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Abstract
We investigate the potential of combining the computational power of noisy
quantum computers and of classical scalable convolutional neural networks (CNNs).
The goal is to accurately predict exact expectation values of parameterized quantum
circuits representing the Trotter-decomposed dynamics of quantum Ising models. By
incorporating (simulated) noisy expectation values alongside circuit structure
information, our CNNs effectively capture the underlying relationships between
circuit architecture and output behaviour, enabling, via transfer learning, also
predictions for circuits with more qubits than those included in the training set.
Notably, thanks to the quantum information, our CNNs succeed even when
supervised learning based only on classical descriptors fails. Furthermore, they
outperform a popular error mitigation scheme, namely, zero-noise extrapolation,
demonstrating that the synergy between quantum and classical computational tools
leads to higher accuracy compared with quantum-only or classical-only approaches.
By tuning the noise strength, we explore the crossover from a computationally
powerful classical CNN assisted by quantum noisy data, towards rather precise
quantum computations, further error-mitigated via classical deep learning.

Keywords: Quantum computing; Quantum circuits; Supervised learning; Deep
neural networks; Quantum error mitigation; Transfer learning

1 Introduction
Quantum computers promise to solve computational problems that are intractable on
classical machines [1, 2]. However, efforts to exploit the full power of quantum comput-
ing are currently limited by hardware errors. To address this issue, quantum error miti-
gation techniques have been developed to minimize noise and obtain potentially useful
results [3–8]. While error mitigation methods reduce noise in expectation values of ob-
servables, they may display limited accuracy or suffer from prohibitive sampling overheads
[9–11]. In this scenario, classical machine learning emerges as a suitable tool for post-
processing noisy quantum measurements, achieving accurate expectation values at a po-
tentially lower computational cost [12, 13]. In fact, supervised machine learning has been
successfully applied to various challenging computational tasks within quantum many-
body physics [14–18] and quantum computing [12, 19–27]. Moreover, scalable supervised
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learning models allow generalizing beyond the size of the training quantum systems, po-
tentially reaching system sizes out of reach for direct classical simulations [28–32]. On the
other hand, classically supervised learning was shown to fail in emulating certain relevant
quantum circuits [25], e.g., circuits featuring random inter-layer variations [26].

In this work, we investigate the computational synergy between noisy quantum comput-
ers and classical deep learning. Specifically, our focus is on the task of predicting expecta-
tion values of large quantum circuits representing the Trotter-decomposed dynamics of
an Ising Hamiltonian [4, 12, 33]. These circuits are simulated taking into account the con-
nectivity of an actual quantum chip and considering a realistic model of hardware errors.
Our approach involves incorporating noisy quantum expectation values alongside infor-
mation about the circuit architecture, to be used as input features for classical neural net-
works. A schematic representation is shown in Fig. 1. Leveraging scalable network gener-
alization, our method shows remarkable performance in emulating quantum circuits with
more qubits than those included in the training set. Extrapolation to deeper circuits is also
possible, depending on the noise level. In this way, our approach also performs accurate
quantum error mitigation, but circumventing the need of explicit target values for large
circuits. Thus, it departs from the requirement of error-mitigated expectation values as
training data [12]. On the other hand, our investigation improves upon the practice of re-
lying only on circuit-structure information for predicting expectation values [24–26, 34].
Notably, this allows us to emulate circuits that are otherwise intractable for purely classical
supervised learning. This approach underlines the potential of combining the outputs pro-
vided by quantum computers and classical deep learning methods. The synergy between
these two strategies promises results that surpass the individual capabilities of each.

Figure 1 Schematic representation of the synergetic computation combining classical deep learning with
output of noisy quantum circuits. In this example, a quantum circuit with N = 4 qubits and P = 1 layers is
considered. The structure of the IBM Guadalupe chip is shown in the upper part. Sections of N adjacent qubits
are randomly selected, and the corresponding indices are denoted with q. The single-qubit rotation angles
θ (N)/(P) = [θ1,θ2, . . . ,θN/P] are randomly generated from a uniform distribution in the range θi ∈ [0, π2 ]. The
logical circuits feature single-qubit rotations and CNOT gates. They are transpiled for the quantum chip layout
and its basis gates. The noisy expectation values z(noisy) of the transpiled circuits are the input to a CNN,
together with the classical circuit descriptors q and θ (N)/(P) . This supervised learning model is trained to
predict the exact average magnetization per qubitmz = 1

