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Abstract
We extend the qubit-efficient encoding presented in (Tan et al. in Quantum 5:454,
2021) and apply it to instances of the financial transaction settlement problem
constructed from data provided by a regulated financial exchange. Our methods are
directly applicable to any QUBO problem with linear inequality constraints. Our
extension of previously proposed methods consists of a simplification in varying the
number of qubits used to encode correlations as well as a new class of variational
circuits which incorporate symmetries thereby reducing sampling overhead,
improving numerical stability and recovering the expression of the cost objective as a
Hermitian observable. We also propose optimality-preserving methods to reduce
variance in real-world data and substitute continuous slack variables. We benchmark
our methods against standard QAOA for problems consisting of 16 transactions and
obtain competitive results. Our newly proposed variational ansatz performs best
overall. We demonstrate tackling problems with 128 transactions on real quantum
hardware, exceeding previous results bounded by NISQ hardware by almost two
orders of magnitude.

Keywords: Quantum Computing; Quantum Optimization; NISQ; QUBO; Mixed
binary optimization; Quantum Finance; Qubit reduction

1 Introduction
Provable asymptotic advantages of quantum computing over classical algorithms have
been shown in the fault-tolerant regime ([1, 2]) and quantum computational supremacy
([3]) has been claimed experimentally in circuit sampling tasks ([4–6]).1 Methods that
promise to extend these computational advantages to relevant problems with available
noisy intermediate scale quantum (NISQ) devices have been an active field of research
over the past decade. A recent breakthrough in this regard was achieved by IBM Quan-
tum ([8]), claiming evidence for the utility of said NISQ devices by simulating the evolution
under an Ising Hamiltonian beyond the reach of standard2 classical simulation methods.
Most research to this end of useful NISQ algorithms is concerned with problems in Hamil-

1Although some problem instances have later been shown to be classically simulable, e.g. [7].
2Efficient classical simulation of the experiment was claimed shortly thereafter, e.g. using tensor networks: [9–11].
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tonian simulation, machine learning or energy minimization/optimization ([12, 13]). This
work concerns the latter.

Outline of this paper In the introduction, we give an overview of quantum optimization
in NISQ, summarize different approaches to reduce the number of qubits (1.1) and intro-
duce the transaction settlement problem (1.2). We extend the qubit reduction technique
introduced in [14] to find approximate solutions to problem instances larger than previ-
ously attempted. We outline the mapping used between the quantum state and the binary
variables of the problem (2.2) and how the cost can be estimated using this quantum state
(2.3). We introduce a new variational ansatz derived to incorporate symmetries of the en-
coding scheme (2.4), before concluding with simulation (3.1) and quantum hardware (3.2)
results.

1.1 Quantum optimization – quadratic unconstrained binary optimization
The optimization problem we consider in 1.2 will generalize quadratic unconstrained bi-
nary optimization (QUBO) problems, which have the form

arg min
x∈{0,1}I

C(x) = arg min
x∈{0,1}I

xT Qx (1)

where I is the number of binary entries of the vector x and Q is any real (usually sym-
metric) matrix, Q ∈ R

I×I . Finding the vector x minimizing equ. (1) for general Q is NP
hard ([15]). Many combinatorial/graph problems such as MaxCut can be readily mapped
to QUBO problems and a wide range of industrial applications is known. This includes
training of machine learning models ([16]) and optimization tasks such as assignment
problems ([17]), route optimization ([18]) or - the focus of this study - financial transac-
tion settlement ([19]).3 This broad applicability and (by benchmarking existing classical
solvers) “verifiable” advantage make QUBO problems a great test-bed in the search for a
useful quantum advantage.

The solution of equation (1) corresponds to the ground state of an Ising Hamiltonian
HQ on I qubits,

HQ =
1
4

I∑

i,j=1

Qij(1 – σ i
z)(1 – σ j

z), (2)

with σ i
a referring to the Pauli operator a on qubit i. This allows mapping a QUBO problem

on I variables to the problem of finding the ground state of a Hamiltonian on I qubits. We
extend equation (2) in Sect. 2.2 and 2.3 by applying the qubit compression from [14] to
reduce the number of qubits to O(logI) at the cost of losing the formulation (2) as the
ground state of a Hermitian operator. Quantum solvers (QS) to the Ising Hamiltonian or
more general ground-state problems have been studied extensively. A short overview is
given in Table 1 and the following:

3For further applications see Chap. 2 in [20].
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Annealing Introduced as early as 1994 ([21]) and inspired by simulated annealing ([22]),
quantum annealing aims to find the ground state of HQ in (2) by adiabatically transform-
ing Htot(t) = s(t)HQ + (1 – s(t))Hm, with the mixing Hamiltonian Hm =

∑I
j=1 σ x

j , over a time
span t ∈ [0, tend]. Here, s(t) is the annealing schedule, with s(0) = 0 and s(tend) = 1. Reading
out the state of the annealing device at the end of this transformation yields candidates
for the optimal solution x. Annealing devices are not guaranteed to find optimal solutions
efficiently and can only implement a limited set of Hamiltonians, often restricted in their
connectivity (resulting in limitations on the non-zero entries of Q) ([23]). Despite these
limitations, general-purpose QUBO solvers based on hybrid classical computation and
quantum annealing are commercially available with as many as 5000 (1 million) physical
nodes (variables, I in equ. (1)) for D-wave’s AdvantageTM annealer ([24]).4

QAOA Quantum Approximate Optimization Algorithms ([25]) can be regarded as
implementing a parametrized, trotterized version of the quantum annealing sched-
ule on gate-model based quantum computers. The parameterized p-layered circuit
e–iHQβp e–iHmγp ...e–iHQβ1 e–iHmγ1 is applied to |+〉⊗I and measured in the computational ba-
sis. This yields candidate vectors x by identifying each binary variable with one qubit. The
parameters {βj,γj} are classically optimized to minimize equ. (1) (minimize 〈HQ〉). QAOA
provides theoretical guarantees in its convergence to the exact solution for p→∞ given
optimal parameters. Yet, implementing the evolution of HQ and reaching sufficient depth
p on NISQ devices can be infeasible in the case of many non-zero entries of Q.

Hardware-efficient VQA In this work, we make use of general Variational Quantum Al-
gorithms to minimize a cost estimator (in the context of quantum chemistry often referred
to as VQE, variational quantum eigensolver ([26]), and applied beyond Ising Hamiltoni-
ans). VQAs are general quantum circuit ansätze parameterized by classical parameters,
hence QAOA can be seen as a special case of a VQA. We use the term hardware-efficient
VQA loosely for ansätze whose gates, number of qubits and circuit depth suit current
NISQ devices. Analogously to QAOA, the parameters of the VQA circuit are optimized
classically through evaluation of some classical cost function on the measured bit-vector.
As we will see later, this cost function does not necessarily correspond to a Hermitian ob-
servable. VQAs are widely studied in the NISQ era beyond their application to combina-
torial optimization problems ([27–29]). Challenges, most notably vanishing gradients for
expressive circuits ([30–32]) and remedies ([33–41]) exist aplenty but will not play a cen-
tral role in this paper. While the generality of VQAs allows for tailored hardware-efficient
ansätze which are independent of the problem itself, this comes at the cost of losing the
remaining theoretical guarantees of QAOA and adiabatic ground state computation.

Non-VQA, quantum-assisted solvers Other quantum algorithms for solving ground-
state problems have been proposed in the literature. Examples include quantum-assisted
algorithms, often inspired by methods such as Krylov subspace, imaginary time evolu-
tion or quantum phase estimation. For example, quantum computers are used to cal-
culate overlaps between quantum states employed in a classical outer optimization loop
([42–48]). Although some of these approaches are variational in the circuit ansatz, they

4Note that it is not public how exactly the quantum annealer is used as a subroutine in this hybrid computation.
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do not directly correspond to the classical-quantum feedback loop in the VQA setting
described above and are beyond the focus of this work.

Classical solvers It should be noted at this point, that approaches using classical comput-
ing for tackling QUBO problems exist. Among them5 are general purpose optimization
suites such as Gurobi ([49]), CPLEX ([50]) or SCIP ([51]) as well as dedicated approxima-
tion algorithms such as simulated annealing ([52]), TABU search ([53])) or the relaxation-
based Goemans and Williamson ([54]) algorithm which guarantees an approximation ra-
tio of at least 0.8786 for Max-Cut problems. Due to the NP-hardness of the general prob-
lem, all classical solvers are either approximations or have no polynomial worst-case run-
time guarantees.

NISQ-limitations Quantum computers are not expected to break NP-hardness (cf. [56,
57] and the lack of any polynomial-time quantum algorithm for an NP-hard problem) and
it is often justified to regard quantum approaches to QUBO as heuristics hoped to provide
practical advantages rather than general purpose solvers with rigorous runtime and opti-
mality guarantees. This makes benchmarking on relevant problem instances paramount
in guiding the search for promising quantum algorithms. Yet, most NISQ-era quantum
approaches suffer from a combination of

1. Problem size limited by the number of available qubits
2. Constraints on the problem class (connectivity of Q)

making a direct application of QS to relevant problem instances infeasible on NISQ-
devices ([58]). While 1. is a consequence of the limited number of qubits available on
NISQ devices, 2. can be seen as a consequence of noise in the qubit and operations: Com-
putations become infeasible due to low coherence times and noisy gates paired with often
deep circuits (e.g. arising from the limited lattice-connectivity of devices based on super-
conducting qubits) upon decomposition into hardware-native gates. Constraints on the
problem class can also arise from the fundamental design of the algorithm itself.

How these limitations on problem size and class apply to the different QS is summarized
in Table 1. Various work has been done to address these challenges. Improved problem
embeddings ([59]), decomposition ([60]), compilation and hardware-efficient ansätze are
just some approaches to deal with connectivity issues. A wide variety of qubit-reduction
methods has been suggested in the quantum optimization and quantum chemistry liter-
ature, see Table 2.

Proposing a solution to the limitations in Table 1 and pushing the boundaries of QUBO
problems accessible by QS is a central motivation for this work. We give a detailed de-
scription of our qubit-reduction method in Sect. 2.2.

1.2 Financial transaction settlement
We refer to the transaction settlement problem as a computational task, consisting of par-
ties {1, . . . , K}with balances {balk} submitting trades {1, . . . , I} to a clearing house. The task
faced by the clearing house is to determine the maximal set of transactions that can be ex-
ecuted without any party k falling below its credit limit limk . An overview of the notation

5A more extensive overview can be found in Chap. 11 of [20].
6Which is optimal for any polynomial-time classical algorithm assuming the unique games conjecture ([55]).
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Table 1 Overview of QS for ground state problems and NISQ limitations in the “vanilla” formulations
of these approaches. Shown is the relation between physical qubits and the number of variables as
well as the impact of the problem connectivity. Grey underlaid will be the focus in this work: Our
qubit-efficient encoding makes use of VQA and we will benchmark our results against QAOA

Algorithm

Quantum solvers/heuristics (QS)

NISQ limitation Annealing QAOA (Hardware-efficient)
VQA / VQE

Quantum assisted
solver

#Variables I #qubits = I; realized
experimentally:
I≤ 5000

#qubits = I; realized experimentally: I≤ 127 #qubits = I

Connectivity: Qij
!
= 0

for some i 	= j
restricted to device
connectivity

problem vs. device
connectivity↔
circuit depth

ansatz-dependent ansatz-dependent,
overlap calculation

References [24] [61–65] [19, 26, 27, 29] [42–48]

Figure 1 Example of a transaction settlement problem constructed using data provided from a regulated
financial exchange. Eight transactions (arrows) between seven parties (numbered squares) are depicted. Each
party has initial balances for cash ($) and different securities (S1, . . . ). The optimal solution which settles the
maximal amount of transactions without violating balance constraints is indicated through and . The
solution is not unique, another optimal solution would settle T2 instead of T3. Even for a problem of only
eight transactions, non-trivial dependencies between different transactions exist: For example, T4 can only be
settled if T5 is settled which in turn requires T8

is given in Table 3 and a graph representation of a transaction settlement problem with
parties as nodes and transactions as edges is shown in Fig. 1.

In the case when not all parties have sufficient balances to meet all settlement instruc-
tions they are involved with, finding this maximal set can be difficult with classical com-
puting resources. Intuitively, this is because a party’s ability to serve outgoing transactions
may depend on its incoming transactions, creating many interdependencies between dif-
ferent parties (cf. Fig. 1). Whilst classical technology is sufficient for current transaction
volumes, increases could be expected from more securities in emerging markets and digi-
tal tokens, for example. Furthermore, cash shortages make optimization more challenging
as it becomes harder to allocate funds optimally among various settlement obligations, de-
termining the priority of different trades and parties and an increased risk of settlement
failures. Quantum technologies offer a potential path to mitigate these issues.

