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Abstract
Possible squeezed states generated in a three-waveguide nonlinear coupler
operating with second harmonic generation is discussed. This study is carried out
using two well-known techniques; the phase space method (based on positive-P
representation) and the Heisenberg-based analytical perturbative (AP) method. The
effects of key design parameters were investigated under various conditions,
including full frequency matching, symmetrical and asymmetrical waveguide
initialization, and both codirectional and contr-adirectional propagation. The system
consistently produced long-lasting oscillatory squeezed states across all three
waveguides, even when only one waveguide was pumped with coherent light while
the others were in a vacuum state. Also, the performance and capacities of both
methods are critically evaluated. For low levels of key design parameters and in the
early stages of evolution, a high level of agreement between the two methods is
noticed. In the new era of quantum-based technology, the proposed system opens a
new avenue for utilising nonlinear couplers in nonclassical light generation.
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1 Introduction
Squeezed light is a Nonclassical light that is typically produced from the coherent state or
vacuum state (of light) by specific optical nonlinear interactions, and it displays reduced
noise in one of the two electric field quadrature components. Squeezed states of light have
such unique noise distribution where at least one field quadrature falls below the shot
noise level [1]. The need to search for efficient squeezed light sources is driven by their
profound implications in enhancing measurement precision [2], advancing quantum com-
munication [3], and enabling new applications in quantum information processing [4]. In
particular, by facilitating precise quantum gate operations and reducing errors which are
essential for reliable quantum computations [5]. Efficient squeezed light sources can sig-
nificantly reduce quantum noise, thereby improving the sensitivity and accuracy of mea-
surements in experiments and technologies operating at the quantum limit. This is partic-
ularly critical for gravitational wave detection [6], where detecting extremely weak signals
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requires a substantial reduction in noise. In quantum communication, efficient squeezed
light sources enhance the security and efficiency of quantum key distribution protocols by
reducing noise and increasing the signal-to-noise ratio, enabling secure communication
over long distances [7]. In medical imaging, squeezed light can enhance the resolution and
contrast of imaging techniques [8, 9], leading to better visualization of biological tissues
and structures [10, 11], which is essential for accurate diagnosis and treatment. Finally,
the ability to produce squeezed light efficiently is essential for integrating these sources
into compact and scalable photonic devices [12], which are key to the development of
advanced quantum photonic circuits and optical communication systems. Therefore, the
search for efficient squeezed light sources is a practical necessity for the advancement of
various cutting-edge technologies.

Creating squeezed light requires nonlinear interactions, which can be achieved using
various devices [13–16]. Although a single nonlinear waveguide can generate squeezed
light, multi-waveguide devices provide several advantages over single-waveguide struc-
tures. They allow for more complex designs where coupling coefficients and waveg-
uide separations can be finely tuned, providing greater control over squeezing param-
eters. By adjusting the relative phases and intensities in different waveguides, better
phase-matching conditions can be achieved [17]. Additionally, multi-waveguide struc-
tures enhance nonlinear interactions [18]; optimizing these interactions across multiple
waveguides results in higher degrees of squeezing compared to single waveguides. Multi-
waveguide systems also improve the control of spatial modes, reducing noise [19] and en-
hancing the purity of squeezed states. Furthermore, multi-waveguide devices can perform
complex operations such as beam splitting, multiplexing, and demultiplexing, which are
not possible with single waveguides. These systems are more adaptable to integration with
other photonic components on a single chip [20], leading to more scalable and compact
designs for quantum photonic circuits.

To harness the benefits of multi-waveguide structures in generating nonclassical light,
the nonlinear coupler (NLC) has been proposed [21–23]. An NLC consists of two closely
spaced waveguides, each supporting one or more optical modes from a laser source. These
waveguides exchange energy through the coupling of their evanescent fields. Quantum
nonlinear optical couplers are simple and experimentally realizable. These integrate well
with quantum optical devices, such as quantum circuits, photonic chips, and all-optical
logic gates [24, 25]. In addition, the waveguide interaction length and coupling in the
nonlinear coupler can also be used to regulate quantum phenomena. We may classify
NLC into two distinct classes based on the number of waveguides: first, the typical two-
waveguide devices that have been extensively investigated [26–29], and second, the re-
cently suggested multi-waveguide class of devices [30–34]. The two-waveguide class of
nonlinear couplers (NLCs) fundamentally exhibits nonclassical behavior. However, re-
cently proposed multichannel NLCs could serve as superior sources of nonclassical light
due to their rich design parameters and the additional advantages mentioned in the previ-
ous paragraph. The source of nonlinearity in NLCs can be the second [35] or third-order
[36], or even a combination of both the linear and nonlinear [37]. Third-order nonlinear
materials can set off a wide range of nonclassical effects. Yet, it is the second-order nonlin-
ear medium that has a greater impact. Therefore, we believe that a multi-waveguide NLC
operating with second-order nonlinearity should be a good nonclassical light generator.
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To investigate the nonclassical features of light in our system, we employ two meth-
ods, rather than relying on a single theoretical prediction. This dual approach not only
ensures accurate findings but also provides insights into the strengths and weaknesses
of each method used. In previous research on quantum NLCs, the behavior of quantum
systems is often exclusively explored with one of these methods. The first method is the
phase space approach, a key technique under the Schrödinger picture. Here, the operators
remain fixed while the state vector changes with time. By substituting the correct Hamil-
tonian for the system into the von Neumann equation of motion, we construct the master
equation of the density matrix. We then employ positive-P representation to convert the
dynamical master equation into its corresponding classical Fokker-Planck (FP) equation in
the phase space [38, 39]. Using Ito rules, the FP equation is converted to an equivalent set
of stochastic differential equations describing the evolution of the phase space variables.
The positive-P method emphasizes accurate estimation by incorporating stochastic tra-
jectories and the evolution of quantum systems is simulated without truncation [30–34].
The second method is the analytical perturbative (AP) approach based on the Heisen-
berg picture, where the field operators change over time while the state vector remains
static. The AP method, initially introduced by Sen and Mandal [40] and later adopted by
other researchers (see, e.g., [41, 42]), is an enhancement to the well-known short-length (or
short-time) approximation method used by Perina and others to study various quantum
systems (see, e.g., [43–45]). In the AP method, quantum-coupled nonlinear differential
equations are obtained using the Heisenberg equation of motion. The solution of these
coupled equations of motion is assumed in the form of the Baker–Campbell–Hausdorff
(BCH) formula. The BCH formula is then expanded in terms of nested commutators trun-
cated up to the second order to make the calculations manageable, assuming that higher-
order commutators decrease in magnitude sufficiently fast, justifying their omission [40].
This is often valid in weak perturbation regimes but might not hold in strongly interacting
systems. Consequently, the AP method is approximated because it relies on the truncated
BCH formula. The mathematical description of the current three-waveguide system using
both methods is detailed in the next section.