N
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The rest of the article is organized as follows: in Sect. 2 we describe the quantum circuits
we address and the structure of the quantum chip on which they can be implemented. We
also introduce the error model used to simulate the noisy expectation values, as well as the
technique we implement to tune the noise level. The CNNs and the training protocol are
described in the final part of the section. The scalability of the CNNs on larger quantum
circuits is analysed in Sect. 3. Here, we compare the accuracy of the predictions for dif-
ferent quantum circuit configurations, different numbers of qubits, and different levels of
noise. Notably, comparison is made also against a prominent error-mitigation technique,
namely zero-noise extrapolation (ZNE) [6, 35, 36]. In Sect. 4 we report our conclusions.
Further details on how we tune the noise model and how we implement ZNE are available
in Appendix A and Appendix B, respectively.

2 Methods
2.1 Quantum circuits and qubit arrangement
We consider quantum circuits composed of N qubits and P layers of gates. In each layer,
a parameterized single-qubit gate RX is applied to each qubit, and two-qubit gates RZZ are
applied to chosen qubit pairs. The matrix representations of these gates are:

RX(θ ) =

[
cos( θ

2 ) –i sin( θ
2 )

–i sin( θ
2 ) cos( θ

2 )

]

, RZZ(φ) =

⎡

⎢
⎢
⎢
⎢
⎣

e–i φ
2 0 0 0

0 ei φ
2 0 0

0 0 ei φ
2 0

0 0 0 e–i φ
2

⎤

⎥
⎥
⎥
⎥
⎦

. (1)

This type of quantum circuit can be used to simulate the time dynamics of a many-body
quantum system described by the transverse-field Ising Hamiltonian, which is defined as:

H(t) = HZZ + HX = –J
∑

〈i,j〉
ZiZj +

∑

i

hi(t)Xi , (2)

where Xi and Zi are Pauli operators, J is the coupling between nearest-neighbour spins
on the chosen graph, and hi(t) is the time-dependent transverse field acting on qubit i.
Indeed, from the first-order Trotter decomposition of the time-evolution operator, we get

e–iHZZδt =
∏

〈i,j〉
eiJδtZiZj =

∏

〈i,j〉
RZiZj (–2Jδt) (3)

e–iHXδt =
∏

i

e–ih(t)δtXi =
∏

i

RXi (2h(t)δt) , (4)

where the total evolution time T is discretized into T
δt Trotter steps, –2Jδt = φ, and

2h(t)δt = θ . We set φ = – π
2 , following the approach of Ref. [4], despite employing a dif-

ferent circuit transpilation method. The angles θ for the RX gates are randomly selected
from a uniform distribution within the interval [0, π

2 ]. As shown in Fig. 2, we consider two
distinct circuit configurations: A and B. In configuration A, the angles are randomly as-
signed to each qubit, but the same angle set is used across the P layers of gates. Instead, in
configuration B the single-qubit gates feature different angles for different layers, but the
angles are consistent across qubits within a specific layer.
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Figure 2 Color-scale representation of the rotation angles describing the RX gates (θ (N) and θ (P) ) as a function
of the qubit index n = 1, . . . ,N and the layer index p = 1, . . . ,P. The angles are sampled from a uniform
distribution within the interval [0, π2 ]. Panel (a) shows a quantum circuit in configuration A, where angles are
different for different qubits. Panel (b) shows a quantum circuit in configuration B, where different layers of
gates feature distinct angles

The qubit pairs connected by the RZZ gates consist exclusively of the nearest neighbours
on the graph of the IBM Guadalupe chip. This is illustrated in Fig. 1. Specifically, different
portions of the chip are considered in different random realizations of the parametrized
circuit. We consider all the possible connections of the quantum chip except the one be-
tween the physical qubit 4 and the physical qubit 1 (open boundary conditions). There-
fore, each realization is uniquely determined by two arrays. The first, indicated with q,
includes the indices labelling the physical qubits selected in the considered circuit real-
ization (see Fig. 1). This information is important for identifying the connections among
qubits. The second array is the set of angles θ (N) = {θ1, θ2, . . . , θN } for configuration A, or
θ (P) = {θ1, θ2, . . . , θP} for configuration B. To accurately model the noise characteristics of
the IBM Guadalupe chip, we need to transpile our ideal quantum circuit into a form that
can be executed on the quantum device, using the available gate set. This process is per-
formed by Qiskit and is visualized in Fig. 1. While the arrays θ and q uniquely identify each
circuit realization and, hence, are suitable to perform purely classical supervised learning,
we augment the circuit description with the set of noisy expectation values that would be
produced by noisy quantum circuits, as discussed hereafter.