Transactions can be conducted both in currencies and securities such as equity and
bonds (hence balk and limk are vector-valued). A financial exchange may, for example,
handle as many as one million trades involving 500-600 different securities by up to 100
financial institutions (parties) per day.
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Table 3 The left part of this table shows the format of the settlement instructions data samples
obtained from a regulated financial exchange. Each settlement instruction consists of a sending
(PARTICIPANT) and receiving (COUNTERPARTY) party, specifies the security transacted (SECURITY),
the quantity traded (QUANTITY) as well as the countervalue (CONSIDERATION) in Singapore dollars.
For SETTLEMENT_TYPE Delivery Vs Payment (DVP), a security is traded against a cash settlement. Here,
the only alternative is Free Of Payment (FOP), in which case only the security is transferred from the
seller to the buyer. The right part shows the corresponding problem inputs and their mathematical
notation (adapted from [19])

Financial exchange data Example Inputs Math notation

SETTLEMENT_INSTRUCTION transactions i ∈ {1, . . . , I}
PARTICIPANT 205 parties k ∈ {1, . . . ,K}
COUNTERPARTY 270
INSTRUMENT nc157 currencies/securities j ∈ {1, . . . , J}
QUANTITY 1300 transaction value (security) vik ∈R

J

CONSIDERATION 441.85 transaction value (currency)
transaction weights set to one transaction weights w ∈R

I≥0
credit limit absorbed in balance credit limits limk ∈R

J

balance generated balance balk ∈R
J

SETTLEMENT_TYPE DVP
Decision Variables
settle transaction or not x ∈ {0, 1}I
slack variables sk ∈R

J≥0

QUBO formulation To obtain a QUBO formulation of the transaction settlement prob-
lem, we follow a slightly simplified version of [19]. The mathematical formulation as a
binary optimization problem with inequality constraints looks as follows:

arg max
x

wT x (3)

subject to balance constraints :
∑

i

xivik + balk – limk ≥ 0 ∀k ∈ {1, . . . , K} (4)

where for generality, a weight wi is given for each transaction i and vik represents the
balance changes (in cash and securities) for party k in transaction i. In practice one might
choose wi proportional to the transaction value of transaction i, for simplicity, we will
always choose wi ≡ 1.

The solution of this linear constrained binary optimization problem equals the solution
of the mixed binary optimization (MBO)

arg max
x

sk≥0

⎡

⎣wT x – λ

K∑

k=1

( I∑

i=1

xivik + balk – limk – sk

)2⎤

⎦ (5)

for large λ, referred to as the slack parameter. Here, continuous slack variables sk ≥ 0
(element-wise) were introduced to capture the inequality constraints as penalty terms
in the objective. Note, that by approximating sk as a binary representation, i.e. (sk)i ≈∑l=L2

l=–L1
b̃kil2l, b̃kil ∈ {0, 1}, the problem could further be transformed into a QUBO prob-

lem without any constraints. For large enough λ, any violation of the constraints (4) will
result in a less-than-optimal solution vector. Equation (5) can directly be rewritten:

arg min
x

sk≥0

xT Ax + b(s)T x + c(s) (6)
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where: A := –λVV T ,

with V ∈R
I×KJ , Vil := (vik(l))j(l)

[
with k(l) := � l

J
�, j(l) := (l mod J) + 1

]
(7)

bi(s) := wi – 2λ

K∑

k=1

[
balk – limk – sk

]
vik (8)

c(s) := –λ

K∑

k=1

[
balk – limk – sk

]2 (9)

For fixed s, the minimization over binary x is a QUBO problem as in equ. (1) with Q =
A + Diag[b(s)],7 where Diag[b] is the matrix with the vector b on the diagonal and zeros
elsewhere.

1.3 Contribution of this work
The structure of this work is as follows: In Sect. 2.1, we outline the construction of the
transaction settlement instances from data provided by a regulated financial exchange.
In Sect. 2.2, we use the encoding scheme listed in [14] to reduce the number of qubits
required and extend the ideas to include a new variational cost objective and ansatz. Sec-
tion 3.1 presents the results, using the transaction settlement instances generated as a
testbed for comparing our methods with QAOA and exploring different encodings. Sec-
tion 3.2 offers comparisons in the solutions obtained when using the exponential qubit
reduction to tackle problems with 128 transactions on real quantum hardware by IonQ
and IBM Quantum, exceeding previous results using quantum hardware [19]. We present
some analysis regarding the results obtained, before concluding with Sect. 4. To the best
of our knowledge, this is the first work that tackles mixed binary optimization problems
with a qubit-efficient approach on a quantum computer.

2 Methodology
To give an overview of the methodology, we first detail how the financial settlement prob-
lem can be constructed using data provided by a regulated financial exchange (2.1). We
will then describe the quantum algorithm (Fig. 2) consisting of a heuristic to exponentially
reduce the number of qubits (Sect. 2.2), a cost-objective (Sect. 2.3), a parameterized quan-
tum circuit to generate solution bit-vectors (Sect. 2.4) and finally the classical optimization
(Sect. 2.5).

2.1 Problem instance - financial transaction settlement
Dataset This work uses anonymized transaction data to generate settlement problems of
arbitrary size I . The format of the settlement instructions made available for this purpose
can be seen in Table 3. To generate a problem instance we proceeded as follows:

1. Fix the number of transactions (I), number of parties (K ) and an integer R≤ I .
2. Choose I – R random transactions from the dataset and randomly assign them to

parties (sender and recipient). A single transaction consists of a security being
transferred from one party to the other and (if delivery vs payment) a cash
transaction in the other direction.8

7Here we use: xTDiag[b]x =
∑I

i=1 bix
2
i

x2i =xi= bTx.
8To avoid confusion, we will refer to transfers instead when only considering a single security or cash transfer.
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Figure 2 Workflow of a quantum-classical hybrid optimization algorithm. The algorithm involves (i)
collecting measurements from the parameterized quantum circuit (PQC) with parameters θ (n) , (ii) calculating
the cost function (and potentially its gradients) from the measurement outcomes, and (iii) optimizing the
parameters using classical optimization techniques. The steps are further detailed in Sects. 2.3, 2.5 and 2.4

3. As our dataset does not provide account balances or credit limits, we set limk = 0
and choose minimal non-negative balances balk for each party k such that all
previously chosen transactions can be jointly executed without any party’s balance
becoming negative. The balances hence depend on the first I – R transactions
chosen. This choice of balk is made by considering the net balance-change for each
party if all transactions were conducted.

4. Choose additional R random transactions from the dataset and randomly assign
them to parties (without changing the balances assigned in the previous step).

This procedure ensures the optimal solution contains at least I – R valid transactions. Due
to the minimal choice of the balances, most of the R transactions chosen last are expected
to be invalid in the optimal solution.

To mitigate large differences in transaction volumes between different parties (S$ 10 –
106) as well as different units (cash and different securities) in the data samples, we renor-
malize each party’s balance, credit limit and transaction volume:

∀parties k ∈ {1, . . . , K},∀securities j ∈ {1, . . . , J} : (10)

γkj :=mean
({|(vik)j|}I

i=1 \ {0}
)

(11)

(vik)j �→ (vik)j

γkj
∀i ∈ {1, . . . , I} (12)

(limk)j �→ (limk)j

γkj
(13)

(balk)j �→ (balk)j

γkj
(14)

which, using equ (3) and (4), does not affect the optimal solution.
We show in lemma 3 (appendix B), that the connectivity for the QUBO matrix of the

transaction settlement is bounded by twice the average number of transactions per party,
4I
K , plus a variance term which vanishes for d-regular graphs.
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2.2 Qubit-efficient mapping
Mapping QUBO to VQA The underlying idea to solve QUBO problems with VQAs is to
use the PQC to generate bit-vectors x. The parameters θ of the PQC are then tuned such
that the generated x are likely to approximately minimize equation (1). Formally:

min
θ

Eθ [C] := min
θ

∑

x∈{0,1}I
Probθ (x)xT Qx = min

θ

∑

i	=j

pij(θ )Qij +
∑

i

pi(θ )Qii (15)

where the right hand side only depends on the marginals pij(θ) := Probθ (xi = 1, xj = 1) and
pi(θ ) := Probθ (xi = 1).

Instead of searching in a discrete space, this turns the problem into the optimization
of the continuous parameters of a generator of bit-vectors. This appears similar but is
different from relaxation-based approaches, which often replace binary variables through
continuous ones to obtain a more tractable optimization problem whose solutions are pro-
jected back to a binary format: Here, the model (the PQC) directly generates bit-vectors
x and if it is expressive enough in the distributions Probθ (x) it parameterizes, then an
optimal θ will generate an optimal bit-vector x deterministically. The steps to solve this
minimization are shown in Fig. 2.

The core of mapping a QUBO problem to a variational minimization problem therefore
consists of specifying how to generate bit-vectors x with a quantum circuit. In standard
QAOA or variational approaches, this mapping is straightforward (equation (2)): As the
number of qubits nq equals the number of variables I , we simply measure in the compu-
tational basis (Pauli-Z) and associate the outcome 1 (-1) of qubit qi with the bit xi equal 0
(1). We use a different mapping, generalizing the qubit-efficient approach in [14]:

Qubit-efficient binary encoding We use na qubits (ancillas) to represent a subset of na

bits and nr qubits (register) to provide an address labelling this subset. Compared to the
approach for standard QAOA, we (partly) encode the bit-position in a binary encoded
number instead of the one-hot encoded qubit-position. Hence the name “binary encod-
ing” in Table 2.

Formally, consider a covering A = {A1, . . . , ANr }, Nr = 2nr of the set of bit-positions
B = {1, . . . , I} with |Ai| ∈ {0, na} ∀i and each Ai ordered. Regard the quantum state
|b1 . . . bna〉anc ⊗ |r〉reg as corresponding to bit Ar[l] (the lth entry of Ar) equal to bl ∀l ∈
{1, . . . , na}. This quantum state fixes only the subset Ar of the bits. In general, we interpret

• Superpositions in the ancilla state ↔ probabilistic sampling in the computational
basis of different bit-vectors b1 . . . bna

• Superpositions in the register state ↔ probabilistic sampling in the computational
basis of different bit-sets Ar

resulting in the general form

|ψ(θ)〉 =
Nr∑

r=1

βr(θ)
[
a00...0

r (θ ) |00...0〉anc + a00...1
r (θ) |00...1〉anc + · · · ]⊗ |r〉reg , (16)

where we already indicated that the PQC parameterized by θ determines the values of the
register amplitudes (βr(θ)) and normalized bit-vector amplitudes (ab1...bna

r (θ)). We achieve
an exponential compression from nq = I qubits to nq = na + �log2(I/na)� in the case of a
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disjoint covering (also perfect matching). In general, a covering consisting of |A| = R bit-
sets requires na + �log2(R)� qubits.

For the simplest case of the minimal encoding, defined by na = 1, each subset consists
of just one binary variable with a total of nr = I subsets. A quantum state in this encoding
can be written as

|ψ(θ)〉na=1 =
I∑

r=1

βr(θ)
[
a0

r (θ ) |0〉anc + a1
r (θ) |1〉anc

]⊗ |r〉anc , (17)

and represents the bit-vector x if |ai
r| = δixr . The total number of qubits required is nq =

1 + �log2(I)�.
The large decrease in qubits comes with a few drawbacks:
• A single measurement in the computational basis only specifies a subset Ar of the

bit-positions, and it is not immediate how to sample full bit-vectors x.
• Even arbitrary state-preparation through the PQC may only allow limited

distributions on the vector x. Consider for example the minimal encoding: It
generates bit-vectors distributed as Probθ (x) = Prob1

θ (x1) · . . . · ProbI
θ (xI) =

∏I
r |a1

r |2,
where a1

r are the coefficients of the ancilla qubits in equation (17), corresponding to a
mean-field approximation ([81]).

• Different from QAOA, the cost objective may no longer correspond to the expectation
of a Hermitian observable. This issue and a resolution are discussed in appendix D.

Sampling algorithm We will adopt a simple greedy approach here, which fixes entries of
x as they are sampled throughout multiple measurements and concludes once every entry
is sampled. We furthermore determine the covering A through a k-means-inspired clus-
tering on the graph representation of the problem. Given uniform βr(θ) and a disjoint cov-
ering A, the probability of any one register not being sampled after nshots measurements is
exponentially small, bounded by exp(– nshots

Nr
). In practice, we sample multiple bit-vectors x

to find candidates for the optimal solution. This allows us to reduce the average number of
measurements by reusing measurement outcomes (in particular those that were sampled
multiple times before conclusion of the algorithm). Nonetheless, the qubit compression
comes at the cost of significant sampling overhead.

