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Abstract
Quantum amplitude estimation (QAE) is a pivotal quantum algorithm to estimate the
squared amplitude a of the target basis state in a quantum state |�〉. Various
improvements on the original quantum phase estimation-based QAE have been
proposed for resource reduction. One of such improved versions is iterative quantum
amplitude estimation (IQAE), which outputs an estimate â of a through the iterated
rounds of the measurements on the quantum states like Gk|�〉, with the number k of
operations of the Grover operator G (the Grover number) and the shot number
determined adaptively. This paper investigates the bias in IQAE. Through the
numerical experiments to simulate IQAE, we reveal that the estimate by IQAE is
biased and the bias is enhanced for some specific values of a. We see that the
termination criterion in IQAE that the estimated accuracy of â falls below the
threshold is a source of the bias. Besides, we observe that kfin , the Grover number in
the final round, and ffin, a quantity affecting the probability distribution of
measurement outcomes in the final round, are the key factors to determine the bias,
and the bias enhancement for specific values of a is due to the skewed distribution of
(kfin , ffin). We also present a bias mitigation method: just re-executing the final round
with the Grover number and the shot number fixed.
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1 Introduction
Among various quantum algorithms, quantum amplitude estimation (QAE) is one of the
prominent ones. It is originally proposed in [1] as a method to estimate the squared am-
plitude a of the target basis state |φ1〉 in a quantum state |�〉. If we have the oracle A
to generate |�〉 and the reflection operator S with respect to |φ1〉, we can obtain an ε-
approximation of a,1 querying A and S O(1/ε) times. More concretely, the method in [1]
is based on quantum phase estimation (QPE) [2]: using A and S, we construct the Grover
operator G (defined later), which acts on |�〉 to amplify the amplitude of |φ1〉, and then
operate the controlled version of G O(1/ε) times followed by an inverse quantum Fourier
transform, which yields an approximation of a.

One reason why QAE is important is that it is the basis of other quantum algorithms.
For example, it is used in the quantum algorithm for Monte Carlo integration (QMCI) [3],

1For x ∈R, we say that y ∈R is an ε-approximation of x if |y – x| ≤ ε .
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which estimates the expectation of a random variable quadratically faster than the clas-
sical counterpart. Furthermore, QMCI has many applications in industry, e.g., derivative
pricing [4–9] in finance.

Partly because of such practical importance, many improvements to the original version
of QAE have been proposed so far. In particular, some methods without QPE have been
devised [10–21]. Since the controlled G requires a larger gate cost than the uncontrolled
one, replacing the former with the latter leads to gate cost reduction. The first algorithm in
such a direction is QAE based on the maximum likelihood estimation (MLE) [10], which
we hereafter call MLEQAE. In this method, we apply G to |�〉 k times and make N mea-
surements on Gk|�〉 by which we distinguish |φ1〉 and other basis states, increasing k ac-
cording to some given schedule. We hereafter call this k, the number of operations of G,
the Grover number. The outcomes of the measurements, namely the numbers of times
we get |φ1〉 for the various k, give us the information on ak = sin2 ((2k + 1) × arcsin(

√
a)
)
,

the squared amplitude of |φ1〉 in Gk|�〉, and thus the information on a. Then, we use this
to construct the likelihood function of a and obtain an estimate of a as the maximum
likelihood point.

Afterward, the paper [13] proposed iterative quantum amplitude estimation (IQAE),
which this paper focuses on. Like MLEQAE, in IQAE we use the outcomes of the mea-
surements on Gk|�〉 with varying k, but in a different way. Starting from |�〉, which cor-
responds to k = 0, we obtain the confidence interval (CI) of a by the MLE based on the
outcomes of the measurements on |�〉. We then choose the next k adaptively in the way
explained later, and make the measurements on Gk|�〉. Via MLE, this yields the CI on ak ,
which is translated into the CI of a narrower than the previous one. We repeat these steps,
each of which is called a round, increasing the Grover number and narrowing the CI, until
the CI width reaches the required accuracy ε. In addition to this adaptive increment of the
Grover number, another feature of IQAE is that N the number of the measurements (the
shot number) in one round is increased gradually: if the CI of a derived from measure-
ments with current k is so narrow that we can determine the next k, we stop the current
round and go to the next round with the next k, and otherwise, we add more measure-
ments with the current k. The advantage of such an adaptive increment of k and N is
that it can lead to saving the total number of queries to G compared to fixing k and N in
advance.2

In this paper, we focus on the bias in IQAE, which can be an issue in some situations
but has not been focused on in previous studies. Note that the estimate â of a by IQAE is
stochastic since it is derived from outcomes of measurements on quantum states, which
are intrinsically random. Although IQAE guarantees that the magnitude of the error â – a
is below the tolerance with high probability, it might be biased, that is, the expectation of
the error might not be zero: b := E[â – a] �= 0, where E[·] is the expectation with respect
to the randomness of the measurement outcomes. We hereafter call b the bias and the
residual â – a – b as the random part.

The motivation to focus on the bias in QAE, including IQAE, is the possibility that it
may matter more than random part in some cases. That is, when we want some quanti-
ties given as a combination of many outputs of different QAE runs, biases can accumulate
and, even if small in each output, become significant in total. In worst cases, biases in

2Also in the framework of MLEQAE, some recent studies proposed setting the shot number adaptively [17].
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the sum of N estimates scales as O(N), whereas according to the central limit theorem,
the random parts cancel each other and scale as O(

√
N). An example of situations where

we combine many QAE outputs is calculating the total value of a portfolio of derivative
contracts, where each contract is priced by individual runs of QAE. Another example is
calculating Gibbs partition functions in statistical mechanics [22]. In the quantum algo-
rithm in [22], a partition function is expressed as the product of expectations of certain
random variables, each of which is estimated by QAE.