2.2 Noisy expectation values
The target value our CNNs shall predict is the average magnetization per qubit:

mz =
1
N

N∑

n=1

zn ≡ 1
N

N∑

n=1

〈ψout|Zn |ψout〉 ; (5)

|ψout〉 is the output state of the quantum circuit after the application of P layers of gates
on the input state |ψin〉 = |0〉⊗N . For each circuit, the target value is exactly determined
via state-vector simulations, which provide numerically exact expectation values of ideal,
error-free, circuits. We also numerically emulate the execution of a noisy quantum com-
puter. For this, we adopt the noise model encoded in the virtual backend FakeGuadalupe
available in the Qiskit library [37]. This model replicates the noise characteristics of the
original IBM Guadalupe quantum chip. In this case, the expectation values are averaged
over a finite number of shots, namely, 104. This number is large enough to suppress the
effect of shot noise for the considered circuit sizes. This choice is motivated by our goal
of addressing the effect of hardware errors only. The noisy quantities corresponding to
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the exact single-qubit expectation values zn, for n = 1, . . . , N , will be collectively denoted
as z(noisy) = {z(noisy)

1 , z(noisy)
2 , . . . , z(noisy)

N }. These noisy expectation values might help the net-
work to predict the corresponding ground-truth results. Hence, we provide them as a
further input to the CNNs, in addition to the classical circuit descriptors θ and q. This
combination of (here, simulated) quantum data and classical circuit-features allows over-
coming previous approaches that either used classical descriptors only, or error-mitigated
same-size circuit outputs, without exploiting scalable classical networks. Clearly, with our
approach we aim to obtain predictions that at least outperform the accuracy of the trivial
estimation:

mz(noisy) =
1
N

N∑

n=1

z(noisy)
n . (6)

In the following, it will be useful to tune the amount of noise in the circuit outputs.
Specifically, we choose to focus on the errors associated with the CNOT gates, which are
dominant compared to other errors, e.g. those associated with the single-qubit rotations or
with readout operations. Our procedure to tune the noise level is described in Appendix A.
In short, we introduce the parameter pnoise, with 1 ≥ pnoise ≥ 0, which determines the noise
strength associated to the CNOT gates. The value pnoise = 1 corresponds to the standard
noise model of the quantum chip, while pnoise = 0 indicates the total cancellation of the
noise related to the CNOT gates. Notice that, while somewhat less effective, other errors
such as the ones on the other gates and readout errors are still allowed.

2.3 Convolutional neural networks
As discussed in the previous sections, we train deep CNNs to predict expectation values
mz of different quantum circuits. For quantum circuits in configuration A, the network in-
put is one dimensional and it features three channels, resulting in the input shape (N , 3).
The first channel includes the qubit indices q,1 the second one includes the angles θ (N),
while the third channel includes the noisy expectation values z(noisy). These three channels
allow the CNNs combining classical circuit descriptors with noisy quantum data. For cir-
cuits in configuration B, we implement a two-dimensional CNN with input shape (N , P, 3).
To fit this shape, the length-P array θ (P) is repeated N times. Both q and z(noisy) are repeated
P times for the same reason. We compare the performance of these CNNs with analogous
networks that process only the classical circuit descriptors, namely θ (N)/(P) (for configura-
tion A/B) and q. In these cases, the networks have two input channels. To distinguish the
above models, we respectively indicate the network with hybrid classical-quantum inputs
with CNN(θ (N)/(P), q, z(noisy)), and the one with only classical descriptors with CNN(θ (N)/(P),
q).