2.3 Cost function
Having specified how to generate bit-vectors from measurement samples of the PQC fully
determines Probθ (x) and hence the minimization problem in equation (15). In practice, we
cannot access Probθ (x) directly, but rather obtain finite-shot measurements on the state
prepared by the PQC. Hence, we need to specify an estimator of the expected cost Eθ [C].
We will refer to this estimator as Ĉ(θ).

For the explicit formulation of Ĉ(θ), we make use of the formulation of Eθ [C] in terms
of marginal probabilities pij(θ ) = Probθ (xi = 1, xj = 1) and pi(θ ) = Probθ (xi = 1) in equa-
tion (15). For the latter, we use heuristic estimators p̂i(θ ) and p̂ij(θ ) which are constructed
by counting the number of times a certain bit (or pair of bits) was sampled with value equal
to one.
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The exact formulas for these estimators are given in appendix C.1 with a derivation for
disjoint coverings in appendix C.2. Intuitively,

p̂ij(θ) = (1 – μ̂ij)q̂ij + μ̂ijp̂ip̂j (18)

where 0≤ μ̂ij ≤ 1 and the asymptotic convergence

p̂i(θ )
nshots→∞−−−−−→

∑Nr
r=1

i∈Ar
|βr(θ)|2 ∑bk∈{0,1}

blr (i)=1
|ab1...bna

r |2
∑Nr

r=1
i∈Ar

|βr(θ)|2 (19)

q̂ij(θ )
nshots→∞−−−−−→

∑Nr
r=1

i,j∈Ar
|βr(θ )|2 ∑ bk∈{0,1}

blr (i)=blr (j)=1
|ab1...bna

r |2
∑Nr

r=1
i,j∈Ar

|βr(θ )|2 (20)

motivates the expressions p̂i and p̂ij.
Following equation (15), the cost estimator Ĉ(θ ) for the transaction settlement problem

then takes the form

Ĉ(θ ) =
I∑

i,j=1
i	=j

p̂ij(θ )Aij +
I∑

i=1

p̂i(θ )(Aii + bi(s)) + c(s) (21)

which is optimized with respect to θ and the slack variables s = (s1, . . . , sK )≥ 0. The opti-
mal slack variables can be obtained straightforwardly using

ŝk(θ) = max

(
0, –limk +

I∑

i=1

p̂i(θ )vik + balk

)
(22)

where max(◦,◦) is to be taken element-wise. The optimal slack variables substitute s in
equ (21), thus removing the need for separate optimization over the slack variables.

Remarks:
1. It is not possible to express equation (21) as the expectation of a Hermitian

observable on a state of the form of equation (16) due to denominators in the
expressions for p̂, q̂ (equ. (54), (56) in appendix) and μ̂ij (equ. (57)) as well as the
functional form of ŝ. We will show in appendix D how this problem can be resolved
for fixed s given uniform βr(θ ).

2. In the limit of the full encoding (na = I , nr = 0), we get

p̂ij = q̂ij =
〈
1min{i,j}–1 ⊗ |1〉 〈1| ⊗ 1|i–j|–1 ⊗ |1〉 〈1| ⊗ 1I–i–j

〉
M

and

p̂i = 〈1i–1 ⊗ |1〉 〈1| ⊗ 1I–i〉M

resulting in the “standard” cost estimator identical to e.g. QAOA.
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3. Runtime and memory cost: The naive run-time for classically computing the cost
estimator scales as O(nshotsI2), while the memory required only scales as
O(nshots + I2). Our approach does not require full tomography with memory
requirements as high as O(4I). In further extensions, methods such as classical
shadows ([82]) may be used to more efficiently estimate the cost and reduce nshots.

If certain registers are hardly sampled, i.e. |βr(θ )|2 � 0, we may encounter division by
zero in the expressions for p̂i and q̂ij. In practice, this can be dealt with by setting the
corresponding estimators to 1/2 whenever estimates for |βr(θ )|2 fall below some ε > 0,
resulting in indirect penalization. Alternatively, we can add an explicit regularization term

R̂(θ) = η
∑Nr

r=1

[
r̂r(θ) – 1

Nr

]2
to the cost function.

2.4 Variational ansatz
In this work, we consider two types of PQC:

• A hardware-efficient ansatz consisting of RY rotations and entangling CNOT layers.
• A register-preserving ansatz of conditional RY rotations incorporating constraints and

symmetries tailored to the qubit-efficient encoding.
Both variational circuits are depicted in Fig. 3. The hardware-efficient ansatz was used
identically in [14], the register-preserving ansatz is one of the main contributions of this
work.

We mentioned difficulties arising from vanishing register-amplitudes in the previ-
ous section. We will now formally define register-uniform quantum states and register-
preserving circuits before discussing the advantages offered by them:

Definition 1 (Register-uniform) We call a quantum state |ψ〉ar ∈ Hanc ⊗Hreg register-
uniform with respect to the orthonormal basis (|1〉 , . . . , |Nr〉) of Hreg, if it can be written
as

|ψ〉 =
1√
Nr

Nr∑

r=1

|φr〉anc ⊗ |r〉reg (23)

where |φr〉anc ∈Hanc is arbitrary with 〈φr|φr〉anc = 1 ∀r.

Definition 2 (Register-preserving) We call a unitary U acting on Hanc ⊗Hreg register-
preserving with respect to the orthonormal basis (|1〉 , . . . , |Nr〉) of Hreg if it always maps
register-uniform states to register-uniform states (with respect to the same basis).

The set of register-preserving unitaries with respect to the same basis is closed un-
der concatenation. Our register-preserving ansatz first prepares the register-uniform plus
state |+〉⊗nq = H⊗nq |0〉 (H being the Hadamard gate) and then acts through register-
preserving unitaries on it.

Notation We use the bra-/ket-notation only for normalized states. Furthermore, Latin
letters inside bra and ket indicate computational basis states, while Greek letters indicate
general quantum states. We will refer to register-preserving circuits as quantum circuits
which output register-uniform states with respect to the computational basis (and fix said
basis from now on, omitting further mention of it).
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Figure 3 One layer of the register-preserving ansatz (left) and the hardware-efficient ansatz (right) used in
the result section. To obtain the PQC U(θ ), these circuit layers L are preceded by a Hadamard gate on every
qubit and are repeated a chosen number d of times (depth), i.e. U(θ ) = L(θ )dH⊗nq . Both ansätze contain
parameterized rotations followed by a layer of CNOTs. Here, the basis permutation layer of the
register-preserving ansatz is identical to the entangling layer of the hardware-efficient ansatz, with the
difference that it only acts on register-qubits. Furthermore, in the case of the register-preserving ansatz,
parameterized single-qubit RY rotations were applied to all ancillas prior to the first layer

The following claims about register-uniform states and register-preserving circuits are
proved in appendix B:

Lemma 1 The following is equivalent to a state |ψ〉 ∈Hanc ⊗Hreg being register-uniform:

〈r| trHanc (|ψ〉 〈ψ |) |r〉 =
1

Nr
∀r ∈ {1, . . . , Nr} (24)

Theorem 1 The following are equivalent for a unitary U acting on Hanc ⊗Hreg:
(i) U is register-preserving

(ii) U(|φ〉anc ⊗ |r〉reg) = (Ur |φ〉anc)⊗ |f (r)〉 where Ur is a unitary on Hanc ∀r and
f : {1, . . . , Nr}→ {1, . . . , Nr} is bijective.

(iii) U can be written as a sequence of unitary matrices on Hanc conditioned on a subset
of register-qubits and basis-permutations on the register.

Note,9 that in theorem 1 we refer to basis-permutations, not qubit-permutations, al-
though former contains the latter.

Theorem 1 provides a list of ingredients that may be used to construct register-
preserving variational ansätze. Namely, we can combine conditional unitaries (such as
CNOT, Toffoli gates), acting on the ancillas and conditioned on the register-qubits, with
arbitrary unitaries that only act on the ancilla qubits. Furthermore, we can permute com-
putational basis states on the register qubits. These permutations could be cryptographic
permutation pads [83], binary adder circuits [84] or heuristic constructions from NISQ-
friendly gates such as CNOT, SWAP and X gates.

When defining register-preserving circuits, we demand that any register-uniform state
is mapped to a register-uniform state. This may not always be necessary. In the case of this
work, we always start with the same input state |+〉⊗nq which allows more general unitaries
than theorem 1, as the following lemma demonstrates:

9To avoid confusion with the permutation operator used in quantum physics which refers to permuting particle-labels.
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Lemma 2 For register-uniform states as in equation (23) with 〈φr1 |φr2〉anc ∈ R ∀r1, r2 ∈
{1, . . . , Nr}, a unitary U = 1anc ⊗Ureg only non-trivially acting on the register-qubits always
maps |ψ〉 to a register-uniform state if and only if

(U†)r1sUsr2 ∈ iR ∀r1, r2, s ∈ {1, . . . , Nr} with r1 < r2. (25)

While theorem 1 only allows permutations on the register-qubits, this lemma allows (a
single) application of exp

(
–i θ

2 P
)

for any self-inverse permutation P, e.g. RXn rotations or
the RBS gate, on the register-qubits. The condition 〈φr1 |φr2〉anc ∈R is trivially fulfilled for
states which are a real-valued linear combination of computational basis states such as
|+〉⊗nq .

Our ansatz The circuits used in this work are shown in Fig. 3. The register-preserving
circuit acts with conditional RY rotations on every ancilla-qubit, conditioned on individual
register-qubits. The RY rotation on ancilla-qubit b conditioned on register-qubit c can
be regarded as a parameterized rotation on b for half the registers (those registers r, for
which the binary encoding of r has a 1 at position c). A basis permutation layer consisting
of CNOTs is added to ensure consecutive conditional RY rotations act on a different set
of registers (this basis permutation layer is omitted if only a single layer is used, d = 1).

In terms of optimization parameters, we optimize na ∗ nr parameters per register-
preserving layer and nq = nr + na for the hardware-efficient ansatz.

Discussion register-preserving ansatz Only allowing register-preserving gates in the vari-
ational ansatz imposes challenges in keeping the variational ansatz both expressive and
NISQ-friendly, at least on superconducting hardware (cf. Sect. 3.2). On the other hand, we
see the following motivations and advantages for exploring register-preserving circuits:

1. Respect the symmetries of the qubit-efficient approach: In light of challenges
associated with barren plateaus for over-expressive ansätze, incorporating
symmetries into the circuit architecture – here: register-preservation and
real-valued amplitudes10 in the computational basis – is promising as it has been
shown to help with the problem of vanishing gradients ([40, 80]).

2. Numeric stability: The cost estimator Ĉ(θ ) (equ. (21)) makes use of estimators for
the register-amplitudes |β(θ )|2. These can be fixed to 1

Nr
for a register-preserving

circuit, adding numerical stability (especially as the terms affected are in the
denominator) and reducing the computational overhead. In Fig. 4, we visualize the
variance of the gradient-estimator with respect to shot noise at fixed parameters θ .
The register-preserving ansatz shows much smaller variance, which suggests a
lower number of required shots nshots (cf. bullet 3.).

3. Sampling overhead: Register-uniform states minimize the expected number of
samples needed to cover each register ([85]). Furthermore, theorem 1 (ii) shows,
that the net effect of any register-preserving unitary on the register-qubits is a
permutation. If this permutation P : |r〉 �→ |f (r)〉 is easily inverted, then the
bit-vector sampling can be made deterministic in the register (without otherwise
impacting the prediction), by using the input state H⊗na |0〉anc ⊗ P–1 |r〉reg instead of

10Real-valued amplitudes are the reason we only make use of RY rotations (instead of RX, RZ).
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Figure 4 16 Transactions, 12 parties, 6 qubits, na = 4 | Variance in partial derivatives of cost estimator over ten
samples (104 shots each). The variance was in turn averaged over all entries of the gradient. This was done for
circuits of different depths (x-axis), for each of which we uniformly sampled 25 different parameters θ

(scatter). The median over the different parameters is depicted as a solid line, the inter-quartile range as a
shaded region

H⊗na+nr |0〉. In any case, we can reduce the number of circuit evaluations needed by
using initial states of the form H⊗na |0〉anc ⊗ |r〉reg and ensuring that we sample a
different register f (r) in every run by iterating over r ∈ {1, . . . , Nr}.

4. Expression as expectation value of Hermitian observable: As all denominators in
the expressions for p̂i, q̂ij and all of μ̂ are replaced by constants, this allows – for
fixed s – to express Ĉ(θ ) as the expectation value of a Hermitian observable
(although the product p̂ip̂j requires preparation of a product state, see appendix D).
A majority of the literature (including aforementioned classical shadows) and
software are tailored primarily for Hermitian expectation values. Areas include
theoretical results (e.g. adiabatic theorem), the variational ansatz and optimizer
itself, estimation and error mitigation as well as fault-tolerant methods for the
evaluation of expectation values. Expressing our cost function as a Hermitian
expectation hence widens the cross-applicability of other results and code-bases.

