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Abstract
This paper introduces a novel and efficient technique for quantum state estimation,
coined as low-rank matrix-completion quantum state tomography for characterizing
pure quantum states, as it requires only non-entangling bases and 2n + 1 local Pauli
operators. This significantly reduces the complexity of the process and increases the
accuracy of the state estimation, as it eliminates the need for the entangling bases,
which are experimentally difficult to implement on quantum devices. The required
minimal post-processing, improved accuracy and efficacy of this
matrix-completion-based method make it an ideal benchmarking tool for
investigating the properties of quantum systems, enabling researchers to verify the
accuracy of quantum devices, characterize their performance, and explore the
underlying physics of quantum phenomena. Our numerical results demonstrate that
this method outperforms contemporary techniques in its ability to accurately
reconstruct multi-qubit quantum states on real quantum devices, making it an
invaluable contribution to the field of quantum state characterization and an
essential step toward the reliable deployment of intermediate- and large-scale
quantum devices.
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1 Introduction
Noisy intermediate-scale quantum (NISQ) devices consisting of hundreds of qubits will
be available soon [1]. Several technologies for these NISQ devices are being pursued such
as superconducting quantum circuits [2], trapped ions [3], quantum dot [4], cold atoms
[5], and photonic platforms [6]. These NISQ computers are expected to perform tasks
that surpass the capability of the most powerful classical computers available today [7–9].
However, noisy quantum gates and decoherence limits the desired level of improvement
over the existing current classical computing devices for complex algorithms. Bearing this
in mind, the development of NISQ devices has posed a paradox: how to validate that the
device produces the desired result? For characterization, certification, and benchmarking
[10] of these noisy devices, quantum state tomography comes into play, which is the gold
standard for the reconstruction of a quantum state [11]. Reconstruction of the quantum
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state from measurements on the replica of an unknown given quantum state is termed as
the quantum state tomography. Quantum state tomography generally consists of a two-
step process: the first is collecting the data from optimized measurement design on quan-
tum systems; the second is the classical post-processing of the gathered data. Quantum
state tomography problem becomes intractable due to an exponential growth of the sys-
tem size with increase in the number of qubits under consideration [12, 13].

A conventional state standard tomography employs d2 or more measurement settings,
where d = 2n for n qubits [14–17]. A simple counting argument suggests that only O(d)

measurement settings are sufficient to perform the tomography of pure quantum states
[18, 19]. Compressed sensing and low-rank matrix recovery from sparse matrix algorithms
have been developed to achieve this bound [20–22]. In [23, 24], the authors proposed d + 1
mutually unbiased bases measurements for full quantum state reconstruction. The states
with special properties, for instance, matrix product states [25] or permutationally invari-
ant quantum states [26] also lead to a significant reduction in the number of quantum
measurement settings. The pure quantum state can also be retrieved with only five and
three measurement settings given in [27–29]. Recently, noise resilient and robust self-
guided quantum state tomography is proposed [30–32].

The use of entangled bases in most of the aforementioned tomography algorithms is
common, however, their implementation on NISQ devices is difficult due to errors intro-
duced by the controlled-NOT (CNOT) gate and the high circuit depth leading to qubit
decoherence. The CNOT gate is an essential transformation required for implementing
these sets of entangled measurements. Hence, these entangled bases significantly reduce
the performance of state estimation task. The introduction of local basis measurement for
state reconstruction can be a massive catalyst for the benchmarking of quantum devices.
For this purpose, local basis measurements are introduced in [33]. They have demon-
strated the task of tomography of pure quantum state by using kn + 1 measurement bases,
where k ≥ 2. Their algorithm is based on solving several systems of linear equations. The
required number of bases increases (k > 2) if the determinant of the linear system of equa-
tions vanishes. The performance is quite low as compared to the numerical results of en-
tangled measurement algorithms. Given the rank of a quantum state, the projected least
squares can be used to achieve higher accuracy with the minimum number of copies. How-
ever, this comes at the cost of the local Pauli basis measurement settings increasing expo-
nentially. The success of tomography algorithms, therefore, relies on the efficient use of
resources to balance accuracy, efficiency, and fidelity.

The paper proposes a novel approach to quantum state tomography called low-rank
matrix-completion (LRMC) quantum state tomography. This approach allows for the es-
timation of pure quantum states with only a minimum of 2n + 1 local Pauli measurements
for an n-qubit state. The algorithm makes use of experimental measurements to provide
the necessary density matrix elements and then uses singular value shrinkage to fill in
the missing entries. The method outperforms the existing techniques, as illustrated by
simulations and experiments, and is capable of accurately detecting pure states with com-
putational basis and local Pauli measurements.