As far as the author knows, there has been no study on bias in IQAE, while bias in other
types of QAE has been studied so far [19, 21, 22]. Thus, in this paper, we investigate the
bias in IQAE. We conduct numerical experiments to reveal the nature of the bias in IQAE.
One of our key findings from the numerical experiments is that IQAE is in fact biased, and
its termination criterion induces the bias. That is, the procedure that the algorithm ends
when the CI width of a reaches the required accuracy leads to the bias. This is because
the CI is statistically inferred and its width depends on the realized value of the estimate
â of a. The algorithm tends to end when â accidentally takes a value that yields a narrow
CI. This effect affects the expectation of â and then induces the bias.

In particular, we observe that the bias is enhanced for some specific values of a. This
phenomenon is explained by the distribution of (kfin, ffin). Here, kfin is the Grover number
in the final round, and ffin ∈ [0, 1] is a quantity determined by kfin (see the definition later),
which rapidly varies by a slight change of kfin and largely affects the bias. Note that kfin is
also a random variable depending on the measurement outcomes, and thus so is (kfin, ffin).
For a value of a other than the specific ones, ffin takes the various values distributed widely
in the range [0, 1] when kfin varies. Then, over the wide distribution of realized values of
(kfin, ffin) in the 2D plane, the various values of the bias for the various values of (kfin, ffin)
are canceled out on average, which yields a small bias in total. On the other hand, for the
specific values of a, the realized values of (kfin, ffin) are not distributed widely but concen-
trated in a small part of the 2D plane, in fact, on a few curves. Thus, the bias cancellation
does not occur and the resultant bias remains considerable.

We also propose a simple way to mitigate the bias: just re-executing the final round. If
the algorithm ends at the final round with the Grover number kfin and the shot number
Nfin, we perform another round with the same Grover number and shot number and ob-
tain an estimate of a from the measurement outcomes in this additional round. Now, the
gradual increment of the shot number and the termination criterion on the CI width are
no longer adopted: we perform just Nfin shots and stop. This largely diminishes the bias by
the termination criterion, as confirmed by the numerical experiments. We also confirm
that, although this re-executing solution definitely increases the total number of queries
to G, the increase rate is modest – about 25% in our experiment. This is because the final
round does not dominate the other rounds in terms of the query number.

The rest of this paper is organized as follows. Section 2 is a preliminary one, where we
outline QAE and IQAE. Section 3 is the main part of this paper, where the results of our
numerical experiments are presented. We first show the magnitude of the bias for vari-
ous values of a, which is enhanced for some specific values of a, and then elaborate the
aforementioned understanding of such a phenomenon. We finally propose the bias miti-
gation method by re-executing the final round along with the numerical result. Section 4
summarizes this paper.
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2 Preliminaries
2.1 Quantum amplitude estimation
In this paper, QAE is a generic term that means quantum algorithms to estimate the am-
plitude of a target basis state in a superposition state. Concretely, our aim is described as
the following problem.

Problem 1 Let ε,α ∈ (0, 1). Suppose that we are given access to the following two quan-
tum circuits A and S on a n-qubit register. A acts as

A|0〉 = |�〉 :=
√

a|φ1〉 +
√

1 – a|φ0〉, (1)

where a ∈ [0, 1], |0〉 is the computational basis state in which all the n qubits take |0〉, and
|φ0〉 and |φ1〉 are quantum states orthogonal to each other. S acts as

⎧
⎨

⎩
S|φ0〉 = |φ0〉
S|φ1〉 = –|φ1〉

. (2)

Also suppose that we can measure an observable corresponding to a Hermitian H on the
same system, for which |φ0〉 and |φ1〉 are eigenstates with different eigenvalues. Then, we
want to get an estimate of a with accuracy ε with probability at least 1 – α.

Although the setup of Problem 1 seems quite simple, previous studies [1, 10–21] have
generally considered this setup, and in fact, many applications can be boiled down to this
form. For example, in QMCI [3], the expected value of a random variable is encoded into
a quantum state like Eq. (1) as the squared amplitude a of a basis state |φ1〉, and through
estimating this amplitude, we get an approximation of the expectation.

In many use cases of QAE, |φ1〉 and |φ0〉 are distinguished by whether a specific qubit
takes |1〉 or |0〉. In this case, S is the Z gate on the qubit and H is the projective measure-
ment in the computational basis on the qubit.

[1] posed this problem and presented an algorithm for it based on QPE. We have the
following theorem on its query complexity.

Theorem 1 ([1], Theorem 12, modified) Suppose that we are given access to the oracles A
and S in Eqs. (1) and (2). Then, for any ε,α ∈ (0, 1), there exists a quantum algorithm that
outputs â ∈ (0, 1) such that |â – a| ≤ ε with probability at least 1 – α calling A and S

O
(

1
ε

log

(
1
α

))
(3)

times.