In our recent work [46], we demonstrated that a three-waveguide codirectional coupler
system operating under frequency mismatching conditions might serve as a better alterna-
tive to the typical two-channel NLC or those operating with third-order Kerr nonlinearity.
In this study, we employ both the AP and the phase space methods to examine the single-
mode squeezing in three-channel NLC waveguides with second-order nonlinearity under
both codirectional and contra-directional propagation. A single fundamental mode travels
across each waveguide with fundamental frequency ω assuming full frequency matching.
The fundamental photons of the pump field also generate second harmonic (SH) modes
propagating along the fiber with double frequency (2ω). Figure 1 depicts a schematic il-
lustration of the system under consideration for the case of codirectional (Fig. 1a) and
contra-directional propagation (Fig. 1b). In codirectional propagation, all three modes Ê1,
Ê2, and Ê3 propagate in the same direction, whereas in contra-directional propagation, one
mode (Mode Ê2) is assumed to propagate in opposite direction. The effect of key design
parameters on the generated squeezed states is examined under full frequency matching
and for both codirectional and contra-directional propagation. Also, the performance and
capacities of both methods are critically evaluated. The current triple-waveguide struc-
ture may provide a more efficient mechanism for generating nonclassical effects with en-
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Figure 1 Basic diagram of the three-channel nonlinear coupler with second-order nonlinearity (a)
codirectional propagation of three fundamental modes (Ê1, Ê2 and Ê3). (b) A contra-directional system where
the mode Ê2 propagates opposite to the other two modes

hanced performance. This is because its coupled-mode interactions and correlations are
more adaptable.

2 Mathematical formulation
Here, we describe the mathematical formulation of the system under consideration us-
ing both methods. We first construct the Hamiltonian which properly describes the sys-
tem under consideration. For three-channel NLC devices, such Hamiltonian can be con-
structed as follows:

Ĥ = Ĥfree + ĤLinear + ĤNonlinear + ĤSHG

= �

[
ω1â†

1â1 + ω2â†
2â2 + ω3â†

3â3

]
+ �κ

[
â†

1â2 + â†
2â3 + â†

3â1 + h.c.
]

(1)

+
ig
2
�

[(
â†2

1 b̂1 + â†2
2 b̂2 + â†2

3 b̂3 – h.c.
)]

+ �

[
(2ω1) b̂†

1b̂1 + (2ω2) b̂†
2b̂2 + (2ω3) b̂†

3b̂3

]

The free Hamiltonian Ĥfree represents the three fundamental modes propagating in their
channels with fundamental frequencies ω1, ω2, and ω3, respectively. The Hamiltonian lin-
ear coupling ĤLinear represents the linear coupling between each one of the three modes
and the strength of the coupling is quantified by the linear coupling coefficient κ while h.c.
stands for the Hermitian conjugate. This coupling is due to the overlapping of the evanes-
cent waves of each propagating field mode. The ĤNonlinear represents the second-order
nonlinear interaction between each fundamental mode and the relevant waveguide, and
the strength of coupling is quantified by the nonlinear coupling coefficient g. Finally, the
Hamiltonian ĤSHG determines three SH modes propagating with frequencies 2ω1, 2ω2,
and 2ω3, respectively. The second-order nonlinear interaction process generates these
modes with frequencies double those of the fundamental modes.

2.1 The phase-space method
To describe the dynamics of the density matrix evolution, the phase space method sub-
stitutes the full Hamiltonian into the von Neumann equation of motion. Following that,
one of the representations might be used to transform the master equation to its classical
Fokker-Planck (FP) equation in phase space. In this work, we use the positive-P repre-
sentation. An initial time-dependent distribution function P is guaranteed to exist, to be
positive, and to fulfill an FP equation in the positive-P representation. One method for
solving the FP equation is to use Ito rules to determine the equivalent set of noisy coupled
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stochastic equations. The phase space variables utilized to compute the required nonclas-
sical states can be obtained by numerically solving these stochastic equations. We recall
the standard form of the Liouville-Von Neumann equation.

i�
∂ρ̂

∂t
=

[
Ĥ , ρ̂

]
(2)

Substituting the total Hamiltonian from Eq. (1) into Eq. (2) yields the reduced dynamical
equation of the density operator as

∂ρ̂

∂t
= iω1

(
ρ̂â†
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3â3 – â†
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1â2ρ̂

)
+ iκ

(
ρ̂â1â†
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3â1ρ̂

)
+ iκ

(
ρ̂â3â†
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(3)

Equation (3) is a quantum mechanical partial differential equation. It describes the time
evolution of the density operator ρ̂ . However, this equation is difficult to solve. The stan-
dard method in quantum optics is to convert it to the corresponding classical c-number FP
equation using one of the available representations such as positive-P or Wigner. Here we
employ the positive-P representation with these quantum-classical operator correspon-
dences [38, 39].