Our final goal is to predict expectation values of quantum circuits larger than those
included in the training set. To adapt the network to the different circuit sizes, a scal-
able architecture is crucial. Conventional CNNs featuring convolutional filters followed
by dense layers are not entirely scalable. Indeed, while convolutional layers can handle
variable-sized inputs, dense layers necessitate a fixed input size. To overcome this con-
straint, we incorporate a global pooling operation after the last convolutional layer, emu-

1The actual descriptors are normalized as q′ = q/10, so that values in different channels are of the same order of magnitude.
With more qubits, a higher normalization factor might be appropriate.
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lating the strategy employed in Refs. [24, 29]. This enhancement transforms the architec-
ture into a fully scalable framework. Moreover, consistently training the neural network on
a fixed set of physical qubits poses a challenge. Indeed, when tested on larger circuits, the
network would encounter configurations involving connections among qubits that were
not part of its training data, making scalability impractical. To address this limitation, the
CNN is trained on circuits implemented on randomly-selected consecutive portions of
the Guadalupe chip, as illustrated in Fig. 1. In other words, the CNN is trained with vary-
ing combinations of q.

The training of the CNN is performed by minimizing the mean squared error loss-
function:

L =
1

Ktrain

Ktrain∑

k=1

(
yk – ỹk

)2 , (7)

where Ktrain is the number of instances included in the training set, yk = mz,k is the target
value, and ỹk is the corresponding predicted value. The network parameters are optimized
via a widely used form of stochastic gradient descent, namely, the ADAM algorithm [38].

To assess the prediction accuracy, we evaluate the coefficient of determination

R2 = 1 –
∑Ktest

k=1
(
yk – ỹk

)2

∑Ktest
k=1

(
yk – ȳ

)2 , (8)

where ȳ is the average of the target values and Ktest is the number of instances in the test
set. The metric R2 quantifies how accurately the variations of the target values are pre-
dicted by the regression model. Notice that a constant model with the correct average
corresponds to the score R2 = 0, and that in fact R2 can be negative. Another useful metric
is the difference 1 – R2. It coincides with the ratio of the mean squared error over the data
variance, thus representing a normalized error measure. In the following, it will be useful
to estimate the correlation between noisy expectation values and the exact ones. For this,
we determine the Pearson correlation coefficient:

ρ =
∑

i(m
(i)
z – mz)(m(i)

z(noisy) – mz(noisy) )
√∑

i(m
(i)
z – mz)2 ∑

i(m
(i)
z(noisy) – mz(noisy) )2

. (9)

In Eq. (9), mz and mz(noisy) represent the average of mz and mz(noisy) across the selected
sample of quantum circuits.

3 Results and discussion
3.1 Quantum circuits in configuration A
The first test we discuss is on quantum circuits of depth P = 20 in configuration A. In this
scenario, the CNN is trained using quantum circuits with N ∈ {6, . . . , 10} qubits. Next, the
network is tested on quantum circuits featuring up to N = 16 qubits. Figure 3 shows the
prediction accuracy as a function of the number of qubits in the test circuits. Here and
for the remaining results, the error bars represent the estimated standard deviation of the
average over three repetitions of the training process. We observe that the network which
processes only classical circuit descriptors, namely, CNN(θ (N), q), achieves satisfactory
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Figure 3 Prediction error 1 – R2 as a function of the
number of qubits N of the quantum circuits in the test set.
We compare the network processing only classical
descriptors, namely, CNN(θ (N) , q), the one processing also
(simulated) noisy quantum outputs CNN(θ (N) , q, z(noisy) ), as
well as the noisy expectation valuesmz(noisy) and the
corresponding results after zero-noise extrapolation (ZNE).
For the latter two, the coefficient of determination R2 w.r.t.
the exact expectation valuesmz is computed via eq. (8).
The CNNs are trained on Ktrain 	 6× 105 quantum circuits
with N ≤ 10 qubits (see vertical dotted line). The depth of
the quantum circuits is P = 20

Figure 4 Prediction error 1 – R2 as a function of the
number of instances in the training set Ktrain . The CNNs are
trained on quantum circuits in configuration A, N ≤ 10
qubits and P = 20 layers of gates. The test is performed on
quantum circuits with N = 16 qubits. The different datasets
are defined as in Fig. 3

accuracies. Analogous findings have been previously reported in Ref. [26] for a similar
circuit structure. However, the hybrid network CNN(θ (N)/(P), q, z(noisy)), which processes
also the noisy quantum expectation values z(noisy), consistently reaches superior perfor-
mances. Importantly, we observe that both CNNs outperform the output of the simulated
quantum computer, even when the noise is mitigated through ZNE. In Fig. 4, we show the
performance of the CNNs, tested on the qubit number N = 16, as a function of the num-
ber of instances in the training set Ktrain. Notably, the accuracy of the CNNs are better
than the ones obtained with the simulated quantum chip even for training sets as small as
Ktrain 	 500.