2 Method
The method used in this paper for pure quantum state tomography involves a matrix fill-
ing technique involving 2n + 1 local measurements for an n-qubit system. This technique
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Figure 1 The figure above shows three different examples of 4× 4 matrix tree diagrams representing the
criteria to construct a rank-1 d × dmatrix from 2d – 1 entries. In (a) and (b), no complete cycles are formed
between the row-column nodes, meaning that a rank-1 d× dmatrix can be constructed from the given
entries. In (c), a complete loop is formed, meaning that the given entries cannot be used to construct a rank-1
matrix

utilizes the algorithm for low-rank matrix completion [34]. The algorithm begins by ex-
perimentally acquiring enough entries of the pure state’s density matrix. This data is then
used by the matrix completion algorithm to obtain the complete density matrix of the
desired state using a rank-1 approximation.

Filling in the missing entries of a rank-1 matrix is directly connected to the problem of
finding cycles in a graph [34]. The rank-1 matrix of dimension d × d can be completely
reconstructed by knowing only 2d – 1 entries of the matrix. These 2d – 1 elements form
a spanning tree in the row-column graph, as demonstrated in Fig. 1. The successful re-
construction of the missing entries of the given matrix depends on the tree reaching all
nodes without forming a loop. If a loop exists in the row-column graph, then it is not pos-
sible to reconstruct the rank-1 matrix. However, if the 2d – 1 entries of the matrix do not
form a cycle, then we can optimally impute all the missing entries using matrix completion
techniques.

In this paper, we use the rank shrinkage procedure known as the Eckart-Young theorem
[35] to compute the rank-1 density matrix from less measurement setting. This theorem
states that the best low-rank approximation of a given matrix can be achieved by taking
its singular value decomposition (SVD) and preserving only the largest singular values
and their respective singular vectors. For a matrix A, the rank-k approximation of Ak is
obtained by retaining only the k largest singular values and their corresponding singular
vectors:

Ak =
k∑

i=1

λiuiv†
i , (1)

where λi are the singular values, ui and vi are the corresponding left and right singular
vectors. For any matrix A, its best rank-k approximation is given as

‖A – Ak‖F ≤ ‖A – B‖F , (2)

where ‖ · ‖F is the Frobenius norm and B any rank-k matrix. This remarks that SVD also
gives the best low rank approximation in spectral norm [36]. This technique find applica-
tions in data compression, noise reduction, and dimensionality reduction. In the context
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of quantum state tomography, the theorem facilitates the reconstruction of best low-rank
quantum states from incomplete measurements settings.

In our algorithm, we perform local Pauli measurements on each subsystem of multipar-
tite pure quantum state. We first employ the computational basis measurement to obtain
the diagonal elements of the unknown density matrix. Next, we measure n-qubit systems
in Pauli measurement setting

�i
j = σ⊗i–1

z ⊗ σ i
j ⊗ σ⊗n–i

z . (3)

Here, i denotes the qubits’s index and j denotes the Pauli operator index, which can be
either 1 or 2. The index i ranges i = 1, 2, . . . , n, where σ i

j ∈ {σ1,σ2} represents Pauli X (σ1)
and Pauli Y (σ2) matrices.

We begin by assuming that we have access to N copies of a n-qubit multipartite un-
known pure state ρ = |ψ〉 〈ψ |. In the simulation presented in the following section, for
the sake of simplicity, we allocate an equal number of copies for all measurement settings.
Specifically, we measure each of the 2n + 1 bases using N/(2n + 1) shots. In the first step of
our algorithm, we obtain the diagonal elements of ρ by measuring N/(2n + 1) of its copies
in the computational basis of the d-dimensional Hilbert space. From the measurement
results, diagonal elements of ρ can be directly obtained as

ρ̂i,i =
(2n + 1)Ni

N
, for i ∈Qd, (4)

where Qd = {0, 1, . . . , d – 1}, Ni is the number of times measurement result corresponding
to |i〉 was obtained in the first step and ρ̂ denotes an estimate of ρ .

The off-diagonal element ρj,k of ρ can be obtained by measuring it in the eigenbasis of
Pauli operators pair �i

1 and �i
2. This can be seen by first noticing that the eigenvectors of

�i
1 and �i

2 are

|V 2iν+ζ ,2iν+ζ+2i–1

1,±1 〉 =
1√
2
(|2iν + ζ 〉 ± |2iν + ζ + 2i–1〉) (5)

|V 2iν+ζ ,2iν+ζ+2i–1

2,±1 〉 =
1√
2
(|2iν + ζ 〉 ± ι̇ |2iν + ζ + 2i–1〉), (6)

where ν ∈Q d
2i

, ζ ∈Q2i–1 and the basis sets are constructed from all possible combinations
of values in ν , ζ and i qubits.

