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Abstract
Variational quantum algorithms (VQAs) have been successfully applied to quantum
approximate optimization algorithms, variational quantum compiling, and quantum
machine learning models. The performance of VQAs is significantly influenced by the
architecture of parameterized quantum circuits (PQCs). Quantum architecture search
aims to automatically discover high-performance quantum circuits for specific VQA
tasks. Quantum architecture search algorithms that utilize both SuperCircuit training
and a parameter-sharing approach can save computational resources. If we directly
follow the parameter-sharing approach, the SuperCircuit has to be trained to
compensate for the worse search space. To address the challenges posed by the
worse search space, we introduce an optimization strategy known as the efficient
continuous evolutionary approach using Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). Then, we leverage prior information (symmetric property)
designing Structure Symmetric Pruning for removing redundant gates of the
searched ansatz. Experiments show that the efficient continuous evolutionary
approach can search for more quantum architectures with better performance; the
number of high-performance ansatzes obtained by our method is 10% higher than
that in the literature (Du et al. in npj Quantum Inf. 8:62, 2022). The application of
Structure Symmetric Pruning effectively reduces the number of parameters in
quantum circuits without compromising their performance significantly. In binary
classification tasks, the pruned quantum circuits exhibit an average accuracy
reduction of 0.044 compared to their unpruned counterparts.

Keywords: Quantum architecture search; NSGA-II; Symmetric pruning

1 Introduction
Variational Quantum Algorithms (VQAs) are a class of algorithms that use quantum cir-
cuits with adjustable parameters to accomplish tasks similar to machine learning. The
variational quantum algorithms [2, 3] including quantum neural networks [4, 5] and varia-
tional quantum eigensolvers (VQEs) [6–8], are a class of promising candidates to use noisy
intermediate-scale quantum (NISQ) devices to solve practical tasks that are beyond the
reach of classical computers [9]. The performance of variational quantum algorithms de-
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pends heavily on the design of the quantum circuit architecture [10]. Developing a suitable
quantum circuit architecture requires expertise. In the realm of neural network structures,
the research focus has transitioned from manual design to automated machine-driven de-
sign processes [11]. Just as in neural network architecture design, the goal of quantum
architecture search is to enable automated machine-driven design of the quantum circuit
architecture tailored for specific VQAs.

Numerous scholars have conducted extensive research in quantum architecture search
to facilitate the automated design of quantum circuits for VQAs by machines. The meth-
ods they propose include the differentiable circuit search method, deep reinforcement
learning method, evolutionary methods, and so on [12]. Inspired by the work of differ-
entiable architecture search (DARTS) [13], Zhang et al. proposed a framework for auto-
matically building the parametrized quantum circuit for variational quantum algorithms
[14]. Later, Wu et al. also proposed a search algorithm for differential quantum architec-
ture search [15]. In addition to using differential quantum architecture search algorithms,
He et al use meta-learning for quantum architecture search [16]. Inspired by the classic
neural network architecture search [11], some researchers employ reinforcement learn-
ing to finish the quantum architecture search [17–19]. In the work of [1, 20], researchers
have built SuperCircuit and trained SuperCircuit to update the parameters in the param-
eter space. SuperCircuit-based works are inspired by the supernet method in machine
learning model [21, 22]. Similarly, employing evolution algorithms to perform quantum
architecture search can also be a candidate strategy [23–25]. If we directly follow the pa-
rameter sharing approach proposed by [1, 20], the SuperCircuit has to be trained to com-
pensate for the worse search space, i.e., dividing the search results for QAS into Sgood and
Sbad, some of the worse performing ansatzes (Sbad) performed better than the ansatzes
in Sgood after training independently [1]. Therefore, it is necessary to reform the existing
search evolution algorithm based on SuperCircuit.

In this paper, we propose an efficient evolutionary algorithm-based quantum architec-
ture search framework (CEQAS). A continuous evolution strategy is developed to utilize
the knowledge we have learned in the last evolution generation. Specifically, we continue
to use the training method of SuperCircuit in [1, 20], to complete the training of Super-
Circuit and update the parameters of the parameter space. To better accomplish the task
of updating the parameter space and looking for the quantum circuit architecture, we use
NSGA-II in the search stage to create a strategy for “optimizing the parameter space while
searching.” We use NSGA-II to evaluate the quantum circuit architecture obtained during
the search process. Individuals in the evolutionary algorithm representing architectures
derived in the SuperCircuit will be generated through several benchmark operations (i.e.,
crossover and mutation). Non-dominated sort strategy is adopted to select several excel-
lent architectures corresponding cells in the SuperCircuit will be updated for subsequent
optimization. The general flow of our work is shown in Fig. 1. Furthermore, we intro-
duce the Structure Symmetric Pruning to eliminate redundant parameters and gates in
quantum circuits, coupled with fine-tuning to reduce the number of parameters while
preserving performance.