It is worth emphasizing that, in the approach envisioned here, there is no sampling over-
head during the prediction phase. In other words, once the network has been trained, for
each testing circuit we use the same number of measurements (and even the same noisy
results) that are required for the trivial direct estimation of the average magnetization.
Moreover, apart from the negligible classical computing cost of computing the output of
the CNN, no classical simulation of test circuits is required. Furthermore, during the train-
ing phase, only small-scale circuits must be classically simulated, meaning that large-scale
simulations at the size of the test circuits are never required.

3.2 Quantum circuits in configuration B
It was recently shown that classical neural networks trained via supervised learning fail
to emulate quantum circuits featuring rapid random inter-layer angle fluctuations [26].
This failure is replicated here for quantum circuits in configuration B, as shown in Fig. 5.
Indeed, the network CNN(θ , q), which processes only classical inputs, fails to reach rea-
sonable accuracies R2 	 1, even with as many as Ktrain 	 106 training circuits (training
sizes N = 6, . . . , 10, testing size N = 16). In this test, the advantage of including noisy ex-
pectation values z(noisy) is extreme. Indeed, we find that the network with hybrid inputs,
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Figure 5 Prediction error 1 – R2 as a function of the
number of instances in the training set Ktrain . The CNNs are
trained on quantum circuits in configuration B, featuring
N ≤ 10 qubits and P = 20 layers of gates. The test is
performed on quantum circuits with N = 16 qubits. The
different datasets are defined as in Fig. 3

Figure 6 Prediction error 1 – R2 as a function of the level of
noise pnoise associated with the CNOT gates. The CNNs are
trained on Ktrain 	 6× 105 quantum circuits in
configuration B, featuring N ≤ 10 qubits and P = 20 layers of
gates. The test is performed on quantum circuits with
N = 16 qubits. The different datasets are defined as in Fig. 3

namely, CNN(θ (P), z(noisy), q), produces results with acceptable accuracies. In fact, it out-
performs the accuracy of ZNE already with Ktrain � 103 training circuits. Still, the accuracy
is inferior to the one obtained for configuration A. This might be attributed to a lower cor-
relation between the noisy expectation values mz(noisy) and the ground-truth values mz . In
fact, the corresponding Pearson correlation coefficient for quantum circuits in configura-
tion A with, e.g., N = 16 and P = 20, is ρ = 0.945, while for quantum circuits of the same
size in configuration B it is only ρ = 0.664. Hence, it is natural to ask if and how much
the predictions of the CNN which processes also z(noisy), beyond the classical descriptors,
improve when the quantum hardware is less affected by noise. We analyse this effect by
reducing the amount of errors associated to the CNOT gates, as discussed in Sect. 2 (see
Appendix A for further details). The prediction accuracy is shown in Fig. 6, as a function
of the noise level pnoise. We reiterate that the errors beyond those associated to the CNOT
gates are not tuned compared to the default FakeGuadalupe model. Interestingly, we find
that even small improvements in the noisy quantum data lead to a substantial boost in
the accuracy of CNN(θ , q, z(noisy)). Chiefly, this model systematically outperforms the net-
work with only classical inputs CNN(θ , q), as well as the ones corresponding to the noisy
expectation values z(noisy), even when these are corrected via ZNE. It is worth mentioning
that at pnoise = 0 ZNE does not affect the result. This is because certain types of noise, like
readout errors, cannot be addressed using this error mitigation technique. To further visu-
alize the comparison between the CNN predictions and the noisy outputs of the simulated
quantum chip, in Fig. 7 we show scatter plots of the average magnetizations per qubit for
a representative testing circuit size. For configuration A, one notices an appreciable cor-
relation between noisy expectation values and ground-truth results. The correlation is
less pronounced for configuration B. Furthermore, in the latter case the noisy expectation
values are rather concentrated, and this contributes to the difficulty of the discriminative
learning task. The behaviour of the hybrid network CNN(θ (N)/(P), q, z(noisy)) can be fur-
ther characterized by making comparison against a linear model. Specifically, we define a
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Figure 7 Scatter plot of predictions versus ground-truth expectation valuesmz for quantum circuits with
N = 16 qubits. The quantities shown on the vertical axis are indicated in the legend. The (purple) solid line
represents the bisector ỹ =mz . The (blue) circles represent the predictions of CNN(θ (N)/(P) , q, z(noisy) ), trained
on Ktrain 	 6× 105 quantum circuits. The (green) squares represent noisy expectation valuesmz(noisy) . The
(red) triangles are the noisy expectation values mitigated via ZNE. (a) The quantum circuits are in
configuration A. They feature P = 20 layers of gates and the CNN is trained on circuits with N ≤ 10 qubits. (b)
The quantum circuits are in configuration B with P = 20. The CNN is trained on circuits with N ≤ 10. (c) Same
as in (b) but with pnoise = 0.25