Although the success probability in the original algorithm in [1] is lower bounded by
a constant 8/π2, it can be enhanced to an arbitrary value 1 – α at the expense of an
O (log(1/α)) overhead in the query complexity. This is done by a trick of taking the me-
dian of the results in the multiple runs of the algorithm [3], which is based on the powering
lemma in [23].
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We do not give the full details of this QPE-based QAE but present its outline briefly. The
key ingredient is the Grover operator G, which is defined as

G := –AS0A†S. (4)

Here, S0 is a unitary such that

S0|φ〉 =

⎧
⎨

⎩
–|0〉 ; if |φ〉 = |0〉
|φ〉 ; if 〈φ|0〉 = 0

, (5)

which can be implemented as a combination of X gates and a multi-controlled Z gate. The
key property of G is that for any k ∈N it acts as

Gk|�〉 = sin ((2k + 1)θa) |φ1〉 + cos ((2k + 1)θa) |φ0〉, (6)

where θa := arcsin
(√

a
)
. That is, G rotates the statevector by an angle 2θa in the 2-

dimensional Hilbert space spanned by |φ1〉 and |φ0〉. Because of this property, we have the
following QPE-based approach to estimate a. We prepare a register RG on which G acts
and an ancillary m-qubit register Ranc. Then, using G, G2, . . . , G2m–1 controlled by the first,
second, . . . , m-th qubits in Ranc, respectively, we generate the state 1

2m/2
∑2m–1

k=0 |k〉Gk|�〉.
Finally, we operate the inverse quantum Fourier transform on Ranc, which, thanks to the
property in Eq. (6), yields an m-bit precision estimate of θa and thus that of a = sin2 θa. In
this process, the number of uses of (controlled) G is 1 + 2 + · · · + 2m–1 = 2m, and thus A and
S are queried O(2m) times, which implies the O(1/ε) query complexity for accuracy ε as
shown in Theorem 1. See [1] for more details.

Compared to a naive way for estimating a by repeating generations of |�〉 and measure-
ments on it and letting the frequency of obtaining |φ1〉 be an estimate of a, in which the
number of queries to A scales as Õ(1/ε2), QAE achieves the quadratic speedup with re-
spect to ε. This is the origin of the quadratic speedups in quantum algorithms built upon
QAE, e.g., QMCI in comparison to the classical Monte Carlo method.

2.2 Iterative quantum amplitude estimation
After the original QAE was proposed, some variants have been proposed so far, aiming
at the reduction of the resource. Avoiding the use of QPE is a common approach since
QPE requires the controlled version of G, for which the resource for the implementation
increases compared to the uncontrolled one.

IQAE [13] is in such a direction. The basic idea is as follows. By iterating the generation
of |�〉 and the measurement on it, we get an estimate of a as the frequency of obtaining
|φ1〉 in the measurements. This is in fact a kind of MLE, since for Be(p), the Bernoulli
distribution with probability of 1 equal to p, the maximum likelihood estimate of p from
multiple trials is nothing but the realized frequency of 1. We also have the CI of a, which
contains the true value of a with high probability. Next, for some k ∈ N, we repeat gener-
ating Gk|�〉 and the measurement on it, and from the measurement outcomes we get an
estimate of

ak := sin2 ((2k + 1)θa) (7)
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and then that of a. Here, due to the periodicity of ak as the function of a, the 2k +1 different
values in [0, 1] can be the maximum likelihood estimates of a. However, since we already
have the CI from the previous round consisting of the measurements on |�〉, combining
it with the measurements on Gk|�〉 yields the new CI as a single interval in [0, 1], whose
width is narrower than the previous one. We repeat this procedure for a sufficient number
of rounds, making the width of the CI narrower. When the CI width reaches the required
accuracy ε, we have an estimate of a with an error below ε. The CI width in each round is
taken so that the probability that in every round the obtained CI successfully encloses the
true value a is at least some required success probability 1 – α.

Concretely, we present this algorithm as Algorithm 1. This is a modification of the algo-
rithm [20], which is already a modified version of the original IQAE algorithm in [13].

Leaving the full details of this algorithm to [20], we just present a theorem on the query
complexity and some comments.

Theorem 2 (Theorem 3.1 in [20]) Let ε,α ∈ (0, 1). Suppose that we are given access to the
oracles A in Eq. (1) and S in Eq. (2). Then, Algorithm 1 outputs an ε-approximation â of a
with probability at least 1 – α, making O

( 1
ε

log 1
α

)
queries to A and S in total.

Let us make some comments that help us to understand the outline of the algorithm. In
Algorithm 1, [al

ki ,j, au
ki ,j] and [θ l

ki ,j, θ
u
ki ,j] are the CIs of a and the angle θa, respectively. In the

ith round, we set the Grover number to ki, and we calculate the maximum likelihood es-
timate âki ,j of aki and its CI [al

ki ,j, au
ki ,j] from the outcomes of the measurements on Gki |�〉.

They are translated to the maximum likelihood estimate âi,j of a and the CIs [θ l
i,j, θu

i,j] and
[al

i,j, au
i,j]. The ith round ends if we find the Grover number in the next round by the proce-

dure FindNextK shown as Algorithm 2. In this procedure, we search the next k greedily.
Namely, we set it as large as possible, requiring that [Kθ l

i,j, Kθu
i,j] the CI of θa multiplied

by K = 2k + 1 lies in a single quadrant, which enables us to determine the CIs of a and θa

as single intervals. If we cannot find such k in the region that K ≥ rmin(2ki + 1), we con-
tinue the ith round. When �ai,j, the accuracy of the estimate of a from the measurement
outcomes so far, goes below the predetermined accuracy level ε, the algorithm stops and
outputs the estimate at that time.

In the rounds of this process, we operate Gk1 , Gk2 , . . . with ki increasing exponentially
as Ki+1 ≥ rminKi, and its value in the final round is of order O(1/ε). This means that G is
queried O(1/ε) times in total, and so are A and S, as stated in Theorem 2.

Note that the parameters Nshot and rmin in Algorithm 1 are not mentioned in the state-
ment of Theorem 2. Although there may be various settings on these that make the algo-
rithm work, we adopt the following setting in this paper. According to [20], Nshot can be
set to 1, which means that we search the next k every time we make one measurement on
Gki |�〉, and it reduces the query complexity keeping the accuracy. We thus set Nshot = 1
hereafter. On rmin, there may be some choices such as 2 in [13] and 3 in [20], and we adopt
the former hereafter.