â†ρ̂ =
(

β –
∂

∂α

)
P, âρ̂ = αP, ρ̂â =

(
α –

∂

∂β

)
P, ρ̂â† = βP (4)

The quantum-classical correspondences in positive-P representation map the evolution of
the density matrix ρ̂ to a classical probability distribution P(α,β , t) in phase space where α

and β are independent complex variables. The FP equation may then be expressed as a col-
lection of noisy stochastic equations obeying Ito principles, which is a standard approach
in statistical mechanics [47]. For the present system, the following stochastic differential
equations result from the process:

dα1

dt
= –iω1α1 + gᾱ1β1 – iκα2 – iκα3 +

√
gᾱ1η1 (t) (5)

dᾱ1

dt
= –i (2ω1) ᾱ1 –

g
2
α2

1 (6)

dβ1

dt
= iω1β1 + gα1β̄1 + iκβ2 + iκβ3 +

√
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dβ̄1

dt
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g
2
β2

1 (8)

dα2

dt
= –iω2α2 + gᾱ2β2 – iκα1 – iκα3 +

√
gᾱ2η3 (t) (9)
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dᾱ2

dt
= –i (2ω2) ᾱ2 –

g
2
α2

2 (10)

dβ2

dt
= iω2β2 + gα2β̄2 + iκβ1 + iκβ3 +

√
gβ̄2η4 (t) (11)

dβ̄2

dt
= i (2ω2) β̄2 –

g
2
β2
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dα3

dt
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√
gᾱ3η5 (t) (13)

dᾱ3

dt
= –i (2ω3) ᾱ3 –

g
2
α2
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dβ3

dt
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√
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2
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In Eqs. (5)–(16), we can simplify the picture by considering that αi and βi are the classical
equivalence of the operators âi and â†

i (i = 1, 2, and 3), respectively, while ᾱi and β̄i are
the classical equivalent of the operators b̂i and b̂†

i . Therefore, for the three fundamental
modes, we have three sets of variables (αi, βi) while for the three SH modes, we have
another three sets of these classical complex variables

(
ᾱi, β̄i

)
. Note that, Eqs. (5)–(10)

contain fluctuating forces ηi (t) (i = 1, 2, 3, 4, 5 and 6). These fluctuations have zero mean
and are correlated in time

〈
ηi (t) ηj

(
t′)〉 = δijδ

(
t – t′). As a result, the noise will dominate

any single trajectory solution to these equations. A stable solution can only be obtained
by averaging it across many trajectories.

2.2 The Analytical Perturbative (AP) method
The AP method has been used to study the quantum behaviour of a variety of systems
[40–42]. This technique has time-efficient numerical computation since it requires a sin-
gle operation only. In this approach, quantum-coupled nonlinear differential equations
are obtained by plugging in the proper Hamiltonian or the momentum operator into the
Heisenberg equation of motion. The solution of these coupled equations of motion is as-
sumed in the form of the BCH formula, which is then expanded as a Taylor series up to
the second order, and the intuitive analytical solution is proposed based on that expansion.
As this technique is Schrödinger-picture based, the evolution of each operator is individu-
ally described through the quantum mechanical Heisenberg equation of motion, generally
expressed as

i�
dâj

dt
=

[
âj, Ĥ

]
(17)

Substituting the Hamiltonian from Eq. (1) into Eq. (17) for operators â1, â2, â3, b̂1, b̂2

and b̂3, we obtain the following coupled system of equations, which describes the time
evolution of the operators, as follows:

dâ1

dt
= iω1â1 + gâ†

1b̂1 + iκâ2 + iκâ3 (18)

dâ2

dt
= iω2â2 + gâ†

2b̂2 + iκâ1 + iκâ3 (19)
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dâ3

dt
= iω3â3 + gâ†

3b̂3 + iκâ2 + iκâ1 (20)

db̂1

dt
= i (2ω1) b̂1 –

g
2

â2
1 (21)

db̂2

dt
= i (2ω2) b̂2 –

g
2

â2
2 (22)

db̂3

dt
= i (2ω3) b̂3 –

g
2

â2
3 (23)

Equations (18)–(20) in the previous set of coupled equations describe the propagation of
operators representing the fundamental modes while Eqs. (21)–(23) describe the propaga-
tion of the operators representing the SH modes. Solutions to these equations are assumed
to satisfy the Baker-Campbell-Hausdorff (BCH) formula, as follows.

âj = exp

(
i
�

Ĥt
)

âj(0) exp

(
–

i
�

Ĥt
)

= âj(0) +
it
�

[
Ĥ , âj(0)

]

–
1
2

t2

�2

[
Ĥ ,

[
Ĥ , âj(0)

]]
+ · · ·

(24)

For each operator (â1, â2, â3, b̂1, b̂2 and b̂3), the commutation relations
[

Ĥ , âj(0)
]

and[
Ĥ ,

[
Ĥ , âj(0)

]]
in Eq. (24) is evaluated utilizing Eqs. (18)–(23) to obtain the intuitive op-

erator solutions of the following forms:

â1 (t) = â1 (0)A1 +â2 (0)A2 +â3 (0)A3 +â†
1 (0) b̂1 (0)A4 +â†

2 (0) b̂2 (0)A5

+ â†
3 (0) b̂3 (0)A6 +â†

2 (0) b̂1 (0)A7 +â†
3 (0) b̂1 (0)A8 + A9 â1b̂†

1b̂1 + A10 â†
1â2

1

(25)

â2 (t) = â1 (0)B1 +â2 (0)B2 +â3 (0)B3 +â†
1 (0) b̂2 (0)B4 +â†

1 (0) b̂1 (0)B5

+ â†
2 (0) b̂2 (0)B6 +â†

3 (0) b̂3 (0)B7 +â†
3 (0) b̂2 (0)B8 + B9 â2b̂†

2b̂2 + B10 â†
2â2

2

(26)

â3 (t) = â1 (0)C1 +â2 (0)C2 +â3 (0)C3 +â†
1 (0) b̂3 (0)C4 +â†

2 (0) b̂2 (0)C5

+ â†
1 (0) b̂1 (0)C6 +â†

3 (0) b̂3 (0)C7 +â3 (0) b̂†
3 (0) b̂3 (0)C8

+ C9 â†
2b̂3 + C10 â†

3â2
3

(27)

b̂1 (t) = D1 b̂1 (0) + D2 â2
1 (0) + D3 â2 (0) â1 (0) + D4 â3 (0) â1 (0)

+ D5 â†
1 (0) â1 (0) b̂1 (0) + D6 â1 (0) â†

1 (0) b̂1 (0)
(28)

b̂2 (t) = E1 b̂2 (0) + E2 â2
2 (0) + E3 â1 (0) â2 (0) + E4 â3 (0) â2 (0)

+ E5 â†
2 (0) â2 (0) b̂2 (0) + E6 â2 (0) â†

2 (0) b̂2 (0)
(29)

b̂3 (t) = F1 b̂3 (0) + F2 â2 (0) â3 (0) + F3 â1 (0) â3 (0) + F4 â2
3 (0)