Overall, the continuous evolution strategy can achieve better performance of the quan-
tum architecture search algorithm when a small number of quantum circuits are sampled
for training SuperCircuit. The contributions of this work are two-fold:
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Figure 1 CEQAS Overview (1) A SuperCircuit is trained by iterative sampling and updating parameter subsets
(SubCircuits). (2) Search for ansatzes with the best performance through continuous evolution (highest
accurcay for QML). (3) Retrain the searched ansatzes. (4) Iterative pruning and finetuning to remove
redundant gates. (5) Ansatzes performance evaluation after pruning

(1) Drawing insights from [1, 20], we employ NSGA-II to develop a strategy for “optimiz-
ing the parameter space while searching”. This enhances the parameter space during the
search stage and facilitates the more efficient generation of ansatzes on the Pareto front.

(2) After searching for the ansatzes with high performance, we introduce a “Structure
Symmetric Pruning” scheme to reduce the number of parameters in ansatz. In contrast
with classical pruning methods, our proposal does not require any gradient information
to construct the symmetric ansatz. Instead, it removes the redundant gates and shrinks
the solution space according to the information of the problem Hamiltonian.

Several works also propose to search circuits based on SuperCircuit. Our work is distinct
from that presented in Ref. [20], where they conduct a noise-adaptive co-search for circuit
optimization and qubit mapping. Their work also prunes quantum circuits, and they use a
pruning strategy that puts quantum gate parameters close to 0 directly to 0. It is not always
applicable in quantum circuits. In other words, the gradient information fails to provide
any useful information to guide pruning [26]. Meanwhile, the output of quantum circuits
can be regarded as a periodic function of parameters [27], which forbids employing the
parameters’ magnitude as the metric to guide the pruning. Therefore, it is inappropri-
ate to straightforwardly apply classical pruning methods to quantum circuits, where the
extracted ansatz may not promise the trainability. Ref. [1] also uses ideas based on Super-
Circuit in their work. Following the initial training of the SuperCircuit, the work in Ref. [1]
also mentions the worse search space, which has not yet been compensated for. Thus, our
enhancement over the methodology presented in Ref. [1] lies in our proposition to develop
a strategy that involves “optimizing the parameter space while searching” through NSGA-
II to provide additional compensation for the search space. Our work distinguishes itself
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from Ref. [20] by refraining from using the parameters’ magnitude as the metric to guide
pruning, and we construct “Structure Symmetric Pruning” scheme to shrink the solution
space.

2 Related works
2.1 Quantum architecture search
SuperCircuit-based Quantum Architecture Search (QAS) methods contain two steps: Su-
perCircuit parameter optimization and architecture optimization [1, 20]. In SuperCir-
cuit parameter optimization, they first construct a SuperCircuit by stacking a sufficient
number of layers of pre-defined parameterized gates to cover a large design space. Then,
they train the SuperCircuit by sampling and updating the parameter subsets (SubCircuits)
from the SuperCircuit. The performance of a SubCircuit with inherited parameters from
the SuperCircuit can provide a reliable relative performance estimation for the individual
SubCircuit trained from scratch. This method is called parameter inheritance, which is
applied in the work of [1, 20]. In this way, we only pay the training cost once but can eval-
uate all the SubCircuits efficiently. Hence, the search cost is greatly decreased. Particularly
in [1], authors use multiple SuperCircuits to further improve the performance of QAS by
building multiple expert parameter spaces.

In the study of architecture optimization, the architecture optimization step includes
Reinforcement Learning-based [17–19], Evolution Algorithm-based [23–25, 28], and
Differentiable-based approaches [14, 15, 29]. Reinforcement Learning-based idea behind
is to investigate the reinforcement learning agent to place the circuit components and
evaluate the composing circuit to reach the state-of-art human-designed ansatz. Evolu-
tion Algorithm-based approaches search architectures with the help of evolutionary algo-
rithms. The basic idea of differentiable-based approaches is to relax the discrete architec-
ture space to a continuous domain that enables us to employ gradient-based optimization
methods for searching architecture.