We also note that a slight modification in Algorithm 1 from the algorithm in [20]: the
former outputs the maximum likelihood estimate â when �ai,j becomes smaller than the
required accuracy ε, while the latter outputs the midpoint of [al

i,j, au
i,j] when θu

i,j – θ l
i,j, the

width of the CI of θa, becomes smaller than 2ε. The easily checked relationship |au
i,j –al

i,j| ≤
|θu

i,j – θ l
i,j| implies that, if we impose the termination criterion on θa even though we want
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Algorithm 1 Modified IQAE
Input: ε,α ∈ (0, 1), Nshot ∈N, rmin > 1

1: Kmax ← π

4ε

2: k1 ← 0
3: θ l

last ← 0
4: for i = 1, 2, . . . do
5: Ni,0 ← 0, N1

i,0 ← 0
6: Ki ← 2ki + 1
7: αi ← 2α

3
Ki

Kmax

8: Nmax
i ← 2

sin2(π/21) sin2(8π/21) ln
(

2
αi

)

9: Ri ← 
 Kiθ
l
last

π/2 �
� indicates the quadrant enclosing [Kiθ

l
i,j , Kiθ

u
i,j]

10: for j = 1, 2, . . . do
11: nshot ← min{Nshot, Nmax

i – Ni,j–1}
12: Iterate generating Gki |�〉 and measuring it nshot times. Let the number of times |φ1〉 is obtained be n1.
13: Ni,j ← Ni,j–1 + nshot , N1

i,j ← N1
i,j–1 + n1

14: âki ,j ←
N1

i,j
Ni,j

� Maximum likelihood estimate of aki

15: εi,j ←
√

1
2Ni,j

ln
(

2
αi

)

16:

[al
ki ,j , au

ki ,j] ← [
max(0, âki ,j – εi,j), min(1, âki ,j + εi,j)

]
(8)

� CI of aki
17:

γ̂i,j ← γ (âki ,j , Ri),γ l
i,j ← γ (al

ki ,j , Ri),γ u
i,j ← γ (au

ki ,j , Ri), (9)

where

γ (a′, r) :=

{
arcsin

(√
a′) ; if r is even

π

2 – arcsin
(√

a′) ; if r is odd
(10)

for a′ ∈ [0, 1] and r ∈N.
18: θ̂i,j ← Ri

π
2 +γ̂i,j
Ki � Maximum likelihood estimate of θa

19: [θ l
i,j , θu

i,j] ←
[

Ri
π
2 +γ l

i,j
Ki

,
Ri

π
2 +γ u

i,j
Ki

]
� CI of θa

20: âi,j ← sin2 θ̂i,j
� Maximum likelihood estimate of a

21: [al
i,j , au

i,j] ← [sin2 θ l
i,j , sin2 θu

i,j] � CI of a
22:

�ai,j ← max{âi,j – al
i,j , au

i,j – âi,j} (11)

� Estimated accuracy of âi,j
23: if �ai,j ≤ ε then
24: return âi,j as â
25: end if
26: ktemp ← FindNextK(ki, θ l

i,j , θu
i,j , rmin)

27: if ktemp > ki then
28: ki+1 ← ktemp
29: θ l

last ← θ l
i,j

30: break the inner for-loop
31: end if
32: end for
33: end for

to guarantee the accuracy of a, we may take unnecessarily many iterations. We thus adopt
the termination criterion on a, and in fact, we confirmed that this leads to a smaller query
number than the criterion on θa in the later numerical experiment, although we will not
show the result in the latter setting.
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Algorithm 2 FindNextK
Input: ki, θl , θu, rmin

1: Ki ← 2ki + 1
2: K ←

⌊
π/2

θu–θl

⌋

3: if K is even then
4: K ← K – 1
5: end if
6: while K ≥ rminKi do
7: if

⌊
Kθl
π/2

⌋
=
⌈Kθu

π/2
⌉

– 1 then
8: return (K – 1)/2
9: end if

10: K ← K – 2
11: end while
12: return ki

3 Numerical experiments on the bias in IQAE
3.1 Biases for various a
Hereafter, in order to understand the bias in IQAE and how it arises, we conduct some
numerical experiments.

First of all, since the current problem is characterized by a, the amplitude we want to
estimate, we run IQAE and see the bias for the various values of a. Here, “run” does not
mean running Algorithm 1 on a real quantum computer or a quantum circuit simulator
but a classical simulation of the algorithm based on the probability distribution of the
outcomes of the measurements made in the algorithm. Concretely, we replace the step 32
in Algorithm 1 with “Draw nshot samples from Be

(
aki

)
and let the number of 1’s be n1”.

Note that, if we know the value of a, we know the probability distribution of the outcome
in measuring Gki |�〉, that is, |φ1〉 with probability aki and |φ0〉 with probability 1 – aki ,
which is equivalent to Be

(
aki

)
. Therefore, with the above replacement, we can produce

the output of Algorithm 1 under the probability distribution it obeys. We hereafter call
this simulation procedure Algorithm 1′.