+ F5 â†
3 (0) â3 (0) b̂3 (0) + F6 â3 (0) â†

3 (0) b̂3 (0)
(30)

In the analytical method, it is common to assume a weak nonlinear interaction in the
form of a perturbation and ignore the higher-order nonlinear coupling terms. However,
in the previous operator solutions in Eqs. (25)–(30), we have retained all nonlinear terms,
i.e., both terms containing nonlinear coefficients g and those with g2. The coefficients
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{Ak(t)}10
1 , {Bk(t)}10

1 , {Ck(t)}10
1 , {Dk(t)}6

1, {Ek(t)}6
1 and {Fk(t)}6

1 are all time-dependent. In the
well-known short-length approximation method, these coefficients are essentially approx-
imated by the second-degree polynomials in time. The AP method is superior to the short-
length approximation method because these coefficients are evaluated precisely using ad-
ditional mathematical steps. Basically, in the AP approach, sets of coupled differential
equations describing these coefficients are derived by substituting the previous operator
solutions in Eqs. (25)–(30) back into the operator evolution Eqs. (18)–(23) and equating
similar terms on both sides. To obtain the coefficients, these sets of equations are numer-
ically solved (please see Appendix A).

2.3 Calculation of single-mode squeezing
In quantum optics, the electric field operator for a single mode Êj (t) can be expressed in
terms of two quadrature operators, X and Y , as Êj (t) = E0

(
X̂jcos (ωt) + Ŷjsin (ωt)

)
. The

optical field quadrature operators are written in terms of creation and annihilation opera-
tors as X̂j = 1

2

(
âj + â†

j

)
and Ŷj = 1

2i

(
âj – â†

j

)
and

〈
(
X̂j)2

〉
,
〈
(
Ŷj)2

〉
are their variances. For

coherent light, the noise or uncertainty is equally distributed between these two quadra-
tures. In squeezed states, however, the uncertainty in one quadrature component is re-
duced below the standard noise limit of a coherent state, while the uncertainty in the or-
thogonal quadrature is increased. This trade-off ensures that the Heisenberg uncertainty

principle is not violated [1], i.e.,
〈
(
X̂j)2

〉
< 1

4 or
〈
(
Ŷj)2

〉
< 1

4 where
〈
(
X̂j)2

〉
=

〈
X̂2

j

〉
–

〈
X̂j

〉2

and
〈
(
Ŷj)2

〉
=

〈
Ŷ 2

j

〉
–

〈
Ŷj

〉2
. These quadrature variances are expressed in terms of the cre-

ation and annihilation operators as

⎡
⎣

〈
(
X̂j)2

〉
〈
(
Ŷj)2

〉
⎤
⎦ =

1
4

{
1 + 2

〈
â†

j âj

〉
– 2

〈
â†

j

〉 〈
âj

〉 ±
[〈

â2
j

〉
–

〈
âj

〉2 +
〈
â†2

j

〉
–

〈
â†

j

〉2
]}

j = 1, 2, 3.

(31)

In the preceding equation, j is the operator number and the bracket < > represents the
normal-ordered expectation value, which necessitates the creation operators to be always
to the left of the annihilation operators in any of their products. In the phase space method,
the operators âj and â†

j in Eq. (31) are replaced with their classical equivalence, i.e., the
complex phase space variables αj and βj respectively. This yields the following equation of
the quadrature variances of the field in phase space:

⎡
⎣

〈
(
X̂j)2

〉
〈
(
Ŷj)2

〉
⎤
⎦ =

1
4

{
1 + 2

〈
βjαj

〉
– 2

〈
βj

〉 〈
αj

〉 ±
[〈

α2
j

〉
–

〈
αj

〉2 +
〈
β2

j

〉
–

〈
βj

〉2]}

j = 1, 2, 3.

(32)

For the analytical method, expressions for the quadrature variances of the fundamen-
tal modes are obtained by substituting the operator solutions from Eqs. (25)–(27) into
Eq. (31) and utilizing the classical equivalence

〈
âj (0)

〉
= αj and

〈
b̂j (0)

〉
= βj results in the
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field quadratures expressions shown below:
⎡
⎢⎢⎣

〈(

X̂1

)2
〉

〈(

Ŷ1

)2
〉

⎤
⎥⎥⎦ = 1/4

[
1 + 2

(|A5|2 |β2|2 + |A6|2 β∗
3 β3 + A7 A∗

5 β∗
2 β1

+ A8 A∗
6 β∗

3 β1 + A5 A∗
7 β∗

1 β2 + A6 A∗
8 β∗

1 β3
)

± (
A4 A1 β1 + A10 A1 α2

1 + A5 A2 β2 + A7 A2 β1

+ A6 A3 β3 + A8 A3 β1 + c .c.
)]

(33)

⎡
⎢⎢⎣

〈(

X̂2

)2
〉

〈(

Ŷ2

)2
〉

⎤
⎥⎥⎦ = 1/4

[
1 + 2

(|B5|2 |β1|2 + |B7|2 |β3|2 + B5 B∗
4 β∗

2 β1

+ B4 B∗
5 β∗

1 β2 + B8 B∗
7 β∗

3 β2 + B7 B∗
8 β∗

2 β3
)

± (
B4 B1 β2 + B5 B1 β1 + B6 B2 β2 + B10 B2α

2
2

+ B7 B3 β3 + B8 B3 β2 + c .c.
)]

(34)

⎡
⎢⎢⎣

〈(

X̂3

)2
〉

〈(

Ŷ3

)2
〉

⎤
⎥⎥⎦ = 1/4

[
1 + 2

(|C5 |2|β2|2 + |C6 |2|β1|2 + C6 C∗
4 β∗

3 β1 + C4 C∗
6 β∗

1 β3

+ C5 C∗
9 β∗

3 β2
)

± (
C4 C1 β3 + C6 C1 β1 + C5 C2 β2 + C9 C2 β3 + C7 C3 β3

+ C10 C3 α2
3 + c .c.

)]

(35)

where c.c. symbolizes the complex conjugate. A brief schematic diagram summarizing
the mathematical steps for both the phase space method and the analytical perturbative
method is provided in Appendix B to clarify the previous mathematical procedures.