Moreover, additional research is carried out to complete the task of quantum archi-
tecture search [30–34]. In Ref. [31], they propose a QAS evaluation protocol on basic
tasks, making unified evaluation possible. This approach focuses on vanilla search meth-
ods without coupling with the domain prior. In Ref. [32], they present a new deep re-
inforcement learning-based QAS method, called Trust Region-based PPO with Rollback
for QAS (QAS-TR-PPO-RB), to automatically build the quantum gates sequence from the
density matrix only. In Ref. [33], they believe current QAS algorithms need to calculate the
ground-truth performances of a large number of quantum circuits during the searching
process, especially for large-scale quantum circuits, which is very time-consuming. There-
fore, they propose a predictor based on a graph neural network (GNN), which can largely
reduce the computational complexity of the performance evaluation and accelerate the
QAS algorithm by estimating circuit performance directly based on their structures using
a predictor trained on a set of labeled quantum circuits. In Ref. [34], aiming to address the
limitations identified in [33], the authors introduce GSQAS, a self-supervised graph-based
QAS that trains a predictor through self-supervised learning. Specifically, they first pre-
train a graph encoder using a well-designed pretext task on a large number of unlabeled
quantum circuits, aiming to generate meaningful representations of quantum circuits. In
Ref. [30], they believe current Predictor-based QAS algorithms train a single predictor to
fit the entire circuit space using limited training samples, which is inefficient and unnec-
essary, as QAS aims to identify the optimal quantum circuit. In Ref. [30], they propose a
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progressive PQAS with active learning (PQAS-AL), which gradually trains more precise
predictors for subspaces where high-performance circuits reside.

2.2 Search strategy based on evolutionary algorithms
Evolutionary Algorithm firstly uniformly samples the gates and generates K candidate cir-
cuits, then independently minimizes the loss function L within T iterations. Then, after
the coarse-grained optimization, the evolutionary QAS chooses the top candidate circuit
by ranking the others based on performance.

C = arg min
j∈K

L(θj, Zj, εj) (1)

where θj is the parameter used by the jth quantum circuit architecture, Zj is the jth quan-
tum circuit architecture, εj is the learning rate when optimizing the jth quantum circuit
architecture. Finally, it continues to fine-tune the parameters of C and to search the final
architecture. The framework is shown in Fig. 2.

To improve the efficiency and performance of the ranking stage, it can also employ evo-
lutionary algorithms such as non-dominated sorting genetic algorithm II (NSGA-II) [35]
instead of uniform sampling. Utilizing the parameter-sharing strategy can effectively re-
duce computational resources. NSGA-II, as employed in Ref. [1], utilizes an evolution-
ary algorithm to streamline the ansatz ranking process. The intuition behind employing
NSGA-II is actively searching potential ansatzes with good performance instead of uni-
formly sampling ansatzes from all possible circuit architectures. Note that several recent
studies, e.g., Refs [23, 25] have directly utilized the evolutionary and multi-objective ge-
netic algorithms to complete ansatz design.

Figure 2 The framework of evolutionary-based QAS. (1) Constructing quantum circuits using an evolutionary
algorithm. (2) Ranking Circuits. (3) Fine tuning to obtain optimal ansatz
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2.3 Symmetric pruning in quantum circuit
Quantum neural networks (QNN) with symmetric ansatz only demand a polynomial
number of trainable parameters and the circuit depth with the problem size to achieve
a fast convergence rate [26, 36–44]. In the work of Sauvage et al., they build spatial sym-
metries into parameterized quantum circuits for faster training [37]. Wang et al. devise a
Symmetric Pruning (SP) scheme to automatically tailor a symmetric ansatz from an asym-
metric one with improved trainability and applicability [26]. The symmetric pruning al-
gorithm proposed by Wang et al. is mainly divided into three steps: System symmetry.
Structure symmetry. Spatial symmetry. SP assigns the system symmetry to by ansatz re-
moving the redundant parameterized gates and the two-qubit gates associated with the
last m qubit wires. SP assigns the structure symmetry on an ansatz by removing specific
the single-qubit gates and two-qubit gates. SP assigns the spatial symmetry on ansatz by
correlating the single-qubit parameterized gates on the equivalent qubits or the two-qubit
parameterized gates on the equivalent qubit-pairs.