These orthonormal bases build a complete projector system with elements



j,k
x,–1 = |V j,k

x,–1〉 〈V j,k
x,–1| (7)



j,k
x,1 = |V j,k

x,1〉 〈V j,k
x,1| . (8)

where x ∈ {1, 2}, j = 2iν + ζ and k = 2iν + ζ + 2i–1. Let pj,k
x,m be the probability of obtaining

the measurement outcome corresponding to the projector 

j,k
x,m. Then, we have

pj,k
1,–1 =

1
2

(ρ̂j,j – ρ̂j,k – ρ̂k,j + ρ̂k,k) (9)

pj,k
1,1 =

1
2

(ρ̂j,j + ρ̂j,k + ρ̂k,j + ρ̂k,k) (10)



Tariq et al. EPJ Quantum Technology           (2024) 11:50 Page 5 of 12

pj,k
2,–1 =

1
2

(ρ̂j,j + ι̇ρ̂j,k – ι̇ρ̂k,j + ρ̂k,k) (11)

pj,k
2,1 =

1
2

(ρ̂j,j – ι̇ρ̂j,k + ι̇ρ̂k,j + ρ̂k,k), (12)

where ρ̂j,k = 〈j|ρ|k〉 is the element of ρ at (j, k)th index. From the hermiticity of ρ , we
have ρk,j = ρ∗

j,k . Using this fact, we get ρj,k + ρk,j = 2 Re{ρj,k} and ρj,k – ρk,j = 2 Im{ρj,k}. By
subtracting equation (9) from (10) and equation (11) from (12), and then combining the
results while utilizing the facts about the real and imaginary components of ρ̂j,k , we can
derive the value of ρ̂j,k as

ρ̂j,k =
1
2
(
–pjk

1,–1 + pjk
1,1 – ι̇pjk

2,–1 + ι̇pjk
2,1

)
. (13)

From ρ̂j,k , we can easily get ρ̂k,j = ρ̂∗
j,k . This setup provides us with a sufficient number

of elements to fill in the missing entries of the density matrix. Let ρ̂ be d × d matrix con-
taining all entries obtained from measurement operators along with missing entries at
(i, j) ∈ �, i.e.,

� =
{
(i, j) : ρ̂i,j is missing entry

}
. (14)

Several methods exist for imputing missing entries in a density matrix, such as substitut-
ing them with zeros or calculating the average of the respective column or row. However,
the choice of initial imputation is less critical since our algorithm will update only these
missing values while preserving the values obtained from measurement operators [37, 38].
Let ρ̂:,j denotes the j-th column of the density matrix ρ̂ . We calculate the missing entries
by taking the average of the each column in the density matrix as

ρ̂(�) = mean(ρ̂:,j), ∀(i, j) ∈ �. (15)

We can also detect if an unknown quantum state is pure using our algorithm without the
need for additional measurements. A density matrix ρ is considered pure if the equation

|ρi,j|2 = |ρi,i||ρj,j| (16)

holds for every i, j = 1, 2, . . . , d. We can verify the purity of the unknown state by using
Equation (16) on the measured structure from Fig. 2 and applying it to elements of the
constructed density matrix.

The complete algorithm for constructing the density matrix of a pure quantum state ρ

is as follows:
1. Measure ρ in the computational basis to obtain the diagonal entries of the density

matrix through Equation (4).
2. Obtain entries of the density matrix ρ̂j,k . These entries are obtained by measuring in

all Pauli operators measurement setting of Equation (3) and using Equation (13) as
described above.

3. Fill all the missing entries ρ̂i,j using (15).
4. Perform the singular value decomposition of the density matrix

ρ̂ = L�R†, (17)
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Figure 2 Experimental setup of the low-rank matrix-completion quantum state tomography. The green color
represents the entries that are obtained experimentally. The light green color shows only the real part of the
entries of the matrix. We first obtain the diagonal entries of the rank-one matrix using computational-basis
measurement. Using U = H in the above circuit enables us to obtain the real component of the entries while
using U = S†H provides the Imaginary components of entries

where � is a diagonal matrix containing singular values entries on its diagonal as
λ1,λ2, . . . ,λd and L (and R) is the left (and right) orthogonal matrix of dimension d.