2.4 The contra-directional propagation
In codirectional propagation, all light modes travel in the same direction, as shown in
Fig. 1a. This maximizes the interaction length between the waveguides, enhancing nonlin-
ear interactions. Additionally, phase matching, mode coupling, dispersion management,
and energy transfer between modes are more straightforward, making it easier to achieve
improved squeezing within the waveguide coupler [48–50]. In contrast, contra-directional
propagation, depicted in Fig. 1b, involves some modes propagating in the opposite direc-
tion. This setup can be used to control the degree of squeezing by varying the phase mis-
match between the propagating modes due to back-reflection and phase reversal effects.
However, the effective interaction length in contra-directional systems might be shorter
due to the opposing travel directions, which can reduce the efficiency of nonlinear inter-
actions. Despite this, novel interference effects can emerge, potentially enhancing certain
squeezing characteristics. In addition, contra-directional systems can inherently provide
some level of optical isolation, reducing noise from back-reflected signals. This isolation
can help maintain the purity of the squeezed states, though it also makes phase match-
ing more challenging. In terms of applications, codirectional propagation is advantageous
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for long-distance quantum communication links where stable and high-quality squeezed
states are required [51]. Contra-directional systems, on the other hand, might offer ben-
efits in interferometric setups, where phase reversal and back-reflection can be used to
enhance measurement sensitivity.

In the investigation of the contra-directional propagation, we follow the same proce-
dure proposed by Perina [44, 45] and subsequently by others [52, 53]. First, the temporal
system is converted into a spatial system. The conversion can be done using the time-
displacement formula dt = dz

vc
, where vc is the speed mode. Second, an opposite sign is in-

troduced to the spatial equations of the contra-propagating mode Ê2 as shown in Fig. 1(b).
In phase space method, the conversion is made to the stochastics differential Eqs. (5)–(16)
by dividing both sides of each equation by vc and introducing a negative sign to the spatial
equations of the second mode Ê2. In this case, the Stochastic set of differential equations
representing the contra-directional case can be written as

dα1

dz
= –ik1α1 + Gᾱ1β1 – iKα2 – iKα3 +

√
Gᾱ1ξ1 (z) (36)

dβ1

dz
= ik1β1 + Gα1β̄1 + iKβ2 + iKβ3 +

√
Gβ̄1ξ2 (t) (37)

dα2

dz
= +ik2α2 – Gᾱ2β2 + iKα1 + iKα3 –

√
Gᾱ2ξ3 (t) (38)

dβ2

dz
= –ik2β2 – Gα2β̄2 – iKβ1 – iKβ3 –

√
Gβ̄2ξ4 (t) (39)

dα3

dz
= –ik3α3 + Gᾱ3β3 – iKα2 – iKα1 +

√
Gᾱ3ξ5 (t) (40)

dβ3

dz
= ik3β3 + iKβ2 + Gα3β̄3 + iKβ1 +

√
Gβ̄3ξ6 (t) (41)

dᾱ1

dz
= –i (2k1) ᾱ1 –

G
2

α2
1 (42)

dβ̄1

dz
= i (2k1) β̄1 –

G
2

β2
1 (43)

dᾱ2

dz
= –i (2k2) ᾱ2 –

G
2

α2
2 (44)

dβ̄2

dz
= i (2k2) β̄2 –

G
2

β2
2 (45)

dᾱ3

dz
= –i (2k3) ᾱ3 –

G
2

α2
3 (46)

dβ̄2

dz
= i (2k3) β̄2 –

G
2

β2
3 (47)

In the previous system (36)–(47), we have used kj = ωj
vc

, with j = 1,2,3, G = g
vc

, K = κ
vc

and
ξl (z) = ηl(t)√vc

with l = 1, 2, . . . , 6. For the AP method, the same process is also performed on
the set of equations (A1)-(A48). It is important to note that the Hamiltonian (1) describes
the fields at all points of the interaction volume. This means that the spatial description is
accurate only when the forward wave reaches z = L and the backward wave reaches z = 0.
However, it does not accurately describe the transient states of the contra-propagating
fields for 0 < z < L. For all operators in Eq. (1), this formulation guarantees the conservation
of the boson commutation rules in both forward and backward propagating fields.
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2.5 Numerical procedure
To summarize the numerical strategy for the phase space method, the system of
Eqs. (5)–(16) is integrated numerically using the fourth-order Runge-Kutta method. As
explained earlier, averaging across many trajectories is required to obtain a stable solution,
which yields numerical values of (αi, βi) for the three fundamental modes and

(
ᾱi, β̄i

)
for

the three SH modes, where i = 1, 2, and 3. These values are used to evaluate the opti-
cal field quadrature variances for the propagating modes

〈
(
X̂j)2

〉
,
〈
(
Ŷj)2

〉
using Eq. (32).

For the analytical method, the numerical procedure involves two main steps – viz. (i) solv-
ing simultaneously the coupled sets of Eqs. (A1)–(A48) to obtain numerical values of the
time-dependent coefficients {Ak(t)}10

1 , {Bk(t)}10
1 , {Ck(t)}10

1 , {Dk(t)}6
1, {Ek(t)}6

1 and {Fk(t)}6
1,

and (ii) with the knowledge of these coefficients, the optical field quadrature variances for
the propagating modes

〈
(
X̂j)2

〉
,
〈
(
Ŷj)2

〉
can be evaluated using Eqs. (33)–(35). It should

be emphasized that (αi, βi) and
(
ᾱi, β̄i

)
are time-dependent in the phase-space method,

whereas they are time-independent in the analytical method. Finally, for the convenience
of numerical simulation, dimensionless input parameters are used. For the codirectional
system, the relevant systems of Eqs. (5)–(16) and (A1)–(A48) are scaled with respect
to the input frequency of the first mode (ω1), such that ω̃1 = ω1

ω1
= 1, ω̃2 = ω2

ω1
, ω̃3 = ω3

ω1
,

g̃ = g
ω1

, κ̃ = κ
ω1

, τ = ω1t and η̃ (τ ) = η(t)√
ω1

. For The contra-directional case, the spatial system
(36)–(47) can be scaled with the wavenumber of the first mode k1 using the dimensionless
parameters, k̃1 = k1

k1
= 1, k̃2 = k2

k1
, k̃3 = k3

k1
, G̃ = G

k1
, K̃ = K

k1
, z̃ = k1z and ξ̃l = ξl√

k1
. This will

produce a dimensionless form of the spatial system (36)–(47).

