dependence
The thermal robustness of the entanglement is shown in Fig. 6 for different 2�/ζ values.
The vertical and horizontal axes in Fig. 6 correlate to Eq. (16) and the temperature, re-
spectively. The input laser power is calculate using Eq. (15) for each 2�/ζ curve in Fig. 6.
The generated entanglement survives up to room temperature. The thermal robustness of
entanglement can be understood by rewriting the thermal noise term in Eq. (13) follows:
as

2mγ kBT |e3|2
∣∣
ω=0 = 8

�

ζ

kBT/�
Qωm

2 + (2�/ζ )2

1 + (2�/ζ )2 , (17)

where Q = ωm/γ , and we use Eq. (15) to evaluate Eq. (17). The MIM can be decoupled from
the thermal environment when the ratio [25, 83] 2πkBT/(�Qωm) is far greater than one.
Hence, the high quality factor of the MIM used in Ref. [52] causes the entanglement to
be immune to the thermal noise at room temperature. Eq. (16) confirms that a large 2�/ζ
value minimizes the Duan criterion in the absence of thermal noise. On the other hand, a
large 2�/ζ increases the thermal noise, as shown in Eq. (17). Hence the ideal scenario is
2πkBT/(�Qωm) � 1 � 2�/ζ , and is achievable for a wide range of 2�/ζ ratios as shown
by the green curve in Fig. 4. This condition indicates that the MIM does not need to be in
the ground state to entangle the output fields.

The technique described in this work can be experimentally achieved in OMC with
MIM [28]. This configuration can also be attained by using photonic bandgap struc-
tures [61, 84, 85] or microtoroidal structures [62] as described in Refs. [61, 63]. To im-
prove the thermal robustness of the entanglement, MIMs with high quality factors such
as those in Refs. [52, 76] can be used. In the conventional method, entanglement is created
between the MIM and the optical mode through two-mode squeezing interactions. Thus,
the entanglement cannot survive once the thermal noise from the MIM destroys the two-
mode squeezed state. According to the method described in this study, the MIM acts as



Gopinath et al. EPJ Quantum Technology           (2024) 11:41 Page 9 of 12

a mediator to transfer the correlations between the optical fields. As the optical field and
MIM do not need to be in a two-mode squeezed state, the optical fields can be entangled
even at room temperature by using high quality MIM.

4 Conclusion
A new method for generating entanglement between two spatially separated propagating
laser fields is presented. By using an optical cavity with an MIM, the quantum properties
of the optical field from one subcavity are written onto the optical field in the other. This
leads to quantum correlations between the two laser fields exiting the optical cavity. We
derived the conditions under which these correlations can lead to entanglement between
the two output fields. The underlying physics for the entanglement generation can be at-
tributed to the QBNM technique. The robustness of the generated entanglement against
the temperature is studied. Entanglement can be generated even at room temperature for
experimentally feasible parameters in both resolved and unresolved sideband regimes.

Appendix: Derivation of conditions for phase φ

When writing Eqs. (2)-(4) we set z̄ = 0 by adjusting the classical radiation pressure force
in SC1 and SC2. Here, we quantitatively show the conditions that lead to z̄ = 0. By using
Eq. (1) the dynamics of the mean variables are given as follows:

¨̄z + γ ˙̄z + ω2
mz̄ =

�g
4m

(
x̄2

a + ȳ2
a – x̄2

c – ȳ2
c
)
, (18)

˙̄xa = (� – gz̄)ȳa –
ζ

2
x̄a +

√
ζ x̄in

a , (19)

˙̄ya = –(� – gz̄)x̄a –
ζ

2
ȳa +

√
ζ ȳin

a . (20)

From Eq. (18), z̄ is set to zero by imposing the condition x̄a – x̄c = ȳa = ȳc = 0. Since the
optical fields in SC1 and SC2 are independently driven by two separate laser fields, it is
possible to set x̄a = x̄c. We can further set that the mean fields in SC1 and SC2 are real;
then ȳa = ȳc = 0 and hence Eq. (19) indicates that

√
ζ x̄a = 2x̄in

a , while Eq. (20) indicates that√
ζ ȳin

a = �x̄a. Using these relationships, we can finally write ζ ȳin
a = 2�x̄in

a , which indicates
the following:

φ = tan–1
(

–2�

ζ

)
. (21)

The same reasoning can also be applied to x̄c and ȳc.
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