For the estimator â of a, we define its bias as

b(a) := E[â – a], (12)

where E[·] denotes the expectation with respect to the randomness of the measurement
outcomes in Algorithm 1. In order to estimate the magnitude of the bias for various values
of a, we ran Algorithm 1′ Nrun times, and calculate the value of the average of the errors
in the runs

b̄(a) :=
1

Nrun

Nrun∑

n=1

(
â(n) – a

)
(13)

and the standard error of b̄(a)

σ̄ (a) :=
1√

Nrun

[
1

Nrun

Nrun∑

n=1

(
â(n) – a

)2
]1/2

, (14)
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Figure 1 For the various values of the amplitude a,
|b̄(a)|, the absolute value of the average of the
errors in the 10,000 runs of IQAE (Eq. (13)) is plotted
in blue, and 2σ̄ (a), the standard error of this average
(Eq. (14)) times 2 is plotted in orange. We set ε
= 0.001, α = 0.05

where â(n) is the output in the nth run. We can grasp the magnitude of the bias by compar-
ing b̄(a) and σ̄ (a), since, if b(a) = 0, b̄(a) is comparable to σ̄ (a) with high probability, e.g.,
|b̄(a)| ≤ 2σ̄ (a) with about 95%, for sufficiently large Nrun. The result is shown in Fig. 1. In
this figure, we set a to the 201 equally spaced points in [0.001, 0.999] including the ends.
The other parameters are set as Nrun = 104, ε = 0.001, α = 0.05, which also applies here-
after. From this figure, we see that, for a considerable fraction of the examined values of a,
|b̄(a)| exceeds 2σ̄ (a), which implies â is biased. In particular, b̄(a) takes much larger values
for specific values of a than other values. Namely, the bias is enhanced for some specific
values of a.

3.2 Reason why the bias is enhanced for specific values of a
We then investigate the reason why the bias is enhanced for specific values of a, fixing a
to 0.2505, one of such values. What makes the situation that a = 0.2505 different from the
others?

To make the investigation as simple as possible, we should note some points. First, we
note that it is sufficient to focus on the final round in Algorithm 1. The output of Algo-
rithm 1 is determined by the result of the MLE in the final round. Therefore, as long as
the CI obtained in the round just before the final one successfully encloses a, which oc-
curs with high probability at least 1 – α, the error is determined by the final round only.
Second, we note that the final round is characterized by only kfin, the Grover number in
that round: other quantities that define the procedure in the final round are automatically
determined when kfin is fixed, including Rfin, as long as the CI of a encloses its true value.
We finally make a note on notation: here and hereafter, like kfin and Rfin, when we write
quantities that have ifin, the index indicating the final round, in the subscript, we replace
ifin with fin for conciseness.

Based on the above discussion and noting that kfin is also a random variable affected by
the measurement outcomes in the previous rounds, we write the bias as

b(a) = E
[
â – a

]
=

∞∑

k′
fin=0

pk′
fin

bk′
fin

(a) (15)

bk′
fin

(a) := E

[
â – a|Gk′

fin

]
, (16)

where Gk′
fin

is the event that kfin takes a value k′
fin, and pk′

fin
is its probability.
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3.2.1 Bias conditioned on the final Grover number
We then consider how kfin affects bkfin (a), the bias conditioned on kfin. First, we rewrite â
the output of Algorithm 1 as

â = sin2
(Rfin

π
2 + γ̂fin

Kfin

)
, (17)

where γ̂fin is the value of γ̂fin,j when

au
fin,j – âfin,j

= sin2

(
Rfin

π
2 + γ u

fin,j

Kfin

)

– sin2
(Rfin

π
2 + γ̂fin,j

Kfin

)
≤ ε,

âfin,j – al
fin,j

= sin2

(
Rfin

π
2 + γ̂ l

fin,j

Kfin

)

– sin2

(
Rfin

π
2 + γ l

fin,j

Kfin

)

≤ ε (18)

holds for the first time. Note that γ l
fin,j, γ u

fin,j and γ̂fin,j are random variables determined
by the measurement outcomes in Algorithm 1, and so is γ̂fin. When kfin � 1, which is a
typical situation for small ε, the most sensitive dependence of â’s distribution on kfin is
through the distributions of γ l

fin,j, γ u
fin,j and γ̂fin,j, while kfin also affects â through Kfin and

Rfin in Eqs. (17) and (18). This is because the distributions of γ̂fin,j etc. largely change even
when kfin changes slightly. Under the definition in Eq. (9), the distributions of γ̂fin,j etc.
are determined by the distribution of âkfin,j and p(Rfin), the parity of Rfin. The distribution
of âkfin,j is determined by that of the outcome of the measurement on Gkfin |�〉, which is
equivalent to Be(akfin ), and akfin can change largely even by shifting kfin by 1. When p(Rfin)
flips, the form of γ̂fin,j as a function of âkfin,j also flips and so does the distribution of γ̂fin,j.
These observations imply that we should focus on akfin and p(Rfin) as key factors for bkfin (a).
However, as an equivalent to this, we instead focus on how bkfin (a) is affected by

ffin := frac
(

(2kfin + 1)θa

π

)
, (19)

where frac(x) := x –
x� is the fractional part of x ∈R. ffin has a one-to-one correspondence
to the pair (akfin ,p(Rfin)), and taking a single quantity ffin as a key factor rather than the pair
(akfin ,p(Rfin)) makes the following discussion simpler.

Since ffin is also a quantity rapidly changing with respect to kfin, in order to understand
how it affect bkfin (a), we temporarily deal with kfin and ffin as independent variables, even
though kfin determines ffin. We set kfin and ffin separately, and, as an estimate of bkfin (a),
calculate the quantity b̃(kfin, ffin) by the procedure in Algorithm 3. That is, we run one
round of IQAE many times for fixed kfin and ffin, and take the average of the resultant
errors in the runs in which IQAE itself is terminated, neglecting the other runs, which
move to the next round. We calculate the average only when at least 1000 runs out of the
10,000 total runs yield outputs other than NaN, since averaging a small number of random
results leads to an inaccurate estimate. Note that, in compensation for setting kfin and ffin

independently, the true amplitude a (now, 0.2505) is slightly adjusted to ã so that Eq. (19)
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Algorithm 3 Estimate the bias with kfin and ffin fixed
Input: kfin ∈N, ffin ∈ [0, 1], a ∈ (0, 1), Nrun ∈N, ε,α ∈ (0, 1), Nshot ∈N, rmin > 1