3 Result and discussion
We begin this section by looking at the evolution of the field quadrature variances at var-
ious initial input field amplitudes. Other input parameters are fixed, with the nonlinear
coupling coefficient of g̃ set to 0.01 and the linear coupling κ̃ to 0.1. likewise, the frequency
of propagating modes is fixed at ω̃1 = ω̃2 = ω̃3 = 1. In Fig. 2, We focus on the case that the
initial amplitudes of the input fields in the three waveguides are equal; this is known as
symmetric initialization (where α1 = α2 = α3 = 1). Under this combination of input val-
ues, both methods yield a continuous oscillation pattern. Squeezing in the first, second,
and third modes is found to be identical, with all three modes exhibiting the same degree
and duration of long-lasting squeezing. Therefore, only the squeezed states generated in
one channel are shown in Fig. 2 and subsequent figures. At the earlier stages of evolution,
until τ ∼ 4 both methods acquire a high degree of agreement. Whereas, as time passes,
the phase space method predicts a lower amplitude for the field quadratures than the AP

Figure 2 Evolution of squeezing for mode Ê1 with α1 = α2 = α3 = 1, ω̃1 = ω̃2 = ω̃3 = 1, g̃ = 0.01 and κ̃ = 0.1
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Figure 3 Fluctuation of squeezing for (a) coherent-mode Ê1, (b) vacuum-mode Ê2 with α1 = 1, α2 = α3 = 0,
ω̃1 = ω̃2 = ω̃3 = 1, g̃ = 0.01 and κ̃ = 0.1

method. Despite this, both systems display signals that are completely in phase. However,
the constant increase in field amplitude found by the AP method over time does not ap-
pear reasonable. This indicates that, under symmetric initialization of the system, the AP
method provides reasonable results only during the early stages of evolution. Moreover,
the accuracy of this range appears to depend on the specific combination of input param-
eters used.

In Fig. 3, the results are obtained by initializing the system with a single coherent mode
(α1 = 1) and vacuum states for the rest (α2 = α3 = 0); this is known as asymmetric ini-
tialization. Additional input parameters are maintained in the same manner as in Fig. 2.
Figure 3(a) depicts the squeezing generated by the mode initiated by a coherent mode,
while Fig. 3(b) illustrates the squeezing generated by the second mode (Ê2) initiated by
a vacuum state. The third mode (Ê3) exhibits similar behavior to Ê2 and is therefore not
shown to avoid repetition. This means that with a single coherent light source, the system
can generate squeezed light from all three waveguides. This capability to produce multi-
ple squeezed outputs from a single source is a significant feature of a multiple-waveguide
device. Regarding the coherent mode, both methods are nearly in total agreement and suf-
ficiently in phase for lengthy periods (up to τ ≈ 7). After that, discrepancies between both
methods start appearing. Nevertheless, modes prepared in vacuum states have shown an
excellent agreement for longer evolution distances, as shown in Fig. 3(b) for vacuum mode
Ê2. Similar results were obtained for the vacuum mode Ê3. This supports our hypothesis
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Figure 4 Squeezing in mode Ê1 for (a) κ̃ = 0.01, (b) κ̃ = 0.09 and (c) κ̃ = 0.5 with α1 = α2 = α3 = 1,
ω̃1 = ω̃2 = ω̃3 = 1 and g̃ = 0.01

that the AP method performs well during the early stages of evolution and for low val-
ues of input parameters, even under asymmetric initialization. However, both methods
demonstrate the general trend of oscillatory squeezed states, and both detect the same
form of long-lasting oscillatory squeezed states.

We now examine the effects of different linear coupling strengths on squeezing. In prac-
tice, this parameter can be manipulated by altering the distance between channel waveg-
uides. It is possible to enhance the linear coupling constant by bringing the channel waveg-
uides closer together, and vice versa. Figure 4(a), 4(b), and 4(c) depict the outcomes for
scaled linear coupling strength of κ̃ = 0.01, κ̃ = 0.09 and κ̃ = 0.5, respectively. To generate
these results, all modes are prepared in coherent states with α1 = α2 = α3 = 1 (symmetric
initialization) and a common frequency ω̃1 = ω̃2 = ω̃3 = 1. In addition, the nonlinear cou-
pling constant is set to g̃ = 0.01. Here, we present the outcome for the first mode only since
the other two modes generate exactly similar results. At κ̃ = 0.01 (Fig. 4(a)), both meth-
ods are totally in-phase and completely agree with one another till τ ∼ 10; however, at
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κ̃ = 0.09, the agreement in maximal amplitude is only maintained up to τ ∼ 4 (Fig. 4(b)).
When κ̃ = 0.5 (Fig. 4(c)), the results obtained from the phase space method and the AP
method are different; the phase space method generates collapses-revivals behaviour with
a small amplitude, whereas the AP method predicts a very high squeezing amplitude. In
this case, the highest level of agreement is only reached during the earliest phases of evo-
lution up to τ ∼ 1 only. In summary, for symmetric initialization, the discrepancy in the
field amplitude detected by both methods increases as the linear coupling coefficients in-
crease. This is because, for higher values of the linear couplings, the AP method begins to
deviate at shorter time scales. However, both methods agree on the generation of a long-
lasting squeezing that goes much further beyond τ = 10 from the current three-waveguide
system.

Figure 5 shows squeezing induced at different values of linear coupling constant (k̃), as
those in Fig. 4. Here, however, the first waveguide is prepared in a coherent state with mag-
nitude α1 = 1 while the second and the third waveguided are initially prepared in vacuum
states with α2 = α3 = 0 (asymmetric initialization). We just consider the squeezing caused
by the coherent mode Ê1. Other modes show squeezed states similar to those produced
in Fig. 3b. At κ̃ = 0.01 (Fig. 5(a)), the observed results are comparable to those in Fig. 4(a).