2.5 Optimization
Many different optimization procedures have been suggested in the literature to find
the optimal parameters for a PQC through classical optimization. This includes the
parameter-initialization ([36, 86–89]), choice of meta-parameters ([90]) as well as the pa-
rameter update itself ([38, 91–94], an overview of gradient-based and gradient-free opti-
mizers can be found in section D. of [12]).

While the optimization of a PQC has been shown to be NP-hard ([95]) and may well be
the most important ingredient to practical advantage for any quantum QUBO solver, the
focus of this work is on the qubit-efficient methods rather than on the optimization itself.
Our results were obtained with two different commonly used optimizers: The gradient-
free optimizer COBYLA (implemented in scipy [96]) as well as standard gradient descent,
with gradients calculated through the parameter-shift rule ([92, 97]).

The full optimization step for updating the circuit parameters θ (n) �→ θ (n+1) is depicted
in Fig. 2.
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Figure 5 16 Transactions, 10 parties, 5 (register-efficient) / 16 (QAOA) qubits, na = 1, 2× 104 shots | Cost
during parameter optimization for different circuit ansätze (Hardware-efficient, Register-preserving and
QAOA) applied to a transaction settlement problem with 16 transactions. Two different optimizers, COBYLA
(gradient-free) and gradient descent (DESC) were used in the qubit-efficient approach while only COBYLA
was used for QAOA. The depth of the circuit (in number of layers/p-value for QAOA) is given in square
brackets. The solid lines depict means over 25 (qubit-efficient) and 10 (QAOA) different training runs with
random starting points. The 95% confidence interval is given as a shaded region. Quantitative values against
QAOA are not comparable due to different cost functions used for the parameter training

3 Results and discussion
Here, we present results from applying the methodology presented in Sect. 2 to transac-
tion settlement problems of 16 and 128 transactions. We compare hardware-efficient and
register-preserving qubit compression with QAOA. We show results for both a simula-
tor backend (Pennylane [98]) and quantum hardware from IBM Quantum and IonQ. The
statistics for uniformly random solution-sampling is also provided for benchmarking. For
16 transactions, this includes the optimal solution. Throughout this section R (see 2.1) was
set to � I

4� and we considered only cash and one security (J = 2). We randomly generated
three sets of I = 16 transaction instructions with K = 10, 12 and 13 parties respectively
and one settlement problem with 128 transaction instructions, K = 41.

3.1 Simulation, 16 transactions – comparison with QAOA
Training convergence Figure 5 shows the training convergence during the parameter op-
timization, averaged over different random initial parameters of the PQC. While COBYLA
returned optimized parameters within a few hundred steps or less, its cost value is con-
sistently outperformed by gradient descent (DESC), especially for an increasing number
of circuit parameters.

The register-preserving ansatz not only outperforms the hardware-efficient PQC, but
also produces solutions with less variance for different starting points. For all the qubit-
efficient approaches, deeper circuits also improved the performance.

For QAOA, the substitution in equ (22) to optimize both slack variables and variational
parameters simultaneously is infeasible as the variational ansatz depends on the QUBO
matrix and by extension, the slack variables (cf. equation (6)). Results for QAOA were ob-
tained by alternating the optimization of slack variables and circuit parameters 50 times,
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with up to 103 COBYLA-iterations to update the circuit parameters at each cycle. The
optimization landscape appears to be dominated by the slack variables, and each update
changes the optimization landscape for the variational parameters. This unusual opti-
mization landscape is likely the reason why no significant improvements were observed
for increasing p-values.

From our brief comparison, hardware-efficient ansätze appear to be more suited for
MBO problems as they are agnostic to changes in the QUBO matrix. Despite these chal-
lenges, we maintain our QAOA results for the purposes of comparison and leave the ex-
ploration of more effective implementations of the QAOA to MBO to future work.

Bit-vector quality As the cost estimator used in the optimization is only a proxy for the
actual quality of the bit-vectors x generated, we show the empirical cumulative distribu-
tion of the cost associated with bit-vectors generated from the trained PQC in Fig. 6. We
normalized the cost for each transaction settlement problem and averaged over differ-
ent configurations (three settlement problems, na ∈ {1, 4, 8} for 6a, COBYLA and gradient
descent, up to 25 training runs), drawing 50 bit-vectors per configuration.

Subfigure 6a shows the cumulative distributions for both the qubit-efficient approach
and QAOA. Except for the hardware-efficient ansatz with one layer, our qubit-efficient
approach performs better than QAOA on average. As in the training traces, no significant
differences in the results for QAOA were found by varying the depth (p-value) from one
to ten. The register-preserving ansatz performs best for all depths.

In subfigure 6b, weak improvement can be observed by using 8 instead of 1 ancilla qubits
and by adding another register-qubit (nr+ = 1).

During the training, we observed that gradient descent yields better minima than
COBYLA in the cost estimator but tends to sparse solutions, i.e. the associated distri-

Figure 6 16 Transactions, 10-13 parties, 5-16 qubits, 104 shots | Empirical cumulative distribution function of
normalized cost over bit-vectors generated by different trained PQCs: For a given cost x, the empirical
probability y of generating bit-vectors with cost at most x is plotted. Due to a rescaling of the x-axis (cost
normalization), an x-value of zero corresponds to the optimal bit-vector and a value of one to the bit-vector
maximizing the cost. Both can be easily found for a problem with only 16 transactions. Insets show the area
with the lowest 5% of the cost. In the calculation of the cost, equation (6) was used with optimal
slack-variables s(x) for a given bit-vector x. The distribution for uniformly random bit-vectors is shown as a
grey dotted line
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bution on bit-vectors is strongly concentrated around a single value (cf. Fig. 7). Here, re-
dundant encoding of bit-vector-positions in the ancillas (i.e. nr+ > 0) was found to help in
generating more diverse solution candidates.

3.2 Hardware, 16 & 128 transactions – results on IonQ and IBMQ QPUs
To investigate the generation of bit-vectors on real quantum hardware (QPU), we opti-
mized different configurations of both register-preserving and hardware-efficient PQCs
on a simulator for 16 and 128 transactions. The pre-trained circuit parameters were then
executed on the Geneva/Hanoi QPU provided by IBM Quantum and the Harmony/Aria
QPU provided by IonQ.11 The resulting cost-distributions of generated bit-vectors for a
settlement problem with 16 transactions and 10 parties / 128 transactions and 41 parties
are depicted in Fig. 7 and 8.

IBMQ vs IonQ For 4 layers of the register-preserving circuit (7a), the IBMQ results are
significantly worse than for IonQ. This can partly be attributed to the connectivity require-
ments of the long-range conditional Y-Rotations used in the register-preserving ansatz
(Fig. 3a). This favours the all-to-all connectivity of ionq_harmony, which forgoes the
need for depth-increasing SWAP networks. The hardware-efficient ansatz (7b) on the
other hand is compatible with the lattice connectivity of IBMQ devices and shows similar
performance for both QPUs.

For 128 transactions, the benchmarked IonQ device (ionq_aria) slightly outperforms
IBMQ (ibm_hanoi) even with the hardware-efficient ansatz, the results of which are
depicted in Fig. 8.

Impact of noise In general, the noisy results obtained from real quantum backends
yielded worse results than noise-free simulations. However, the additional variation in
the generated bit-vectors could also help to generate solutions of lower cost. This is ob-
served in Fig. 8a, where the hardware results yielded bit-vectors of lower cost than the
lowest simulated vectors with a probability of more than 10%. Noise does not necessarily
move the distribution towards uniform random bit-vectors: On real hardware, the decay
into the physical ground state is more likely than the excited state. Depending on the σz-
to-bit mapping, this can result in a larger or smaller number of settled transactions than
uniform randomness and, potentially, in performance worse than uniform random (as for
ibm_geneva in Fig. 7a).

Figure 8b emphasizes the need for classical post-processing methods that search for fea-
sible solutions in the vicinity of infeasible solutions generated by the PQC (cf. 4): None of
the bit-vectors generated by both simulation and real hardware fulfil all the constraints on
the security-account balances (cf. equation (4)). Alternatively, the cost penalty λ could be
increased to put even higher priority on the balance constraints relative to the maximiza-
tion of the number of transactions.

4 Conclusion and outlook
Increasing the scope of tractable problems and benchmarking with industry data is impor-
tant to gauge the applicability of heuristics-reliant variational quantum algorithms to opti-
mization and to find promising applications. In this work, we extended the qubit-efficient

11Different backends from both providers were used as ibmq_geneva was retired while this work was in process and
ionq_harmony only provides 11 qubits, necessitating the largerionq_aria device for 128 transactions with 16 ancillas.
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Figure 7 16 Transactions, 10 parties, 6 qubits, d = 4, DESC, na = 4, disjoint covering | Empirical cumulative
distribution function (cf. Fig. 6) of cost (not normalized) over bit-vectors generated by a trained PQC. Executed
on a simulator (Simulation), IBMQ quantum computer (ibm_geneva) and IonQ quantum computer
(ionq_harmony). Uniformly random bit-vectors are shown by a grey line (Random). For each generator,
1000 bit-vectors were drawn from 2.4× 104 shots. Each subfigure corresponds to a single optimization run in
which the PQC was optimized using gradient descent. Both runs produce narrow distributions around a fixed
bit-vector, resulting in a steep curve (especially in the noise-free simulation)

Figure 8 128 transactions, 41 parties, 19 qubits, hardware-efficient ansatz, d = 1, DESC, na = 16, disjoint
covering | Visualization of results for 128 transactions on the ibm_hanoi and ionq_aria backends
(2.4× 104 shots, 500 bit-vectors)

encoding in [14] by providing explicit formulas of the cost objective and its gradient for
arbitrary number of ancilla qubits. We introduced a new ansatz for uniform register sam-
pling. We argue that register-preserving ansätze have the additional benefits of numerical
stability, shot-reductions and selective sampling of individual registers, and expressing the
cost estimator as a Hermitian observable.

We demonstrate our methods on mixed binary optimization problems arising from fi-
nancial transaction settlement [19], benchmarking problems of up to 128 transactions
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and 41 parties constructed from transaction data provided by a regulated financial ex-
change. We also showed how the optimal slack variables can be obtained without the
need for an outer loop optimization. We observed that our qubit-efficient methods out-
performed standard QAOA, even when executed on quantum backends. Our proposed
register-preserving ansatz stood out as best in many of the instances considered.

Post-processing While not explored in this work, post-processing by projecting sampled
solutions to valid bit-vectors fulfilling all problem constraints may be a necessity for prac-
tical use. One possible method to do so includes projecting a solution bit-vector generated
by the QS to the best bit-vector in the vicinity that fulfils all constraints. Restricting the
search to a ball of Hamming distance ≤ k, solutions can be sampled at the asymptotic
runtime of O(Ik) (as opposed to 2I for a full search). While without guarantees for the op-
timality or even existence of a close valid solution, one may hope that if the QS provides
solutions of high quality, only small adjustments are needed to obtain a good solution
which adheres to all constraints. This search can be refined with heuristics, e.g. by only
adjusting transactions involving parties (and potentially their k-nearest-neighbours on the
graph) whose balance constraints are violated.

Method exploration Overall, further exploration of different ancilla-register-mappings,
variational (register-preserving) ansätze, optimization algorithms and (scaling of ) meta-
parameters such as circuit depth, penalty terms and step-size is warranted to validate
and refine the qubit-compression approach presented in this work. For example, how the
restrictions given by theorem 1 regarding the register-preserving ansatz can best be ex-
tended in practice, e.g. by changing the computational basis and keeping track of phases
on the ancilla qubits (cf. 2), is still an open question. Another important consideration
is the lack of correlation between the individual measurements in the sampling algorithm
used in this work. Exploring sample rejection or the addition of hidden layers to the ansatz
provides one avenue to extend the probability distributions of x which our PQC parame-
terizes.

Our methods, despite being tested on synthetic problems, demonstrated the broad ap-
plicability of quantum algorithms beyond small toy examples. Witnessing advantages of
our methods over classical solvers would require a comparison to state-of-the-art classi-
cal solvers on problem instances faced in real scenarios. Most of our methods are directly
applicable beyond the transaction settlement problem to any QUBO problem with linear
inequality constraints, setting them apart from other qubit-efficient methods to the best
of our knowledge and making them suitable to tasks beyond settling financial transac-
tions.12

12For a list of examples see [20] ch. 2.2(.1).
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Appendix A: Additional figures

Figure 9 128 Transactions (each with security and optional cash payment), 41 parties | Parties and
transactions are shown similar to Fig. 1 for a settlement problem generated from data of a regulated financial
exchange (same settlement problem as Fig. 8). Transfers of securities (cash) are visualized by dotted (solid)
edges and green (blue) arrow-heads. The thickness of the edges scales proportional to the transaction
volume. The nodes represent parties and are colored and scaled according to the number of in- and outgoing
transfers. The edge-coloring corresponds to the register-mapping, i.e. the sets Ai ∈A. For na = 16 ancilla
qubits and nr = 3 register qubits used to generate the register-mapping, we have 23 = 8 = |A| different colors

Appendix B: Proofs
In this section, we provide formal proofs of claims made in the main text:

Register-preserving ansatz.