1:

R̃ ←
⌊

(2kfin + 1)θa

π

⌋

ã ← sin2

⎛

⎝

(
R̃ + ffin

)
π

2kfin + 1

⎞

⎠ (20)

2: for c = 1, . . . , Nrun do
3: Run one round of IQAE (Steps 32-32 in Algorithm 1′), setting ki ← kfin and

Ri ←
⌊

(2kfin + 1)θã

π/2

⌋
, (21)

and adjusting a to ã.
4: if the round ends with �ai,j ≤ ε then
5: Let ãc be the value of âi,j at the end of the round.
6: Iend

c ← 1
7: else
8: ãc ← NaN (not a number)
9: Iend

c ← 0
10: end if
11: end for
12: Nend ←∑Nrun

c=1 Iend
c

13: Output

b̃(kfin, ffin)

←

⎧
⎪⎨

⎪⎩

1
Nend

∑
c=1,...,Nrun

Iend
c =1

(ãc – ã) ; if Nend ≥ 0.1 × Nrun

NaN ; otherwise
. (22)

holds. Nevertheless, we expect that b̃(kfin, ffin) gives us a good illustration of the behavior
of bkfin (a). Also note that the setting in Eq. (21) corresponds to the assumption that the
true amplitude ã is enclosed in the CI in the previous round.

In Fig. 2, we show the results for the various values of ffin with kfin set to several values.
For (kfin, ffin) that yields NaN b̃(kfin, ffin), we do not plot a point.

We can intuitively understand how the bias is generated by noting the following two
points.

First, we note that �ai,j, the estimated accuracy in the intermediate step in Algorithm 1,
is also a random variable. It is determined by âki ,j, the realized frequency of |φ1〉 in the
repeated measurements on Gki |�〉, and Ni,j, the number of the measurements. How �ai,j

depends on âki ,j is understood as follows. Because of the upper bound 1 and lower bound
0 of âki ,j, the width of the CI [al

ki ,j, au
ki ,j] of aki given as Eq. (8) already depends on not only
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Figure 2 b̃(kfin , ffin) calculated by Algorithm 3 for various values of (kfin , ffin). b̃(kfin , ffin) indicates the bias
generated in the final round of IQAE conditioned on the Grover number kfin and ffin in Eq. (19). For (kfin , ffin)
that yields NaN b̃(kfin , ffin), we do not plot a point

Figure 3 In Fig. 3(a), the blue (resp. red) solid line is the upper end aui,j (resp. lower end ali,j ) of the CI of the
amplitude a versus the realized value of the estimate âi,j after N = 100 shots in an IQAE round with the Grover
number k = 200. The black dashed line is a diagonal line just for reference, on which the vertical coordinate is
equal to âi,j . Figure 3(b) shows the estimated accuracy �ai,j , which is determined by aui,j , a

l
i,j , and âi,j as Eq. (11),

in the same setting. In these figures, the curves are shown over the range of âi,j such that⌊
(2k + 1)θâi,j /(π /2)

⌋
=
⌊
(2k + 1)θa=0.2505/(π /2)

⌋
. This is the set of the values âi,j can take in the IQAE round if

the CI at the beginning of the round encloses a = 0.2505

Ni,j but also âki ,j: if âki ,j is closer to 0 or 1, the CI width becomes smaller. In addition to this,
the derivation of �ai,j from âki ,j and [al

ki ,j, au
ki ,j] by the nonlinear relationship introduce the

dependence of �ai,j on âki ,j. Besides, since âki ,j has the one-to-one correspondence to âi,j,
we can regard �ai,j as a function of âi,j. Figure 3 illustrates this. Figure 3(a) shows au

i,j and
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al
i,j, the upper and lower ends of the CI of a versus the realized value of âi,j after N = 100

shots in a round with the Grover number k = 200, and Fig. 3(b) shows �ai,j versus âi,j.
The second point is the termination criterion �ai,j ≤ ε in Step 32 in Algorithm 1, which

means that IQAE ends when the estimated accuracy �ai,j becomes smaller than ε. This
criterion, along with the aforementioned dependence of �ai,j on âi,j, leads to the bias. If
âi,j goes to the region where �ai,j is relatively small, Algorithm 1 tends to end early, and,
if âi,j goes to the region with larger �ai,j, the algorithm tends to take more shots by the
end, or even go to the next round. This makes the probability that the algorithm ends with
âi,j corresponding to smaller �ai,j and outputs such âi,j as â higher. Such an effect yields
the probability distribution of â asymmetric about the point â = a, and the nonzero bias
bkfin �= 0.

Although this understanding on how the bias arises is an intuitive one, we will indirectly
confirm its validity by seeing in the numerical experiment in Sect. 3.3 that re-executing
the final round without the termination criterion mitigates the bias.

With the above understanding, we can also see why the bias b̃(kfin, ffin) depends on ffin

with kfin fixed. As explained above, changing ffin corresponds to changing a. Assuming
that â mainly distributes in the neighborhood of a, the shape of �ai,j as a function of âi,j

around the point âi,j = a affects the bias, which causes the dependence of the bias on a, and
then ffin. For example, if �ai,j is increasing in the neighborhood of âi,j = a, the preference
of âi,j to values corresponding to small �ai,j leads to the negative bias.