Figure 5 Single-mode squeezing in coherent-mode Ê1 for (a) κ̃ = 0.01, (b) κ̃ = 0.09 and (c) κ̃ = 0.5 with
α1 = 1, α2 = α3 = 0, ω̃1 = ω̃2 = ω̃3 = 1 and g̃ = 0.01
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Figure 6 Variation of squeezing in mode Ê1 for (a) g̃ = 0.05 and (b) g̃ = 0.08 with α1 = α2 = α3 = 1,
ω̃1 = ω̃2 = ω̃3 = 1 and κ̃ = 0.1

This similarity may be attributable to the negligible levels of linear coupling strength. At
κ̃ = 0.09 (Fig. 5(b)), both approaches generate comparable stable oscillation patterns, how-
ever, at κ̃ = 0.5 (Fig. 5(c)), the oscillation of squeezing is no longer continuous, and a pat-
tern of mild collapses and revivals is observed. In addition, a large value of κ̃ produces a
squeezing with substantial oscillatory quadrature fluctuations, as shown in Fig. 4(c) and
5(c). In summary, for asymmetric initialization, the discrepancy in the detected field am-
plitude between the two methods increases as the linear coupling coefficients increase.
However, both methods agree on the detection of long-lasting squeezing that goes be-
yond τ = 10. This long-lasting squeezing is useful in various potential applications such
as gravitational-wave observatories, quantum information protocols, quantum metrology,
and neuromorphic machine learning [54].

Next, we investigate the influence of nonlinear coupling on the generated squeezed light
in the current system. Figures 6 and 7, respectively, depict this for the symmetrical and
asymmetrical initializations. Figure 6(a) and (b) illustrate the squeezing produced at two
distinct values of coupling coefficient, viz. g̃ = 0.05 (Fig. 6(a)) and g̃ = 0.08 (Fig. 6(b)). As
shown in Fig. 6, both the values of g̃ yield two patterns with similar characteristics. Yet,
the maximal squeezing amplitude appears to be greater at g̃ = 0.08 than at g̃ = 0.05. Hence,
the squeezed signal becomes increasingly significant as the nonlinear coupling increases.
Beginning at a specific time (τ ≈ 8), the squeezing signal disappears in the phase space.
Figure 7 examines the effect of nonlinear coupling in the situation of asymmetrical initial-
ization; the first waveguide is prepared in a coherent state while the other two waveguides
are prepared in vacuum states. Like the values used in Fig. 6, squeezing is examined at
g̃ = 0.05 and g̃ = 0.08 (Fig. 7(a) and (b) correspondingly). As anticipated, both values of the
nonlinear coefficient result in the same degree of squeezing. In this case, a strong signal of
squeezing is also noticed when g = 0.08 rather than g = 0.05. In conclusion, the intensity of
the squeezing grows as the nonlinear coupling rises. In summary, here for both symmet-
ric and asymmetric initialization, the discrepancy in the detected field amplitude between
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Figure 7 Variation of quadrature variances in coherent-mode Ê1 for (a) g̃ = 0.05 and (b) g̃ = 0.08 with α1 = 1,
α2 = α3 = 0, ω̃1 = ω̃2 = ω̃3 = 1 and κ̃ = 0.1

Figure 8 Variation of squeezing in mode Ê1 as a function of scaled distance Z̃ for (a) K̃ = 0.1, (b) K̃ = 0.3 and
(b) K̃ = 0.5 with α1 = α2 = α3 = 1, k̃1 = k̃2 = k̃3 = 1 and G̃ = 0.01

the two methods increases over time. However, both methods agree on the detection of
the same range of squeezing.

Finally, we will present our observation when from the contra-directional propagation.
In this case, the second mode is set to be propagating in the opposite direction to the other
modes. In Fig. 8, the system is initialized symmetrically with all modes having the same
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amplitude of α = 1, and a common wavenumber, k̃ = 1. The nonlinear coupling constant is
set to be G̃ = 0.01, while the linear coupling constant is varied as K̃ = 0.1 (Fig. 8(a)), K̃ = 0.3
(Fig. 8(b)) and K̃ = 0.5 (Fig. 8(c)). As in the codirectional setup, the phase space method
agrees very well with the analytical method at early evolution distances. The agreement
lasts longer at lower values of the linear couplings (Fig. 8(a)). Another noticeable differ-
ence is that for the phase space method, squeezing with steady oscillation is observed at
K̃ = 0.1. When K̃ increases, the signal becomes lower in amplitude at certain wave pe-
riods, perhaps due to some kind of destructive interference. Oppositely, the AP method
remains less sensitive to the contra-directional arrangement with steady fluctuation of
squeezing at K̂ = 0.1 and K̂ = 0.3, but showing mild collapses and revivals type of pattern
at K̂ = 0.5. The contra-directional case could be advantageous for adiabatically controlling
light, where the quantum state remains in its instantaneous eigenstate if perturbations
are applied slowly enough. This allows for smooth transitions between different modes
or states without abrupt changes. For instance, by designing the coupler system parame-
ters to achieve adiabatic evolution, contra-directional light propagation can be effectively
managed, ensuring precise control over light behaviors such as transfer, splitting, and re-
turning. The ability to control light propagation through adiabatic processes in nonlinear
regimes opens new avenues for developing high-fidelity integrated optical devices capable
of performing complex operations with minimal loss and high precision.

4 Conclusion
The squeezed state of light generated in a three-waveguide nonlinear coupler with SH
generation has been studied using both the phase space and the AP method. Rather than
depending on a single theoretical prediction, both methods have been used to investigate
the squeezed states of light propagating in the current system to ensure accurate findings
and to provide insights into the strengths and weaknesses of each method. The impact of
key design parameters on generated squeezed states was investigated under various con-
ditions, including full frequency matching, symmetrical and asymmetrical waveguide ini-
tialization, and both codirectional and contradirectional propagation. The system consis-
tently produced long-lasting squeezed states across all three waveguides, even with asym-
metrical initialization. Specifically, for symmetrical initialization, where all waveguides are
driven by a coherent light source, identical and enduring squeezing was achieved in each
waveguide. When only one waveguide was pumped while the other two were initialized in
the vacuum state, long-lasting squeezing in all waveguides was still observed due to energy
exchange between them. This demonstrates that a single coherent light source can effec-
tively generate squeezed light in all three waveguides, highlighting a significant feature of
the system. Moreover, the squeezing effect was found to persist for an extended duration
in nearly all simulated scenarios, enhancing the system’s practical utility, particularly for
applications requiring long-range squeezed light.