Figure 8 Scatter plot of predictions versus noisy expectation valuesmz(noisy) for the same tests considered in
Fig. 7. The quantities shown on the vertical axis are indicated in the legend. The (black) x’s indicate the
predictions of a linear quantum error mitigation scheme. Empty (green) squares denote the exact expectation
values. The (purple) solid line represents the bisector ỹ =mz(noisy) . The other symbols are defined as in Fig. 7.
High prediction accuracy is obtained when the exact expectation values are well reproduced

simple error mitigation strategy based on the linear fit mz = c1mz(noisy) + c2, where c1 and
c2 are fitting parameters. Its performance is analyzed in Fig. 8, where the same test cases
of Fig. 7 are considered, but the results are shown as a function of mz(noisy) . Notably, in
the tests of panels (a) and (c) the linear model outperforms ZNE, indicating that train-
ing even simple models against exact expectation values leads to effective error mitigation
schemes. However, the hybrid CNN always outperforms also the linear model, reaching
the scores R2 	 0.98, R2 	 0.91, and R2 	 0.98 for the tests in panels (a), (b), and (c), re-
spectively, while the corresponding scores of the linear model are: R2 	 0.88, R2 	 0.54,
and R2 	 0.94. Indeed, Fig. 8 allows one to appreciate that the variations around the linear
scaling are reproduced by the hybrid CNN with good accuracy. To facilitate replication of
our findings and further investigations on the synergy between noisy quantum comput-
ers and classical deep learning, the descriptors and target values of the exemplary tests
of Figs. 7 and 8 are made publicly available at the repository of Ref. [39]. The codes used
to simulate the quantum circuits and to implement the neural networks are accessible
through the same repository.

The last test we discuss is the extrapolation on the circuit depth. Specifically, we train
the CNNs on relatively shallow circuits featuring P ≤ 12 layers, and test them on circuits



Cantori et al. EPJ Quantum Technology           (2024) 11:45 Page 10 of 13

Figure 9 Prediction error 1 – R2 as a function of the number
of layers of gates P of the quantum circuits in the test set.
The CNNs are trained on Ktrain 	 6× 105 quantum circuits
in configuration B with P ≤ 12 layers of gates (see vertical
dotted line). The number of qubits of the quantum circuits
is N = 10. The different datasets are defined as in Fig. 3

with equal and larger depths. In this test, N = 10 qubits in configuration B are consid-
ered. The results are shown in Fig. 9. One notices that the hybrid CNN is able to predict
the output of deeper circuits, but the accuracy gradually diminishes as a function of P.
This effect can be attributed to the increased effect of hardware errors for deeper circuits,
which causes the noisy expectation values to become less informative. Anyway, it is worth
pointing out that, while useful, the scalability with the circuit depth is not strictly neces-
sary. In principle, the CNNs can be trained on computationally feasible circuits featuring
fewer qubits, exploiting the (more stable) extrapolation on the qubit number to address
computationally challenging circuits.

The above findings underscore the promising synergy between classical deep learning
and quantum circuit outputs. Noisy expectation values offer valuable insights to the neu-
ral networks, enabling them to predict expectation values significantly more accurately,
even in setups where supervised learning with only classical descriptors drastically fails.
Meanwhile, employing CNNs to mitigate noisy expectation value errors yields superior
accuracies compared to those achieved with simulated noisy quantum computers, even
when using a prominent error mitigation technique such as ZNE.