5. Shrink the singular values of ρ̂ by setting singular-values as

λ̂i =

⎧
⎨

⎩
λi – λr+1, for i ≤ r

0, for i > r
(18)

where r is the rank of the density matrix and we obtain the new diagonal matrix �̂

with entries λ̂1, λ̂2, . . . , λ̂d . Since a pure state in quantum mechanics has a density
matrix with only one non-zero eigenvalue, its rank is equal to 1, meaning r = 1.

6. Replace diagonal matrix � with �̂ to obtain

σ̂ = L�̂R†. (19)

7. Update only the missing entries while keeping the entries obtained from
measurement unchanged

ρ̂(�) = σ̂ (�), ∀(i, j) ∈ �. (20)

8. Repeat steps 4-7 until ‖ρ̂iter – ρ̂iter–1‖F ≤ ε, where ε is some tolerence, is reached
either after p times or after K iterations.
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A schematic diagram of the experimentally obtained density matrix is shown in Fig. 2
where

H =
1√
2

[
1 1
1 –1

]
, and S† =

[
1 0
0 e– ι̇π

2

]
. (21)

and the complete procedure is outlined in Algorithm 1. The convergence of this iterative
approach is discussed in [37–39], which addresses the norm minimization problem. Here,
the iterative process is governed by two main stopping criteria:

Algorithm 1: Pure State Quantum Tomography by Matrix Completion
Input: N copies of the n-qubit pure state |ψ〉.
Input: ε

Input: Patience
Output: Estimate |ψ̂〉 of |ψ〉

1 ρ̂i,i ← |〈ψ |i〉 |2, � Computational basis
measurement

2 for i ∈ 1 → n do
3 for x ∈ 1 → 2 do
4 �i

x ← I⊗i–1
2 ⊗ σ i

x ⊗ I⊗n–i
2 , � Pauli operators

5 |V 2iν+ζ ,2iν+ζ+2i–1

x,±1 〉 ← eig(�i
x), � where ν ∈Q d

2i
and ζ ∈Q2i–1

6 

j,k
x,±1 ← |V j,k

x,±1〉 〈V j,k
x,±1|, � where j = 2iν + ζ

and k = 2iν + ζ + 2i–1

7 p̂j,k
x,±1 ← 〈ψ |
j,k

x,±1|ψ〉, � Local Pauli measurements

8 ρ̂j,k ← 1
2 (–p̂j,k

1,–1 + p̂j,k
1,1 – ι̇p̂j,k

2,–1 + ι̇p̂j,k
2,1) , � Density matrix entries

9 ρ̂k,j ← ρ̂
†
j,k , � Hermitian symmetric

10 ρ̂(�) = mean(ρ̂:,j), � for all missing entries in �

11 p ← 0
12 for iter ∈ 1 → K do
13 L,�, R† ← svd(ρ̂iter) � Singular value decomposition
14 if i ≤ 1 then
15 �̂1,1 ← λ1 – λ2 � Shrink singular values
16 else
17 �̂i,i ← 0

18 σ̂ ← L�̂R† � Singular value decomposition
19 ρ̂iter(�) = σ̂ (�) � Update the missing values
20 if ‖ρ̂iter – ρ̂iter–1‖F ≤ ε then
21 p ← p + 1

22 if p = Patience then
23 break

24 |ψ̂〉 ← eig(ρ̂iter) , � Eigenvector with
highest eigenvalue

25 return |ψ̂〉
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• Tolerance: A predefined threshold for the Frobenius norm of the difference between
successive density matrix estimates, ensuring that iterations continue until the
estimate stabilizes within this threshold.

• Patience: A limit on the number of iterations to perform without significant
improvement, preventing endless iteration in cases of slow convergence.

Our proposed algorithm demonstrates effective performance across a broad spectrum
of quantum states. However, the algorithm struggles to reconstruct excessively sparse
quantum states. It can accurately reconstruct Greenberger-Horne-Zeilinger (GHZ) states
of the form |φ1〉 = |0〉⊗n+|1〉⊗n√

2 , but it encounters difficulties with states like |φ2〉 = |0〉⊗n+ι̇|1〉⊗n√
2 ,

failing to account for the imaginary component. We obtain the same density matrix from
the reconstruction of the |φ1〉 and |φ2〉 states.