Lemma 1 The following is equivalent to a state |ψ〉 ∈Hanc ⊗Hreg being register-uniform:

〈r| trHanc (|ψ〉 〈ψ |) |r〉 =
1

Nr
∀r ∈ {1, . . . , Nr} (26)

Proof “ �⇒ ”: Given a register-uniform state |ψ〉 = 1√
Nr

∑Nr
r=1 |φr〉anc ⊗ |r〉reg, direct calcu-

lation shows

〈r| trHanc (|ψ〉 〈ψ |) |r〉reg =
1

Nr
tr(|φr〉 〈φr|anc) =

1
Nr

. (27)

“ ⇐� ”: Given |ψ〉 with 〈r| trHanc (|ψ〉 〈ψ |) |r〉 = 1
Nr

, write |ψ〉 in the computational basis
as

|ψ〉 =
Na∑

i=1

Nr∑

r=1

λir |i〉anc ⊗ |r〉reg =
1√
Nr

Nr∑

r=1

[
√

Nr

Na∑

i=1

λir |i〉anc

]

︸ ︷︷ ︸
=:|φr〉anc

⊗|r〉reg (28)

Then

〈φr|φr〉anc = tr(|φr〉 〈φr|anc) = Nrtr(1⊗ 〈r|reg |ψ〉 〈ψ |1⊗ |r〉reg)
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= Nr 〈r| trHanc (|ψ〉 〈ψ |) |r〉 = 1 (29)

showing that |ψ〉 is register-uniform. �

Theorem 1 The following are equivalent for a unitary U acting on Hanc ⊗Hreg:
(i) U is register-preserving

(ii) U(|φ〉anc ⊗ |r〉reg) = (Ur |φ〉anc)⊗ |f (r)〉 where Ur is a unitary on Hanc ∀r and
f : {1, . . . , Nr}→ {1, . . . , Nr} is bijective.

(iii) U can be written as a sequence of unitary matrices on Hanc conditioned on a subset
of register-qubits and basis-permutations on the register.

Proof We will proof in order (i) �⇒ (ii) �⇒ (iii) �⇒ (i).
(i) �⇒ (ii): The idea in this part is the following: Since the ancilla states for each register

are arbitrary, no “mixing” between different registers is allowed as this would result in
uncontrollable superpositions on the ancilla subsystems causing a loss of “normalization”.
We will first show the following weaker claim:

Claim 1: ∀ |φr〉anc ∈Hanc, 1≤ r ≤Nr , ∃ |ν̃r〉anc ∈Hanc and 1≤ r̃ ≤Nr , s.t. U |φr〉anc |r〉reg =
|ν̃r〉anc |r̃〉reg

Proof of Claim 1: Assume this was not the case, i.e. ∃ |φs〉anc ∈Hanc, 1≤ s≤Nr s.t.

U |φs〉anc |s〉reg = λ |ν̃s〉anc |s̃〉reg + λ̄ |ψ̃〉 (30)

for some λ, |ν̃s〉anc , s̃, |ψ̃〉 with 0 < |λ| < 1 and 1anc ⊗ 〈s̃|reg |ψ̃〉 = 0. We denoted λ̄ :=√
1 – |λ|2. We note at this point, that adding a complex phase to |φs〉anc merely adds the

same phase to λ and |ψ̃〉 but otherwise does not change equation (30).
We now apply U to a register-uniform state containing |φs〉anc |s〉reg, resulting in

|φ̃s̃〉anc := 1anc ⊗ 〈s̃|reg U
Nr∑

r=1

|φr〉anc ⊗ |r〉reg (31)

= λ |ν̃s〉anc + μ |η̃〉anc (32)

where μ |η̃〉anc = 1anc ⊗〈s̃|reg U
∑Nr

r=1
r 	=s
|φr〉anc ⊗ |r〉reg. We will fix |φr〉anc for r 	= s later. Using

that U is register-preserving, we have

1 = 〈φ̃s̃|φ̃s̃〉anc = |λ|2 + |μ|2 + λ∗μ 〈ν̃s|η̃〉anc + λμ∗ 〈η̃|ν̃s〉anc . (33)

If we can show that μ 〈ν̃s|η̃〉anc ∈R>0, then we can choose the phase of |φs〉anc such that
• Case 1: λ = |λ|
• Case 2: λ = i|λ|

which results in the contradiction

|λ|2 + |μ|2 + 2|λ|μ 〈ν̃s|η̃〉anc = 1 = |λ|2 + |μ|2. (34)

It remains to show, that we can choose |φr〉anc , r 	= s such that μ 〈ν̃s|η̃〉anc 	= 0 and real.
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For this consider

U–1 |ν̃s〉anc |s̃〉reg =
1
λ
|φs〉anc |s〉reg –

λ̄

λ
U–1 |ψ̃〉 (35)

Claim 2: ∃w 	= s ∈ {1, . . . , Nr} : 1anc ⊗ 〈w|reg U–1 |ν̃s〉anc |s̃〉reg 	= 0
Proof of Claim 2: Assume this was not the case. Then

U–1 |ν̃s〉anc |s̃〉reg =
1
λ
|φs〉anc |s〉reg + σ |θs〉anc |s〉reg (36)

Hence span{|ν̃s〉anc |s̃〉reg} ∩ Im[U|span{Hanc⊗|r〉reg}] = ∅ ∀r 	= s. In particular for r 	= s

dim
(

Im[U|span{Hanc⊗|r〉reg}]∩ span{Hanc ⊗ |s̃〉reg}
)

≤ dim(Hanc) – 1 = dim(Im[U|span{Hanc⊗|r〉reg}]) – 1. (37)

Therefore

∀r 	= s ∃ |φr〉anc s.t 1anc ⊗ 〈s̃|reg U |φr〉anc ⊗ |r〉reg = 0 (38)

which implies

1anc ⊗ 〈s̃|reg U
Nr∑

r=1

|φr〉anc ⊗ |r〉reg = λ |ν̃s〉anc |s̃〉reg (39)

which is not normalized (|λ| < 1), in contradiction with U being register-preserving.
Therefore claim 2 holds and it exists |φw〉anc ⊗ |w〉reg with w 	= s such that

〈ν̃s|anc ⊗ 〈s̃|reg U |φw〉anc ⊗ |w〉reg 	= 0. (40)

We can furthermore fix the phase of |φw〉anc such that the overlap in (40) is real and pos-
itive. We can choose all other |φr〉anc for r 	= w, s arbitrary with the condition that if the
overlap 〈ν̃s|anc ⊗〈s̃|reg U |φr〉anc ⊗|r〉reg is non-zero, we adjust the phase so that the overlap
is real and positive. From this it follows

μ 〈ν̃s|η̃〉anc = 〈ν̃s|anc ⊗ 〈s̃|reg U
Nr∑

r=1
r 	=s

|φr〉anc ⊗ |r〉reg ∈R>0 (41)

which concludes claim 1.
To prove the more restrictive statement (ii), it remains to show:

a) |r〉reg �→ |r̃〉reg is a well-defined bijective function, r̃ = f (r),
f : {1, . . . , Nr}→ {1, . . . , Nr}

b) |φr〉anc �→ |ν̃r〉anc = 1⊗ 〈f (r)|U |φr〉anc |r〉reg is unitary ∀ |φr〉anc ∈Hanc, 1≤ r ≤Nr

To show that f is a well-defined function, we need to show in addition to claim 1 that the
registers are mapped independently of the state of the ancilla. Assume this was not the
case, i.e. ∃r, |φ1

r 〉anc , |φ2
r 〉anc s.t.

U |φi
r〉anc ⊗ |r〉reg = |ν̃i

r〉reg ⊗ |r̃i〉reg (42)
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with r̃1 	= r̃2. Consider two register-uniform states which are identical besides one contain-
ing |φ1

r 〉anc⊗|r〉reg and the other |φ2
r 〉anc⊗|r〉reg. Then due to linearity, one of the two states

is not mapped to a register-uniform state under U . This is a contradiction and hence f is a
well-defined function. Because U is register-preserving, f must be surjective and is hence
bijective.

To show b) we note that for any r the restriction U : span{Hanc ⊗ |r〉} → span{Hanc ⊗
|f (r)〉} is unitary.

(ii) �⇒ (iii): Given Ur and f (◦) as in (ii), we can directly define a sequence of condi-
tioned unitaries and a permutation on the registers.

For any r we can condition the unitary Ur acting onHanc on the bitvector-representation
of r. Let us call the resulting unitary CUr . Define the permutation P : Hreg  |r〉 �→ |f (r)〉 ∈
Hreg. Then

U = 1anc ⊗ P
Nr∏

r=1

CUr (43)

(iii) �⇒ (i): As the set of register-preserving unitaries is closed under composition,
it suffices to show that basis-permutations on the registers and unitaries on the ancillas
conditioned on register-states are both register-preserving. Both can be verified explicitly
by tracking the action on a state of the form 1√

Nr

∑Nr
r=1 |φr〉anc ⊗ |r〉reg and observing that

the normalization of the individual terms in the sum is not compromised. Permutations
on the register merely reassign the ancilla states to different addresses while conditional
unitaries on the ancillas apply unitary transformations on the ancilla-states for a subset of
registers specified through the conditioning. �

Lemma 2 For register-uniform states as in equation (23) with 〈φr1 |φr2〉anc ∈ R ∀r1, r2 ∈
{1, . . . , Nr}, a unitary U = 1anc ⊗Ureg only non-trivially acting on the register-qubits always
maps |ψ〉 to a register-uniform state if and only if

(U†)r1sUsr2 ∈ iR ∀r1, r2, s ∈ {1, . . . , Nr} with r1 < r2. (44)

Proof We will show the claim by demanding U |ψ〉 adhere to definition 1.
Projecting U |ψ〉 on a register s, we obtain

1anc ⊗ 〈s|reg 1⊗Ureg
1√
Nr

Nr∑

r=1

|φr〉anc ⊗ |r〉reg =
1√
Nr

|φ̃s〉anc (45)

and therefore

〈φ̃s|φ̃s〉anc = 1 ⇐⇒
Nr∑

r1,r2=1

〈φr1 |φr2〉anc 〈r1|U†
reg |s〉reg 〈s|Ureg |r2〉reg = 1 (46)

We can split the sum to obtain (using the assumption of real-valued ancilla overlap)

1 =
Nr∑

r=1

〈r|U†
reg |s〉reg 〈s|Ureg |r〉reg

︸ ︷︷ ︸
=1
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+
∑

1≤r1<r2≤Nr

〈φr1 |φr2〉anc

×
[
〈r1|U†

reg |s〉reg 〈s|Ureg |r2〉reg + 〈r2|U†
reg |s〉reg 〈s|Ureg |r1〉reg

]

︸ ︷︷ ︸
=2 Re

[
(U†)r1sUsr2

]

(47)

where the first term equals 1 due to Ureg |r〉reg forming an orthonormal basis ofHreg. As this
equations has to hold for all sets {|φr〉anc}Nr

r=1 which have real-valued overlap (hence we can
engineer them such that exactly one chosen term 〈φr1 |φr2〉anc in the sum is non-zero) and
for all s, equation (47) is equivalent to Re

[
(U†)r1sUsr2

]
= 0 ∀r1, r2, s ∈ {1, . . . , Nr} with r1 <

r2. �

The resulting state is register-uniform due to cancellation of phases. While this only
holds for real-valued inner product between ancilla-states, it raises the question whether
similar results are possible more generally if a record of the phases of the ancilla states is
kept. Furthermore, we did not explore the possibility of allowing different register bases
for the input and output state in the definition of a register-preserving unitary.