We also note that, in Fig. 2, the graph of b̃(kfin, ffin) is nearly antisymmetric with respect
to reflection about the vertical line ffin = 1

2 , that is,

b̃(kfin, ffin) ≈ –b̃(kfin, 1 – ffin), (23)

except the case of kfin = 300. This antisymmetricity is understood as follows. We tem-
porarily ignore the process for the transition to the next round. Then, note that, with kfin

fixed, the transform ffin → 1 – ffin conserves akfin and flips p(Rfin). Thus, by this trans-
form, the distribution of âkfin,j is unchanged and the relationship between γ̂fin,j and âkfin,j

in Eq. (10) is switched. Therefore, assuming that kfin � 1 and neglecting the slight change
of a by this transform, we see that this transform flips the distribution of the error â – a:
p(â – a; kfin, ffin) ≈ p(–(â – a); kfin, 1 – ffin), where p(·; kfin, ffin) is the probability density of
â – a conditioned by kfin and ffin. This means that the transform ffin → 1 – ffin also flips
the bias as Eq. (23). In fact, this discussion is not rigorous, since the process for the transi-
tion to the next round breaks the symmetry with respect to ffin → 1 – ffin. This makes the
antisymmetricity disappear in Fig. 2(b) for kfin = 300. Nevertheless, this antisymmetricity
holds for the wide region of (kfin, ffin), and becomes a key for the phenomenon that the bias
is enhanced only for the specific values of a, as seen below.

3.2.2 Distribution of (kfin, ffin)
Next, we consider the distribution of (kfin, ffin). Since ffin is determined by kfin with a fixed
and kfin takes natural numbers, (kfin, ffin) distributes in the 2D plane not continuously but
as discrete points. In Fig. 4(a), we show the realized values of (kfin, ffin) for a = 0.2505 in the
10,000 runs of Algorithm 1′. We see that the plotted points are concentrated only on the
three lines. This is not a phenomenon observed for general a. For example, in Fig. 4(b),
the similar plot for a = 0.2006, for which the observed bias b̄(a) is much smaller than
a = 0.2505, the points are distributed more broadly than those for a = 0.2505.
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Figure 4 The realized values of the Grover number kfin in the final round and ffin given by Eq. (19) in the
10,000 runs of IQAE for (a) a = 0.2505 and (b) a = 0.2006 are plotted as transparent black points. Darker regions
consisting of many overlapped points indicate that there are many realizations in it and lighter regions
indicates the opposite. In Fig. 4(a), the blue, red, and orange solid lines represent frac ((2kfin + 1)θa/π) for kfin
such that kfin ≡ 0, 1, and 2 modulo 3, respectively, and the blue, red, and orange horizontal dashed lines
represent ffin = 1/6, 1/2, and 5/6, respectively

The distribution of the points for a = 0.2505 is understood as follows. We note that, for
θ ∈ (0,π/2) written as θ = lπ/2m with positive integers l and m such that l < m, fθ (k) :=
frac ((2k + 1)θ/π) is a periodic function of k ∈ Z with period m. Thus, it takes at most m
values, and, if we plot fθ (k) versus k, the points lie on at most m horizontal lines. If we
slightly shift θ from such a value, fθ (k) can take different values from the original ones,
which means the horizontal lines transform into lines with small slopes. θa for a = 0.2505
applies to such a case. It can be written in the form of

θa =
lπ
2m

+ δ (24)

with small m ∈ N and δ ∈ R such that |δ| � 1. Concretely, l = 1, m = 3 and δ ≈ 0.000577.
For this a, fθa (k) consists of only three slightly tilted lines shown in Fig. 4(a) as solid lines,
which were dashed horizontal lines in the same figure if δ = 0.

We now plot the distribution of (kfin, ffin) on the heatmap of b̃(kfin, ffin), which is highly
illustrative for understanding why the bias is enhanced for specific values of a. In Fig. 5,
we show the results for a = 0.2505, 0.2006, and, in addition, a = 0.25, for which the 10,000
runs of Algorithm 1′ are conducted too.

We obtain b(a) by averaging the values of b̃(kfin, ffin) over the realized values of (kfin, ffin),
which is represented by the black points, with the weight proportional to the realization
frequency, which is represented by the darkness of the points. In the case of a = 0.2505, as
seen above, the realized values of (kfin, ffin) are not broadly distributed but located on a few
specific lines. Contrary to this, in the case of a = 0.2006, the points are distributed more
broadly, and the values of b̃(kfin, ffin) on the points take various values, both positive and
negative, canceling out each other when averaged. This cancellation tends not to occur in
the case of a = 0.2505 due to the concentration of the points. In fact, we see that the lines
consisting of the realized values of (kfin, ffin) mainly go through the regions where b̃(kfin, ffin)
is positive, which leads to positive b(a).

Of course, even if Eq. (24) holds and thus the realized values of (kfin, ffin) concentrate on a
few lines, the values of b̃(kfin, ffin) on the points may accidentally cancel out each other, re-
sulting in a relatively small b(a). Conversely, even if the points are distributed broadly, the
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Figure 5 The same realized values of (kfin , ffin) as Fig. 4 are plotted on the heatmap of b̃(kfin , ffin) calculated by
Algorithm 3. b̃(kfin , ffin) indicates the bias generated in the final round of IQAE conditioned on the Grover
number kfin and ffin in Eq. (19). Now, the case of a = 0.25 is added. Again, the points are in transparent black,
and thus darker regions indicate that there are many realizations in it and lighter regions indicate the opposite.
In the heatmap, the color of the regions with NaN b̃(kfin , ffin) is set to white. For a = 0.2505, the realized values
of (kfin , ffin) are concentrated on a few lines, whereas for a = 0.2006, (kfin , ffin) is distributed more broadly. For
a = 0.25, the distribution is concentrated on a few lines but has a reflection symmetry about fmin = 0.5
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distribution is not uniform and the heatmap of b̃(kfin, ffin) is not completely antisymmet-
ric, which means that the bias cancellation is not perfect. Nevertheless, the distribution
of realized (kfin, ffin) and the cancellation of b̃(kfin, ffin) on the points roughly describe the
phenomenon that the bias is enhanced for the specific values of a.