It is useful to discuss our approach vis-à-vis the machine-learning technique for quan-
tum error mitigation discussed in Ref. [12]. The significant distinction lies in the training
method and in the scope of the network. In Ref. [12], the size of the training circuits is
equal to the size of the test circuits and zero-noise extrapolated expectation values ob-
tained from a quantum computer are used as training targets. In fact, the main goal of
Ref. [12] is not outperforming the accuracy of ZNE, but rather reproducing equivalent re-
sults with a reduced sampling overhead. In contrast, our scalable architecture eliminates
the need to train the neural network directly on large quantum circuits and, consequently,
it can be trained with exact target values associated to small-scale circuits. Due to the
different training method, our model can be used as a way of reducing the sampling over-
head but also as a way of improving the estimation accuracy compared to standard error
mitigation. Indeed, in our numerical simulations, we observe a better accuracy compared
with ZNE, despite paying the same sampling cost of direct estimation.

4 Conclusions
In this work, we spotlighted the effectiveness of combining scalable classical neural net-
works with noisy quantum computers. We applied our approach to predict the output
expectation values of quantum circuits describing the Trotter-decomposed dynamics
of quantum Ising models, similarly to recent investigations on quantum utility experi-
ments [4]. We considered the connectivity allowed by the Guadalupe IBM chip, account-
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ing for hardware errors via the FakeGuadalupe noise model implemented in the Qiskit
library.

In detail, the inputs of our CNNs include single-qubit noisy output expectation values,
beyond the classical circuit descriptors – in this study, rotation angles and qubit indices
– which were already considered in previous supervised learning studies. Training and
testing circuits are implemented across various regions of the physical chip. This strate-
gic arrangement enables the CNN to visualize and learn from all potential connections
between physical qubits during the training process. Two circuit configurations were ad-
dressed, featuring either intra-layer or inter-layer random variations of the single-qubit
rotation angles. The former angle configuration was already shown to be amenable to su-
pervised learning [26]. Yet, here we found that the inclusion of noisy expectation values
leads to systematically superior performances. In the second configuration the boost is
extreme. Indeed, while supervised learning with only classical descriptors drastically fails,
the combination with noisy quantum circuit outputs leads to accurate predictions. A mod-
ified error model was implemented to allow us to tune the noise, and we quantified how
the synergetic predictions improve when the quantum expectation values become more
precise.

Notably, the CNNs trained (also) on noisy expectation values produce results more ef-
ficiently and with greater accuracy than a prominent error mitigation method, namely,
ZNE. Moreover, our approach is a viable alternative to the one presented in Ref. [12], which
relies on noisy expectation values mitigated via ZNE as training target values. Transfer-
learning from small-scale to large scale circuits is a key feature of our network, allowing the
prediction of expectation values for larger circuits than those in the training set, without
the requirement for target values at these larger sizes. Extrapolation on the circuit depth
is also possible, but the prediction accuracy gradually diminishes, arguably due to the in-
creased role of hardware errors in deeper circuits, which makes the noisy expectation
values less informative. In general, our strategy enables the integration of the strengths of
classical deep learning and of noisy quantum computers, potentially outperforming exist-
ing quantum error mitigation methods.

Appendix A: Manipulation of the noise strength associated with the CNOT
gates

In the noise model of FakeGuadalupe, the CNOT noise is represented by a set of opera-
tors applied after each CNOT gate with varying probabilities. An example is depicted in
Fig. 10. The specific operators and their associated probabilities depend on the considered
pair of qubits. To tune the noise strength and the corresponding error, we introduce a cir-
cuit containing one identity gate per qubit into each circuit set, assigning it a probability

Figure 10 Noise associated with a CNOT gate in the FakeGuadalupe noise
model. The operators shown in the figure act on the qubit pair formed by the
physical qubit 12 and the physical qubit 15 of the quantum chip (see Fig. 1).
The probability that these operators act after a CNOT gate applied between
these two qubit is 2.7× 10–4. The first operator applied to both qubits is the
tensor product between the Pauli operators X and Z , i.e. X ⊗ Z . Then, different
Kraus maps are applied to both qubits
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of 1 – pnoise to take effect. Therefore, the remaining circuits, representing CNOT errors,
collectively carry a probability of pnoise to occur after the CNOT application.

Appendix B: Zero-noise extrapolation
To apply ZNE to the noisy expectation values, we utilize the Mitiq python library [40].
Specifically, we employ Richardson extrapolation with noise scale factors λ = 1, 2, 3. To
manipulate the noise level, the unitary folding map G → GG†G is applied to all the gates
of the investigated quantum circuits for λ = 3, and to a half of the gates (randomly selected)
for λ = 2.
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