Transaction settlement problem For some combinatorial graph problems such as Max-
Cut, the corresponding QUBO matrix Q is in simple correspondence with the graph and
its adjacency matrix. This is not the case here, where deciding which transactions to settle
corresponds to choosing a subset of edges (not nodes, cf. Fig. 1). Quadratic terms beyond
the graph connectivity are common for QUBO problems which incorporate constraints as
quadratic penalties. This increase the number of non-zero off-diagonal elements of Q and
hence limits the applicability of many NISQ-QS as stressed in Sect. 1.1. For transaction
settlements, we can relate the number of non-zero elements per row of Q as follows:

Lemma 3 Given a transaction settlement with A, b(s) as in equations (7) and (8), repre-
sented by a graph G with parties as K nodes K and transactions as I edges I connecting
the transacting parties, then: The average number of non-zero entries per row of the matrix
Q = A + Diag(b(s)) is bounded by

EI

⎡

⎣
I∑

j=1

δ{Qij 	=0
}

⎤

⎦≤ 4
I
K

+
K
I
VK [Nk] – 1 (48)

where Nk is the number of edges connected to node k ∈K.

For d-regular graphs VK [Nk] = 0.

Proof We are looking for an upper-bound of the average number of non-zero elements in
the rows of Q. For this assume the diagonal elements are all non-zero. For the off-diagonal
elements we only need to consider the contributions of A = –λVV T . As Vil := (vik(l))j(l) is
only non-zero if transaction i changes balance j(l) of party k(l), Aij may only be non-zero
if edges i and j share a node. Therefore

EI

⎡

⎣
I∑

j=1

δ{Qij 	=0
}

⎤

⎦ =
1
I

I∑

i=1

⎡

⎣
I∑

j=1

δ{Qij 	=0
}

⎤

⎦
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≤ 1
I

I∑

i=1

⎡

⎢⎢⎢⎢⎢⎣

∑

j∈I
δ{Transaction i&j share a node

}

︸ ︷︷ ︸
=:ai

⎤

⎥⎥⎥⎥⎥⎦
. (49)

Let k1(i), k2(i) ∈K such that i = (k1(i), k2(i)).13 Then

ai ≤Nk1(i) + Nk2(i) – 1

where –1 comes from double-counting the edge i connecting k1(i) with k2(i). Plugging this
into equ. (49) we get

EI

⎡

⎣
I∑

j=1

δ{Qij 	=0
}

⎤

⎦≤ –1 +
1
I

K∑

k=1

Nk

[
∑

i∈I
δ{i0=k} + δ{i1=k}

]
(50)

= –1 +
K
I

[
1
K

K∑

k=1

N2
k

]

= –1 +
K
I
[
EK[Nk]2 + EK[N2

k ] – EK[Nk]2] (51)

= –1 +
K
I

[(
2

I
K

)2

+ VK[Nk]

]
(52)

= 4
I
K

+
K
I
VK[Nk] – 1 (53)

�

Appendix C: Cost estimator and marginal probability distribution obtained
from sampling algorithm

In this section, we give explicit formulas for the estimators in Sect. 2.3 and their gradients.
For the special case of a disjoint covering and greedy sampling algorithm, we rigorously
prove the heuristic estimators used in the cost objective.

C.1 Cost estimator
To express p̂i and p̂ij through a set of measurements M =

{
m1, . . . mnshots

}
in the compu-

tational basis, let x̃(m) refer to the “bit”-vector ∈ {–1, 0, 1}I with the subset Ar(m) of en-
tries fixed to b(m)1 . . . b(m)na as described in Sect. 2.2 and all other bits set to –1. Define
lr(◦) : Ar →{1, . . . , na} through Ar[lr(i)] = i ∀i ∈ Ar (“bit i is mapped to lr(i)th ancilla bit of
register r”). The estimators are given as follows:

p̂i(θ ) :=
∑

m∈M δx̃i(m),1∑
m∈M(1 – δx̃i(m),–1)

(54)

p̂ij(θ) := (1 – μ̂ij)q̂ij + μ̂ijp̂ip̂j (55)

13In the case of an undirected graph we can fix any ordering.
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where:

q̂ij(θ ) :=
∑

m∈M δx̃i(m),1δx̃j(m),1∑
m∈M(1 – δx̃i(m),–1)(1 – δx̃j(m),–1)

(56)

μ̂ij(θ)

:=

√∑
m∈M(1 – δx̃i(m),–1)

∑
m∈M(1 – δx̃j(m),–1)

√∑
m∈M(1 – δx̃i(m),–1)

∑
m∈M(1 – δx̃j(m),–1) +

∑
m∈M(1 – δx̃i(m),–1)(1 – δx̃j(m),–1)

(57)

Note, that for disjoint coverings A, the sums over r collapse to at most a single term as
every bit i is contained in exactly one register-set Ar(i). In the definition of q̃ij we adopt the
convention q̃ij ≡ 0 if {r : i, j ∈ Ar} = ∅ (sum contains no terms).

C.2 Derivation for disjoint covering
To derive the marginal probability distributions pij(θ) = Probθ (xi = 1, xj = 1) and pi(θ ) =
Probθ (xi = 1) that arise from the greedy sampling algorithm, consider the output of the
PQC given by equation (16).

We denote the sequence of registers during one run of the sampling algorithm by
S = (ri)

Nm
i=1 , where ri is the register sampled in the ith measurement (omitting measure-

ments with not bits being set)and Nm is the number of such calls before termination of
the algorithm. Denote by Ã(S)

ri ⊂ Ari
14 the bits set in the ith measurement.

Then

Prob(x) =
∑

S

Prob(S)
Nm(S)∏

i=1

p(ri)

Ã(S)
i

(x) (58)

where Prob(S) is the probability of the sampling algorithm resulting in the register-
sequence S and p(ri)

Ã(S)
ri

(x) is defined through the complex ancilla amplitudes compatible with

xÃ(S)
i

for the given register ri, i.e.

p(ri)

Ã(S)
i

(x) =
∑

bk

⎧
⎪⎪⎨

⎪⎪⎩

∈ {0, 1}, for Ari [j] /∈ Ã(S)
ri

= xAri [k], for Ari [k] ∈ Ã(S)
ri

|ab1...bna
r |2

which simplifies to |axAr |2 if |Ã(S)
ri | = na.

For fixed S define r̃(i), i ∈ B such that i ∈ Ã(S)
r̃(i), as well as p(r)

i := p(r)
{i}(1) =

∑
bk∈{0,1}
blr (i)=1

|ab1...bna
r |2

and p(r)
ij := p(r)

{i,j}(1) =
∑

bk∈{0,1}
blr (i)=blr (j)=1

|ab1...bna
r |2. Then it follows for the marginals:

pi =
∑

x:xi=1

Prob(x) =
∑

S

Prob(S)p(r̃(i))
i (59)

14In the case of a disjoint covering A, we have Ã(S)ri = Ari .
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pij =
∑

x: xi=1,xj=1

Prob(x) =
∑

S: r̃(i)	=r̃(j)

Prob(S)p(r̃(i))
i p(r̃(j))

j +
∑

S: r̃(i)=r̃(j)

Prob(S)p(r̃(i))
ij (60)

In the case of a disjoint covering A, every register has to be sampled once and Ã(S)
ri =

Ari ∀i ∈ {1, . . . , Nm = I
na
}. Due to this the sum over S merely consists of different orderings

of {1, . . . , Nr = I
na
}. Therefore, Prob(S) =

∏Nm
i=1 |βri |2 = ( I

na
!)–1 is uniform.

For general coverings however, Prob(S) is not necessarily uniform and the sum over S is
non-trivial. However, we can hope to approximate in the general case

pi =
∑

S

Prob(S)p(r(i))
i ≈ 1∑

r: i∈Ar |βr|2
∑

r: i∈Ar

|βr|2p(r)
i (61)

and

pij =
∑

S: r(i)	=r(j)

Prob(S)p(r(i))
i p(r(j))

j +
∑

S: r(i)=r(j)

Prob(S)p(r(i))
ij (62)

≈ μij
1∑

r1,r2: i∈Ar1 ,j /∈Ar1 ,j∈Ar2
|βr1 |2|βr2 |2

∑

r1,r2: i∈Ar1 ,j /∈Ar1 ,j∈Ar2

|βr1 |2|βr2 |2p(r1)
i p(r2)

j (63)

+ (1 – μij)
1∑

r: i,j∈Ar |βr|2
∑

r: i,j∈Ar

|βr|2p(r)
ij (64)

(equality holds for disjoint coverings, in which case the sums become trivial). We can
regard this as assuming that based on symmetry considerations,15 the probability of the
sampling algorithm running through the sequence S where entry i is sampled from register
r ∈ {r : i ∈ Ar}) is proportional to |βr|2. Similar considerations are made when looking at
bit-pairs (i, j) with the added complexity that they can either be sampled from the same
register r or from two different register r1, r2. The probability of the former is estimated as

μij ≈
√∑

r1,r2: i∈Ar1 ,j /∈Ar1 ,j∈Ar2
|βr1 |2|βr2 |2

√∑
r1,r2: i∈Ar1 ,j /∈Ar1 ,j∈Ar2

|βr1 |2|βr2 |2 +
∑

r: i,j∈Ar |βr|2
. (65)

By further approximating
∑

r1,r2: i∈Ar1 ,j /∈Ar1 ,j∈Ar2
≈∑

r1: i∈Ar1

∑
r2: j∈Ar2

we obtain

pij ≈ μij
∑

r1: i∈Ar1

∑

r2: j∈Ar2

p(r1)
i p(r2)

j + (1 – μij)
1∑

r: i,j∈Ar |βr|2
∑

r: i,j∈r

|βr|2p(r)
ij . (66)

Given this, pi is estimated by p̂i (equ. (54)) and pij by p̂ij (equ. (55)), where all “≈” are exact
for the case of a disjoint covering.

In summary, we have motivated the cost estimator in Sect. 2.3 as a heuristic for the
general case and proven

15which depending on the graph covering A may not be warranted.
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Lemma 4 For the greedy sampling algorithmand a disjoint covering A (perfect matching),
equation (21) and Eθ [C] from equation (15) are equal in the limit nshots →∞. In particular

pi(θ) =
∑

bk∈{0,1}
blr (i)=1

|ab1...bna
r |2 where r s.t. i ∈ Ar (67)

pij(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
bk∈{0,1}

blri (i)=blri (j)=1
|ab1...bna

ri |2, if ri = rj

∑
bk∈{0,1}
blri (i)=1

|ab1...bna
ri |2 ∑bk∈{0,1}

blrj (j)=1
|ab1...bna

rj |2, if ri 	= rj
where rx s.t. x ∈ Arx (68)

C.3 Explicit form of cost-gradient
In this section, we will give the explicit form of the derivatives ∂θd of the cost a and register-
regularization estimator

Ĉ(θ ) + R̂(θ)

=
I∑

i,j=1
i	=j

p̂ij(θ )Aij +
I∑

i=1

p̂i(θ )(Aii + bi(ŝ(θ ))) + c(ŝ(θ )) + η

Nr∑

r=1

[
r̂r(θ ) –

1
Nr

]2

. (69)

When optimizing Ĉ(θ ) with respect to θ we may want to make use of the gradient ∇θ Ĉ
to update θ . For this, note that both terms in the quotient for p̂i and q̂ij are given as linear
combinations of Pauli-expectation values (equation (54) and (56)). For many variational
ansätze, in particular those consisting of single-qubit Pauli-rotations used in this paper,
this allows to easily calculate gradients∇θ [p̂i] and∇θ [q̂ij] through the parameter-shift rule
([92, 97]). Similarly, the gradients of μ̂ij and r̂r can be calculated by applying the parameter-
shift rule. Through application of the chain-rule, the gradient of Ĉ

({p̂i}i, {q̂ij}ij, {μ̂ij}ij; {r̂r}r
)

is obtained.
We distinguish between the case of register-preserving ansätze and general circuit an-

sätze. For simplicity (and motivated by the regularization of the register-probabilities) we
will treat μ̂ij as constant in θ in both cases.

By the chain rule we get

∂θd Ĉ(θ ) =
I∑

i,j=1
i	=j

∂θd p̂ijAij +
I∑

i=1

[
∂θd p̂i(Aii + bi(ŝ)) + p̂i∇sbT

i (ŝ)∂θd ŝ
]

+∇sc(ŝ)∂θd ŝ (70)

∂θd R̂(θ ) = 2η

Nr∑

r=1

[
r̂r –

1
Nr

]
∂θd r̂r (71)

where

∇sbi = 2λV(i) (72)

∇sc = –2λ
(
l + s – bal

)
(73)

∂θd ŝ = Diag[(δŝi>0)1≤i≤KJ ]
I∑

i=1

∂θd p̂iV(i) (74)
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∂θd p̂ij = (1 – μ̂ij)∂θd q̂ij + μ̂ij(p̂j∂θd p̂i + p̂i∂θd p̂j) (75)

with V(i) being the ith row of V. As r̂r is the expectation of the observable 1na ⊗ |r〉 〈r|
its partial derivatives can be calculated directly through parameter-shift rules or similar
techniques to calculate the gradient of quantum observables. If we consider a register-
preserving ansatz, the same holds true for q̂ij(θ) and p̂i(θ ). Otherwise, the derivatives have
to be calculated separately for the nominator and denominator in equation (54) and (56)
respectively and recombined using the quotient rule.