At low values of linear coupling, both methods are in-phase and completely agree with
one another. When the linear coupling increases, results obtained exploiting the two ap-
proaches differ; the phase space method generates collapses-revivals behavior with a small
amplitude, whereas the analytical method predicts a constant increase in the field am-
plitude. The agreement between the two methods decreases as the linear coupling co-
efficients are raised in both codirectional and contra-directional systems. In addition, a
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stronger linear coupling produces a squeezing with substantial oscillatory quadrature fluc-
tuations. As the nonlinear coupling increases, the degree of squeezing is significantly en-
hanced. However, this comes at the expense of squeezing range over time. Generally, the
AP method yields similar performance to the phase space positive-P method for low-input
parameters and short periods of evolution. In fact, at certain combinations of design pa-
rameters, the analytical method exhibits a constant increase in field amplitude over time
which does not appear reasonable. While we think that the positive-P phase space method
yields more accurate results, the analytical method could be used for short evolution dis-
tances and as a verification of the overall results. This work opens a new avenue for uti-
lizing multi-waveguide NLC in nonclassical light generation in the new era of quantum-
based technology.

Appendix A
The time-dependent coefficients {Ak(t)}10

1 , {Bk(t)}10
1 , {Ck(t)}10

1 , {Dk(t)}6
1, {Ek(t)}6

1 and
{Fk(t)}6

1 appears in the solutions given in (25)–(30) of the AP method, are evaluated pre-
cisely by substituting the previous solutions (25)–(30) back into the evolution
Eqs. (18)–(23) and equating similar terms on both sides. The sets of coupled equations
representing the evolution of these coefficients are obtained as follows.

The evolution of the {Ak}10
1 for fundamental operator â1

d A1

dt
= –iω1 A1 –ik B1 –ik C1 (A1)

d A2

dt
= –iω1 A2 –ik B2 –ik C2 (A2)

d A3

dt
= –iω1 A3 –ik B3 –ik C3 (A3)

d A4

dt
= –iω1 A4 +g A∗

1 D1 –ik B5 –ik C6 (A4)

d A5

dt
= –iω1 A5 –ik B6 –ik C5 (A5)

d A6

dt
= –iω1 A6 –ik B7 –ik C7 (A6)

d A7

dt
= –iω1 A7 +g A∗

2 D1 (A7)

d A8

dt
= –iω1 A8 +g A∗

3 D1 (A8)

d A9

dt
= –iω1 A9 +g A∗

4 D1 (A9)

d A10

dt
= –iω1 A10 +g A∗

1 D2 (A10)

The evolution of the {Bk}10
1 for fundamental operator â2

d B1

dt
= –iω2 B1 –ik A1 –ik C1 (A11)

d B2

dt
= –iω2 B2 –ik A2 –ik C2 (A12)
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d B3

dt
= –iω2 B3 –ik A3 –ik C3 (A13)

d B4

dt
= –iω2 B4 +g B∗

1 E1 (A14)

d B5

dt
= –iω2 B5 –ik A4 –ik C6 (A15)

d B6

dt
= –iω2 B6 +g B∗

2 E1 –ik A5 –ik C5 (A16)

d B7

dt
= –iω2 B7 –ik A6 –ik C7 (A17)

d B8

dt
= –iω2 B8 +g B∗

3 E1 (A18)

d B9

dt
= –iω2 B9 +g B∗

6 E1 (A19)

d B10

dt
= –iω2 B10 +g B∗

2 E2 (A20)

The evolution of the {Ck}10
1 for fundamental operator â3

d C1

dt
= –iω3 C1 –ik B1 –ik A1 (A21)

d C2

dt
= –iω3 C2 –ik B2 –ik A2 (A22)

d C3

dt
= –iω3 C3 –ik B3 –ik A3 (A23)

d C4

dt
= –iω3 C4 +g C∗

1 F1 (A24)

d C5

dt
= –iω3 C5 –ik B6 –ik A5 (A25)

d C6

dt
= –iω3 C6 –ik B5 –ik A4 (A26)

d C7

dt
= –iω3 C7 +g C∗

3 F1 –ik B7 –ik A6 (A27)

d C8

dt
= –iω3 C8 +g C∗

7 F1 (A28)

d C9

dt
= –iω3 C9 +g C∗

2 F1 (A29)

d C10

dt
= –iω3 C10 +g C∗

3 F4 (A30)

The evolution of the {Dk(t)}6
1 for the first harmonic operator b̂1

d D1

dt
= –i (2ω1)D1 (A31)

d D2

dt
= –i (2ω1)D2 –

g
2

A2
1 (A32)

d D3

dt
= –i (2ω1)D3 –g A1 A2 (A33)
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d D4

dt
= –i (2ω1)D4 –g A1 A3 (A34)

d D5

dt
= –i (2ω1)D5 –

g
2

A4 A1 (A35)

d D6

dt
= –i (2ω1)D6 –

g
2

A1 A4 (A36)

The evolution of the {Ek(t)}6
1 for the SH operator b̂2

d E1

dt
= –i (2ω2)E1 (A37)

d E2

dt
= –i (2ω2)E2 –

g
2

B2
2 (A38)

d E3

dt
= –i (2ω2)E3 –g B1 B2 (A39)

d E4

dt
= –i (2ω2)E4 –g B2 B3 (A40)

d E5

dt
= –i (2ω2)E5 –

g
2

B6 B2 (A41)

d E6

dt
= –i (2ω2)E6 –

g
2

B2 B6 (A42)

The evolution of the {Fk(t)}6
1 for the third harmonic operator b̂3

d F1

dt
= –i (2ω3)F1 (A43)

d F2

dt
= –i (2ω3)F2 –g C2 C3 (A44)

d F3

dt
= –i (2ω3)F3 –g C1 C3 (A45)

d F4

dt
= –i (2ω3)F4 –

g
2

C2
3 (A46)

d F5

dt
= –i (2ω3)F5 –

g
2

C7 C3 (A47)

d F6

dt
= –i (2ω3)F6 –

g
2

C3 C7 (A48)
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Appendix B

Figure 9 A flowchart outlining the steps of the mathematical process for both the phase space method and
the analytical perturbative method
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