We remark on the case that θa can be exactly written in the form of lπ/2m with small
m. For example, a = 0.25 gives θa = lπ/2m with l = 1 and m = 3. Although a = 0.25 has
only a slight difference from a = 0.2505, a = 0.25 does not yield the large bias: for it, b(a =
0.25) = 3.5×10–6, which is one order of magnitude smaller than b(a = 0.2505) = 3.7×10–5.
Figure 5(c) shows the distribution of realized (kfin, ffin) on the heatmap of b̃(kfin, ffin) for
a = 0.25. We see that the points are distributed on the two horizontal lines3 located at the
symmetric positions with respect to reflection about the line ffin = 1/2. Since b̃(kfin, ffin) is
nearly antisymmetric about this line, its values at the realized points largely cancel out
each other, yielding the relatively small b(a).

3.3 Mitigation of the bias
Finally, we propose a simple method to mitigate the bias: just re-executing the final round.
Namely, we modify Algorithm 1 as follows. Suppose that we get the CI of a such that
�ai,j ≤ ε in the round with the Grover number kfin and the total shot number Nfin. Then,
we perform just one additional round using the same kfin and Nfin, and let the resultant
maximum likelihood estimate â in the added round be the output of the algorithm. In
this additional round, we do not impose the termination criterion �ai,j ≤ ε. We make
Nfin measurements on Gkfin |�〉 even if �ai,j ≤ ε is satisfied in the middle. We show the
modified algorithm as Algorithm 4.

The reason why we expect that this re-execution-based bias mitigation works is as fol-
lows. Recall that, in Algorithm 1, the error is generated only in the final round as long as
the second-to-last round yields the CI of a enclosing the true value, and the bias is induced
by the termination criterion �ai,j ≤ ε. We thus consider that running an additional round
without the criterion �ai,j ≤ ε and taking the result as the final output will mitigate the
bias.

Algorithm 4 Modified IQAE with the final round re-executed
Input: ε,α ∈ (0, 1), Nshot ∈N, rmin > 1

1: Run Algorithm 1. Let the Grover number, the total shot number, and Ri in the final
round be kfin, Nfin, and Rfin, respectively.

2: Iterate generating Gkfin |�〉 and measuring it Nfin times. Let the number of times |φ1〉
is obtained be N1.

3: return

sin2

⎛

⎜
⎝

Rfin
π
2 + γ

(√
N1

Nfin
, Rfin

)

2kfin + 1

⎞

⎟
⎠ (25)

as â.

3Although ffin can take 1
2 for a = 0.25, none of the 10,000 runs ended with ffin = 1

2 , and thus there is no point on the line
ffin = 1

2 in Fig. 5(c).
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Figure 6 For the various values of the amplitude a,
we plot (a) |b̄(a)|, the absolute value of the average
of the errors in the 10,000 runs of IQAE (Eq. (13)) and
(b) the average number of queries to G in the same
runs of IQAE. The blue line denotes the result for
Algorithm 1, which does not incorporate bias
mitigation, and the orange one denotes that for
Algorithm 4, which includes bias mitigation

In Fig. 6(a), we plot
∣
∣b̄(a)

∣
∣ in Algorithm 1, which is plotted also in Fig. 1, and that in

Algorithm 4. As this figure shows, the enhanced biases for the specific values of a in Al-
gorithm 1 are largely reduced in Algorithm 4, which indicates that re-executing the final
round mitigates the bias. If we take, among the examined values of a, those for which
∣∣b̄(a)

∣∣≥ 2σ̄ (a), the average and maximum of the bias reduction rates for these values of a
are 57.8% and 99.2%, respectively.

An obvious drawback of this bias mitigation method is the increase of the total number
of queries to G by running an additional round. We have confirmed that, at least in our
numerical experiments, this query number increase is mild. Figure 6(b) shows the average
number of queries to G in the 10,000 run of Algorithm 1 and Algorithm 4 .4 The ratio of
the average query number is about 1.25 for any examined value of a. This mild increase is
because the final round in Algorithm 1 is not dominant among all the rounds with respect
to query number. Namely, on average, the final round accounts for about 25% of the total
number of queries to G across all the rounds.

4 Summary
In this paper, we focused on the bias in IQAE, a widely studied version of QAE. We saw that
the bias is enhanced for the specific values of the estimated amplitude a. The termination
criterion that the estimated accuracy �ai,j of a falls below the predetermined accuracy ε

4The reason why the curves in Fig. 6(b) have several peaks is as follows. In each round in Algorithm 1, we search the next
Grover number ki+1 by Algorithm 2, and depending on the current Grover number ki and the true angle θa , this search
tends to require many shots in order to narrow down the CI [θ l

i,j ,θ
u
i,j ] of θa so much that [Ki+1θ l

i,j ,Ki+1θ
u
i,j ] lies within a single

quadrant. This can happen for any θa , but for specific values of θa , the probability of this phenomenon is relatively high,
which leads to the larger total query number in expectation.
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is a source of the bias. Decomposing the bias into the bias conditioned by kfin the Grover
number in the final round, we found a key factor that determines the magnitude of the bias:
the distribution of the realized values of (kfin, ffin) in the landscape of the conditional bias.
Here, ffin is defined as Eq. (19), and a main factor to determine the probability distribution
of the IQAE estimate â and thus its bias. We found that for a such that Eq. (24) holds
with small m and tiny δ, the points of realized (kfin, ffin) are located only on a few lines in
a 2D plane, and the conditional biases at the points do not tend to cancel each other so
much, resulting in the large bias. We also proposed a simple bias mitigation method by
re-executing the final round with the same Grover number kfin and shot number Nfin. We
saw that the increase of the total number of queries to G is mild, about 25%.
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