Appendix D: Expressing cost estimator as Hermitian observable
We observed in Sect. 2.2 and 2.3, that our qubit-compression results in a cost-estimator
expressed as a function of Pauli-Z measurements that cannot be written straightforwardly
as the expectation over a Hermitian operator. Here, we alleviate this issue for register-
preserving circuits and fixed slack variables.

We can rewrite the cost as a Hermitian expectation for register-preserving circuits and
fixed slack variables s:

1. Substitute denominators in p̂i and q̂ij as well as μ̂ij by exact counterpart.
2. Define operator C(θ ) such that Ĉ(θ ) = 〈C(θ )〉M by “doubling the Hilbert space”.

1 The denominators in the expressions for p̂i and q̂ij (equations (54) and (56)) as well as
μ̂ij can be replaced by scalar constants by substituting

〈1na ⊗ |r〉 〈r|〉M �→ 1
Nr

(76)

resulting in (ni :=
∑Nr

r=1
i∈Ar

1, nij :=
∑Nr

r=1
i,j∈Ar

1)

μ̂ij =
√ninj√ninj + nij

(77)

p̂i =
Nr

ni

〈 Nr∑

r=1
i∈Ar

1lr(i)–1 ⊗ |1〉 〈1| ⊗ 1na–lr(i) ⊗ |r〉 〈r|
〉

M

(78)

q̂ij =
Nr

nij

〈 Nr∑

r=1
i,j∈Ar

1min{lr(i),lr (j)}–1 ⊗ |1〉 〈1| ⊗ 1|lr(i)–lr(j)|–1 ⊗ |1〉

× 〈1| ⊗ 1na–lr(i)–lr(j) ⊗ |r〉 〈r|
〉

M
(79)

where we set p̂i = 0 (q̂ij = 0) if ni = 0 (nij = 0).

2 Equations (78) and (79) suggest defining the Hermitian operators

Pi =
Nr

ni

Nr∑

r=1
i∈Ar

1lr(i)–1 ⊗ |1〉 〈1| ⊗ 1na–lr(i) ⊗ |r〉 〈r| (80)
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Qij =
Nr

nij

Nr∑

r=1
i,j∈Ar

1min{lr(i),lr (j)}–1 ⊗ |1〉

× 〈1| ⊗ 1|lr(i)–lr(j)|–1 ⊗ |1〉 〈1| ⊗ 1na–lr(i)–lr(j) ⊗ |r〉 〈r| . (81)

This would allow us to write Ĉ(θ ) in the desired form if it weren’t for the terms of the
form p̂ip̂j = 〈Pi〉M

〈
Pj
〉
M. Instead of a quantum state |ψ(θ)〉 in the form of equation (16),

we consider the product state |ψ(θ )〉 ⊗ |ψ(θ )〉 and the following operator acting on it:

C = .
I∑

i,j=1

Aij
[
(1 – μ̂ij)Qij ⊗ 1nq + μ̂ijPi ⊗ Pj

]
+

I∑

i=1

(Aii + bi(s))Pi ⊗ 1nq + c(s)12nq (82)

This requires doubling the number of qubits and circuit width. The cost estimator is then
given as this operator’s expectation value

Ĉ(θ ) = 〈C〉M � 〈ψ(θ)| ⊗ 〈ψ(θ)|C |ψ(θ)〉 ⊗ |ψ(θ)〉 (83)

estimated through measurements.
We note:
• C is Hermitian as it is real-valued and diagonal in the computational basis
• While we assumed the measured quantum state to be register-uniform in the

substitutions of 1., one may consider using the observable in equation (82) even for
non-register-preserving circuits if the register-amplitudes are approximately kept
constant with a penalty term. The penalty term can be added to C in the same
manner as Pi ⊗ Pj.

• The assumption of a register-preserving circuit comes with a caveat: We need to be
careful in applying methods tailored to Hermitian-expectation-minimization which
change the variational ansatz itself based on properties of the Hermitian (QAOA
being the most prominent example). Still there are relevant results which can be
applied to a constrained set of allowed gates, such as optimization techniques
([92, 93]), estimation ([82]) and error mitigation techniques as well as libraries
([99–101]) or fault-tolerant methods for evaluating expectation values (e.g. [102]).

• Throughout, we assumed constant slack variables s, as expressing the relationship
in (22) through an observable is complicated by the non-linearity of the rectified
linear unit. Hence, alternating adjustments of s using (22) and the circuit parameters θ

through a classical optimizer are needed. Alternatively, both variables could be
optimized simultaneously, for which implicit differentiation may be useful ([103]).

Appendix E: Simulation parameters
The configurations used to determine ansatz and for optimizing circuit parameters in
Sect. 3 are shown in Table 4. Pennylane ([98]; version: pennylane=0.29.1) was used
for quantum computing simulations. For parameter optimization, the SciPy ([96]; ver-
sion: scipy=1.10.1) implementation of gradient-free optimizer COBYLA as well as
standard gradient descent were used. The gradients of the latter were calculated through
the chain rule and parameter-shift rule ([92, 97]).
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Table 4 Benchmarking setup

Parameter Value(s)

Cost penalty λ 10
Register-regularization penalty∗ η 1000
Gradient max steps 1500
Gradient stepsize 2.5× 10–4

Optimizer COBYLA, Gradient descent (DESC)
Number of runs / starting point 25
Parameter initialization Uniform random ∈ [0, 2π ]
Depth d 1, 4
Ancilla qubits na 1, 4, 8, 16
nshots 104, 2× 104

Ansatz Register-preserving, Hardware-efficient
Register-mapping Disjoint covering unless nr+≥ 1

∗ For Hardware-efficient ansatz only

Acknowledgements
We thank Daniel Leykam for his valuable comments and suggestions. We acknowledge the use of IBM Quantum, IonQ
and Amazon Web Services.

Author contributions
E.H. wrote the main manuscript text and conducted the underlying analysis, excluding simulations of QAOA which were
conducted by B.T., who in addition contributed to the research design and revised the manuscript. D.A. and P.G.
coordinated the project and facilitated contact with the regulated financial exchange. All authors reviewed the
manuscript.

Funding
This research is supported by the National Research Foundation, Singapore and A*STAR (#21709) under its CQT Bridging
Grant and Quantum Engineering Programme (NRF2021-QEP2-02-P02) and by EU HORIZON-Project101080085—QCFD.
We acknowledge IBM Quantum, IonQ and Amazon Web Services.

Data Availability
Given permission by the regulated stock exchange, anonymized transaction data samples used and/or analysed during
the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The authors consent to publication by EPJ Quantum Technology.

Competing interests
The authors declare no competing interests.

Author details
1D-CHAB Interdisciplinary Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland. 2Centre for
Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore. 3AngelQ
Quantum Computing, 531A Upper Cross Street, 04-95 Hong Lim Complex, Singapore, 051531, Singapore. 4School of
Computing and Information Systems, Singapore Management University, 80 Stamford Road, Singapore, 178902,
Singapore. 5School of Electrical and Computer Engineering, Technical University of Crete, Chania, 73100, Greece.

Received: 27 March 2024 Accepted: 29 July 2024

References
1. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual

ACM symposium on theory of computing. STOC’96. New York: Association for Computing Machinery; 1996. p. 212–9.
https://doi.org/10.1145/237814.237866.

2. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual
symposium on foundations of computer science. 1994. p. 124–34. https://doi.org/10.1109/SFCS.1994.365700.

3. Harrow AW, Montanaro A. Quantum Computational Supremacy. arXiv:1809.07442v1 (2018).
4. Arute F, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505–10.

https://doi.org/10.1038/s41586-019-1666-5.
5. Zhong H-S, et al. Quantum computational advantage using photons. Science. 2020;370:1460–3. https://doi.org/10.

1126/science.abe8770.

https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/1809.07442v1
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770


Huber et al. EPJ Quantum Technology           (2024) 11:52 Page 34 of 36

6. Madsen LS, et al. Quantum computational advantage with a programmable photonic processor. Nature.
2022;606:75–81. https://doi.org/10.1038/s41586-022-04725-x.

7. Pan F, Chen K, Zhang P. Solving the sampling problem of the sycamore quantum circuits. Phys Rev Lett.
2022;129:090502. https://doi.org/10.1103/PhysRevLett.129.090502.

8. Kim Y, et al. Evidence for the utility of quantum computing before fault tolerance. Nature. 2023;618:500–5. https://doi.
org/10.1038/s41586-023-06096-3.

9. Tindall J, et al. Efficient tensor network simulation of IBM’s kicked Ising experiment. arXiv:2306.14887 (2023).
10. Kechedzhi K, et al. Effective quantum volume, fidelity and computational cost of noisy quantum processing

experiments. arXiv:2306.15970 (2023).
11. Begušić T, Chan GK-L. Fast classical simulation of evidence for the utility of quantum computing before fault

tolerance. arXiv:2306.16372 (2023).
12. Bharti K, et al. Noisy intermediate-scale quantum algorithms. Rev Mod Phys. 2022;94:015004. https://doi.org/10.1103/

REVMODPHYS.94.015004/FIGURES/7/MEDIUM.
13. Wei J, et al. NISQ computing: where are we and where do we go? https://doi.org/10.1007/s43673-022-00058-z.
14. Tan B, et al. Qubit-efficient encoding schemes for binary optimisation problems. Quantum. 2021;5:454. https://doi.

org/10.22331/q-2021-05-04-454.
15. Barahona F. On the computational complexity of Ising spin glass models. J Phys A, Math Gen. 1982;15:3241–53.

https://doi.org/10.1088/0305-4470/15/10/028.
16. Date P, Arthur D, Pusey-Nazzaro L. QUBO formulations for training machine learning models. Sci Rep. 2021;11:10029.

https://doi.org/10.1038/s41598-021-89461-4.
17. Vikstål P, et al. Applying the quantum approximate optimization algorithm to the tail assignment problem. Phys Rev

Appl. 2020;14:034009. https://doi.org/10.1103/PhysRevApplied.14.034009.
18. Harwood S, et al. Formulating and solving routing problems on quantum computers. In: IEEE transactions on

quantum engineering. vol. 2. 2021. p. 1–17. https://doi.org/10.1109/TQE.2021.3049230.
19. Braine L, et al. Quantum Algorithms for Mixed Binary Optimization applied to Transaction Settlement. arXiv:1910.

05788 (2019). https://doi.org/10.1109/TQE.2021.3063635.
20. Punnen AP, editor. The quadratic unconstrained binary optimization problem: theory, algorithms, and applications.

Cham: Springer; 2022. https://doi.org/10.1007/978-3-031-04520-2.
21. Finnila AB, et al. Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett.

1994;219:343–8. https://doi.org/10.1016/0009-2614(94)00117-0.
22. Kirkpatrick S. Optimization by simulated annealing: quantitative studies. J Stat Phys. 1984;34:975–86. https://doi.org/

10.1007/BF01009452.
23. Yarkoni S, et al. Quantum annealing for industry applications: introduction and review. Rep Prog Phys.

2022;85:104001 https://doi.org/10.1088/1361-6633/ac8c54.
24. D.-Wave Systems Inc. D-wave hybrid solver service + advantage: technology update. Tech. Rep. https://www.

dwavesys.com/media/m2xbmlhs/14-1048a-a_d-wave_hybrid_solver_service_plus_advantage_technology_update.
pdf.

25. Farhi E, Goldstone J, Gutmann S. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 (2014).
26. Peruzzo A, et al. A variational eigenvalue solver on a photonic quantum processor. Nat Commun. 2014;5:4213.

https://doi.org/10.1038/ncomms5213.
27. Tilly J, et al. The variational quantum eigensolver: a review of methods and best practices. Phys Rep. 2022;986:1–128.

https://doi.org/10.1016/j.physrep.2022.08.003.
28. Benedetti M, et al. Parameterized quantum circuits as machine learning models. Quantum Sci Technol. 2019;4:043001

https://doi.org/10.1088/2058-9565/ab4eb5.
29. McClean JR, et al. The theory of variational hybrid quantum-classical algorithms. New J Phys. 2016;18:023023 https://

doi.org/10.1088/1367-2630/18/2/023023.
30. McClean JR, et al. Barren plateaus in quantum neural network training landscapes. Nat Commun. 2018;9:4812 https://

doi.org/10.1038/s41467-018-07090-4.
31. Arrasmith A, et al. Effect of barren plateaus on gradient-free optimization. Quantum. 2021;5:558 https://doi.org/10.