3 Results
To gauge the accuracy of state tomography, we use the common figure of merit, infidelity,
which characterizes the distance between these states. Infidelity is defined as

1 – F(ρ,σ ) = 1 – (tr
√√

σρ
√

σ )2, (22)

where F(ρ,σ ) is the fidelity between ρ and σ .
Our proposed algorithm is compared to two existing techniques, the five-basis method,

and the scalable estimation method, in order to evaluate its performance. The five-basis
method employs entangled basis measurements to reconstruct pure quantum states, while
the scalable estimation method relies on local basis measurements. To assess the accuracy
of each method, we generated 102 randomly selected pure quantum states according to
the Haar distribution, with n varying from 2 to 5, and plotted the median infidelity as a
function of the number of shots for each. The comparison of these experimental simulated
results is demonstrated in Fig. 3 and shows that our algorithm outperforms both the five-
basis and scalable estimation methods, as it exhibits lower median infidelity.

Figure 3 Median Infidelities of 102 randomly generated pure state of qubits n = 2, 3, 4, 5 from LRMC
(proposed), Scalable Estimation [33] and Five Basis [27] as a function of a number of total measurements. The
performance of LRMC improves as compared to the Scalable Estimation and Five Basis as the number of
qubits increases
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Figure 4 Fidelities of 3-qubit Haar-random states for different number of experiments. The median values
were computed for 102 states on real IBMQ-Jakarta device. The random states were generated using the
Haar measure. The graph compares the performance of LRMC with the projected least squares (LSTSQ) [15] of
known rank one. It’s evident that our algorithm (LRMC) is performing better in terms of state reconstruction
when the state preparation error gets higher on a real quantum computer

Our technique has been experimentally verified using a 7-qubitIBMQ-Jakarta super-
conducting quantum computer [40]. This device, with average measurement and CNOT
errors of 2.220e–2 and 7.511e–3 respectively, is used to implement our algorithm. The cir-
cuit design, shown in Fig. 2, is used to generate 102 Haar-random pure three-qubit states
on the real IBMQ-Jakarta device. The median fidelity results are then plotted as a ker-
nel density estimate (KDE) in Fig. 4, along with the least square with known rank one
projection. These numerical results demonstrate the precision of our algorithm in bench-
marking cloud-based IBM quantum devices, as compared to the projected least square.

We observe that the state preparation error associated with generating random quan-
tum states on a real quantum computer becomes increasingly dominant as the number of
qubits increases. To overcome this challenge, we utilized GHZ states, which are a class of
entangled quantum states that are easy to prepare on real quantum hardware. An n-qubit
GHZ state is shown as

|GHZ〉 =
|0〉⊗n + |1〉⊗n

√
2

. (23)

In Fig. 5, we employ a different device, IBMQ-Manila, for our experiment. The KDE of
the median fidelity for 11 GHZ states with n = 3, 4, 5 qubits is plotted, using 213 shots. This
device has an average readout and CNOT error of 2.110e–2 and 6.33e–3, respectively. Our
algorithm is able to reconstruct GHZ states with a median fidelity of over 86% for up to
five qubits on real IBM devices.
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Figure 5 In this experiment, we reconstruct GHZ quantum states with qubit numbers n = 3, 4, 5 on the real
IBMQ-Manila device. The fidelity was calculated and its kernel density estimate (KDE) was plotted. The
results of this experiment provide insight into the reconstruction performance of GHZ states on the real
quantum hardware and the ability to accurately prepare these states on the IBMQ-Manila device

4 Conclusion
The proposed algorithm in this paper offers a significant advancement in the estimation of
pure states on NISQ devices. By relying on local measurements and local gates, it provides
a computationally efficient solution that is less susceptible to errors and decoherence. The
implementation of local Pauli bases with simple gates such as H and S contributes to the
improved accuracy of the algorithm. Additionally, the reduced circuit depth of the algo-
rithm can have a crucial impact in mitigating the negative effects of gate errors and deco-
herence that are prevalent in real quantum devices. Overall, this algorithm for estimating
pure states has the potential to play a crucial role in improving the accuracy of estima-
tion and benchmarking tasks on NISQ devices. Moreover, its possible extension to mixed
states through carefully designed measurements and higher rank approximations could
further enhance its applicability in quantum computing. Thus, this algorithm holds great
promise for advancing the capabilities of NISQ devices and bringing us closer to practical
quantum computing applications.
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27. Goyeneche D, Cańas G, Etcheverry S, Gómez ES, Xavier GB, Lima G, Delgado A. Five measurement bases determine

pure quantum states on any dimension. Phys Rev Lett. 2015;115:090401.
28. Carmeli C, Heinosaari T, Kech M, Schultz J, Toigo A. Stable pure state quantum tomography from five orthonormal

bases. Europhys Lett. 2016;115(3):30001.
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