22331/q-2021-10-05-558.
32. Wang S, et al. Noise-induced barren plateaus in variational quantum algorithms. Nat Commun. 2021;12:6961. https://

doi.org/10.1038/s41467-021-27045-6
33. Liu X, et al. Mitigating barren plateaus of variational quantum eigensolvers. arXiv:2205.13539 (2022).
34. Pesah A, et al. Absence of barren plateaus in quantum convolutional neural networks. Phys Rev X. 2021;11:041011.

https://doi.org/10.1103/PhysRevX.11.041011.
35. Patti TL, et al. Entanglement devised barren Plateau mitigation. Phys Rev Res. 2021;3:033090. https://doi.org/10.1103/

PhysRevResearch.3.033090.
36. Grant E, et al. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum.

2019;3:214. https://doi.org/10.22331/q-2019-12-09-214
37. Dborin J, et al. Matrix Product State Pre-Training for Quantum Machine Learning. arXiv:2106.05742 (2021).
38. Skolik A, et al. Layerwise learning for quantum neural networks. Quantum Mach Intell. 2021;3:5. https://doi.org/10.

1007/s42484-020-00036-4.
39. Cerezo M, et al. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat Commun.

2021;12:1791. https://doi.org/10.1038/s41467-021-21728-w
40. Schatzki L, et al. Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks. arXiv:2210.09974

(2022).
41. Sack SH, et al. Avoiding barren plateaus using classical shadows. PRX Quantum. 2022;3:020365. https://doi.org/10.

1103/PRXQuantum.3.020365.
42. Seki K, Yunoki S. Quantum power method by a superposition of time-evolved states. PRX Quantum. 2021;2:010333.

https://doi.org/10.1103/PRXQuantum.2.010333.
43. Kyriienko O. Quantum inverse iteration algorithm for programmable quantum simulators. npj Quantum Inf.

2020;6:1–8. https://doi.org/10.1038/s41534-019-0239-7.

https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://arxiv.org/abs/2306.14887
https://arxiv.org/abs/2306.15970
https://arxiv.org/abs/2306.16372
https://doi.org/10.1103/REVMODPHYS.94.015004/FIGURES/7/MEDIUM
https://doi.org/10.1103/REVMODPHYS.94.015004/FIGURES/7/MEDIUM
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.22331/q-2021-05-04-454
https://doi.org/10.22331/q-2021-05-04-454
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1038/s41598-021-89461-4
https://doi.org/10.1103/PhysRevApplied.14.034009
https://doi.org/10.1109/TQE.2021.3049230
https://arxiv.org/abs/1910.05788
https://arxiv.org/abs/1910.05788
https://doi.org/10.1109/TQE.2021.3063635
https://doi.org/10.1007/978-3-031-04520-2
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1007/BF01009452
https://doi.org/10.1007/BF01009452
https://doi.org/10.1088/1361-6633/ac8c54
https://www.dwavesys.com/media/m2xbmlhs/14-1048a-a_d-wave_hybrid_solver_service_plus_advantage_technology_update.pdf
https://www.dwavesys.com/media/m2xbmlhs/14-1048a-a_d-wave_hybrid_solver_service_plus_advantage_technology_update.pdf
https://www.dwavesys.com/media/m2xbmlhs/14-1048a-a_d-wave_hybrid_solver_service_plus_advantage_technology_update.pdf
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://arxiv.org/abs/2205.13539
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.22331/q-2019-12-09-214
https://arxiv.org/abs/2106.05742
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1038/s41467-021-21728-w
https://arxiv.org/abs/2210.09974
https://doi.org/10.1103/PRXQuantum.3.020365
https://doi.org/10.1103/PRXQuantum.3.020365
https://doi.org/10.1103/PRXQuantum.2.010333
https://doi.org/10.1038/s41534-019-0239-7


Huber et al. EPJ Quantum Technology           (2024) 11:52 Page 35 of 36

44. Bharti K, Haug T. Iterative quantum-assisted eigensolver. Phys Rev A. 2021;104:L050401. https://doi.org/10.1103/
PhysRevA.104.L050401.

45. Takeshita T, et al. Increasing the representation accuracy of quantum simulations of chemistry without extra
quantum resources. Phys Rev X. 2020;10:011004. https://doi.org/10.1103/PhysRevX.10.011004.

46. Motta M, et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time
evolution. Nat Phys. 2020;16:205–10. https://doi.org/10.1038/s41567-019-0704-4.

47. Huggins WJ, et al. A non-orthogonal variational quantum eigensolver. New J Phys. 2020;22:073009. https://doi.org/
10.1088/1367-2630/ab867b.

48. Stair NH, Huang R, Evangelista FA. A multireference quantum Krylov algorithm for strongly correlated electrons. J
Chem Theory Comput. 2020;16:2236–45. https://doi.org/10.1021/acs.jctc.9b01125.

49. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. https://www.gurobi.com (2023).
50. IBM ILOG Cplex. V12. 1: user’s manual for CPLEX. In: International business machines corporation. vol. 46. 2009. p. 157.
51. Achterberg T. SCIP: solving constraint integer programs. Math Program Comput. 2009;1:1–41. https://doi.org/10.

1007/s12532-008-0001-1.
52. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–80. https://doi.org/

10.1126/science.220.4598.671.
53. Wang Y, et al. A multilevel algorithm for large unconstrained binary quadratic optimization. In: Beldiceanu N, Jussien

N, Pinson É, editors. Integration of AI and OR techniques in contraint programming for combinatorial optimzation
problems. Lecture notes in computer science. Berlin: Springer; 2012. p. 395–408. https://doi.org/10.1007/978-3-642-
29828-8_26.

54. Goemans MX, Williamson DP. Improved approximation algorithms for maximum cut and satisfiability problems using
semidefinite programming. J ACM. 1995;42:1115–45. https://doi.org/10.1145/227683.227684.

55. Khot S, Kindler G, Mossel E. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? 2005.
56. Bennett CH, et al. Strengths and weaknesses of quantum computing. SIAM J Comput. 1997;26:1510–23. https://doi.

org/10.1137/S0097539796300933.
57. Aaronson S. The limits of quantum. Sci Am. 2008;298:62–9.
58. Guerreschi GG, Matsuura AY. QAOA for max-cut requires hundreds of qubits for quantum speed-up. Sci Rep.

2019;9:6903. https://doi.org/10.1038/s41598-019-43176-9.
59. Date P, et al. Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf Process.

2019;18:117. https://doi.org/10.1007/s11128-019-2236-3.
60. Mitarai K, Fujii K. Overhead for simulating a non-local channel with local channels by quasiprobability sampling.

Quantum. 2021;5:388. https://doi.org/10.22331/q-2021-01-28-388
61. Harrigan MP, et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting

processor. Nat Phys. 2021;17:332–6. https://doi.org/10.1038/s41567-020-01105-y
62. Otterbach JS, et al. Unsupervised Machine Learning on a Hybrid Quantum Computer. arXiv:1712.05771 (2017).
63. Pelofske E, Bärtschi A, Eidenbenz S. Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems on NISQ

Computers. arXiv:2301.00520v1.
64. Zhu Y, et al. Multi-round QAOA and advanced mixers on a trapped-ion quantum computer. Quantum Sci Technol.

2022;8:015007. https://doi.org/10.1088/2058-9565/ac91ef.
65. Shaydulin R, Pistoia M. QAOA with N · p≥ 200. arXiv:2303.02064 (2023).
66. Dunjko V, Ge Y, Cirac JI. Computational speedups using small quantum devices. Phys Rev Lett. 2018;121:25. https://

doi.org/10.1103/PhysRevLett.121.250501.
67. Glover F, Lewis M, Kochenberger G. Logical and inequality implications for reducing the size and difficulty of

quadratic unconstrained binary optimization problems. Eur J Oper Res. 2018;265:829–42. https://doi.org/10.1016/j.
ejor.2017.08.025.

68. Lewis M, Glover F. Quadratic unconstrained binary optimization problem preprocessing: theory and empirical
analysis. Networks. 2017;70:79–97. https://doi.org/10.1002/net.21751.

69. Fujii K, et al. Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with
smaller size quantum computers. arXiv:2007.10917 (2022).

70. Bechtold M, et al. Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices. arXiv:
2302.01792 (2023).

71. Peng T, et al. Simulating large quantum circuits on a small quantum computer. Phys Rev Lett. 2020;125:150504.
https://doi.org/10.1103/PhysRevLett.125.150504.

72. Amaro D, et al. Filtering variational quantum algorithms for combinatorial optimization. Quantum Sci Technol.
2022;7:015021. https://doi.org/10.1088/2058-9565/ac3e54.

73. Shee Y, et al. Qubit-efficient encoding scheme for quantum simulations of electronic structure. Phys Rev Res.
2022;4(2):023154. https://doi.org/10.1103/PhysRevResearch.4.023154.

74. Glos A, Krawiec A, Zimboras Z. Space-efficient binary optimization for variational quantum computing. npj Quantum
Inf. 2022;8:39. https://doi.org/10.1038/s41534-022-00546-y.

75. Fuchs FG, et al. Efficient encoding of the weighted MAX k-CUT on a quantum computer using QAOA. SN Comput Sci.
2021;2:89. https://doi.org/10.1007/s42979-020-00437-z.

76. Fuller B, et al. Approximate Solutions of Combinatorial Problems via Quantum Relaxations. arXiv:2111.03167 (2021).
77. Teramoto K, et al. Quantum-Relaxation Based Optimization Algorithms: Theoretical Extensions. arXiv:2302.09481

(2023).
78. Rancic MJ. Noisy intermediate-scale quantum computing algorithm for solving an n-vertex MaxCut problem with

log(n) qubits. Phys Rev Res. 2023;5(1):L012021. https://doi.org/10.1103/PhysRevResearch.5.L012021.
79. Winderl D, Franco N, Lorenz JM. A Comparative Study on Solving Optimization Problems with Exponentially Fewer

Qubits. arXiv:2210.11823 (2022).
80. Guo Liu J, et al. Variational quantum eigensolver with fewer qubits. Phys Rev Res. 2019;1:023025. https://doi.org/10.

1103/PhysRevResearch.1.023025.
81. Tibor Veszeli M, Vattay G. Mean Field Approximation for solving QUBO problems. arXiv:2106.03238 (2021).
82. Huang H-Y, Kueng R, Preskill J. Predicting many properties of a quantum system from very few measurements. Nat

Phys. 2020;16:1050–7. https://doi.org/10.1038/s41567-020-0932-7.

https://doi.org/10.1103/PhysRevA.104.L050401
https://doi.org/10.1103/PhysRevA.104.L050401
https://doi.org/10.1103/PhysRevX.10.011004
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1088/1367-2630/ab867b
https://doi.org/10.1088/1367-2630/ab867b
https://doi.org/10.1021/acs.jctc.9b01125
https://www.gurobi.com
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-642-29828-8_26
https://doi.org/10.1007/978-3-642-29828-8_26
https://doi.org/10.1145/227683.227684
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1007/s11128-019-2236-3
https://doi.org/10.22331/q-2021-01-28-388
https://doi.org/10.1038/s41567-020-01105-y
https://arxiv.org/abs/1712.05771
https://arxiv.org/abs/2301.00520v1
https://doi.org/10.1088/2058-9565/ac91ef
https://arxiv.org/abs/2303.02064
https://doi.org/10.1103/PhysRevLett.121.250501
https://doi.org/10.1103/PhysRevLett.121.250501
https://doi.org/10.1016/j.ejor.2017.08.025
https://doi.org/10.1016/j.ejor.2017.08.025
https://doi.org/10.1002/net.21751
https://arxiv.org/abs/2007.10917
https://arxiv.org/abs/2302.01792
https://arxiv.org/abs/2302.01792
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1088/2058-9565/ac3e54
https://doi.org/10.1103/PhysRevResearch.4.023154
https://doi.org/10.1038/s41534-022-00546-y
https://doi.org/10.1007/s42979-020-00437-z
https://arxiv.org/abs/2111.03167
https://arxiv.org/abs/2302.09481
https://doi.org/10.1103/PhysRevResearch.5.L012021
https://arxiv.org/abs/2210.11823
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevResearch.1.023025
https://arxiv.org/abs/2106.03238
https://doi.org/10.1038/s41567-020-0932-7


Huber et al. EPJ Quantum Technology           (2024) 11:52 Page 36 of 36

83. Kuang R, Barbeau M. Quantum permutation pad for universal quantum-safe cryptography. Quantum Inf Process.
2022;21:21. https://doi.org/10.1007/s11128-022-03557-y.

84. Draper TG. Addition on a Quantum Computer. Tech. Rep. http://xxx.lanl.gov/quant-ph (2000).
85. Boneh A, Hofri M. The Coupon-Collector Problem Revisited (1989).
86. Truger F, et al. Warm-starting and quantum computing: a systematic mapping study. 2023. arXiv:2303.06133

[quant-ph].
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