3 Approach
3.1 SuperCircuit construction and training
The initial stage of the Continuous Evolution for Efficient Quantum Architecture Search
(CEQAS) involves SuperCircuit construction and training. Ref. [1] for the method of Su-
perCircuit construction. In the following, we elaborate on the essential details. During
SuperCircuit construction and training, SuperCircuit has two important roles, which are
constructing the ansatz pool SupC and parameterizing each ansatz in SupC via the spec-
ified parameter-sharing strategy. In other words, SuperCircuit defines the search space,
which subsumes all candidate ansatzes, and the candidate ansatzes in SupC are evaluated
through inheriting parameters from the SuperCircuit. Rather than training numerous sep-
arate ansatzes from scratch, QAS trains SuperCircuit just once, which significantly cuts
down the search cost. Refs. [1, 20] use an approach for SuperCircuit training that consists
of sampling subcircuits, training these subcircuits, and then updating parameters in the
parameter space to complete the SuperCircuit training. This process also includes updat-
ing the parameter space, as illustrated in Fig. 3. The main goal of the parameter-sharing is
to reduce the parameter space, which enhances QAS’s learning performance while staying
within reasonable memory and runtime limits. Intuitively, this strategy correlates param-
eters among different ansatzes in SupC based on a specified rule. CEQAS trains SuperCir-
cuit in the same way as QAS. The details of how to build a SuperCircuit are described in
the Experiments section.

3.2 Continuous evolution for quantum architecture search
The second phase of Continuous Evolution for Efficient Quantum Architecture Search in-
volves evolutionary search. As for the Evolutionary search procedure, we use the evolution
algorithm together with the non-dominated sorting strategy. The non-dominated sorting
strategy has been introduced in the NSGA-II [35]. The essential details are described in
Fig. 4.

Denote {N1, . . . , NP} as P different ansatzes and {F1, . . . , FM} as M different measurements
we want to minimize or maximize. The measurements, for example, the number of two-
qubit parameterized gates, and accuracy, could have some conflicts, which increase the
difficulty in discovering an optimal solution that minimizes or maximizes all these metrics.
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Figure 3 Training and parameter updating for SuperCircuit. (1) Subcircuit sampling and training. (2) Updating
parameters space

Figure 4 Schematic diagram of the detailed process of Continuous Evolution for Quantum Architecture
Search. (1) Subcircuit sampling. (2) Ansatzes inherits parameters and performs performance evaluation. (3)
NSGA-II for non-dominant sorting. (4) Retraining and updating parameter space

In practice, Ni dominates Nj if two conditions are satisfied: (1) for any of the measure-
ments, the performance of Ni is not worse than that of Nj. (2) the model Ni behaves better
than Nj on at least one measurement. Formally, the definition of domination can be sum-
marized as below.
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Definition 1 Considering two ansatzes Ni and Nj, and a series of measurements {F1, . . . ,
FM} we want to minimize. If

Fk(Ni) ≤ Fk(Nj), ∀k ∈ {1, . . . , M} (2)

Fk(Ni) < Fk(Nj), ∃k ∈ {1, . . . , M} (3)

Ni is said to dominate Nj, i.e., Ni≺Nj.

According to the above definition, if Ni dominates Nj, Nj can be replaced by Ni during
the evolution procedure since Ni performs better in terms of at least one metric and not
worse on other metrics.

By utilizing this approach, we can choose a set of excellent ansatzes from the population
in the current generation. These ansatzes can then be employed to update the correspond-
ing parameters in the SuperCircuit.

In the context of NSGA-II for CEQAS, NSGA-II samples SN ansatzes, evaluates their
performance (e.g., accuracy in binary classification), and subsequently employs fast non-
dominated sorting to rank the performance of the ansatzes. The process is illustrated in
Fig. 4. For example, ansatzes with high accuracy are placed at the front of the popula-
tion and then retrained to further optimize the parameter space. Through crossover, the
mutation generates the next generation ansatzes. The above ranking and retraining are
repeated until the iteration is completed.

3.3 Structure symmetric pruning
Suppose the problem Hamiltonian is H̃ = H ⊗ II⊗m, where H =

∑q
j=1 αjHj, αj is the real

coefficient and Hj is the tensor product of Pauli matrices on n qubits, Structure Symmetric
Pruning builds the symmetric ansatz of H̃ with two primary steps, i.e., initialization and
symmetry identification. A symmetry S of a Hamiltonian H̃ is a unitary operator leaving
H̃ invariant,

SH̃S† = H̃ (4)

All of these symmetries form a symmetry group S where for any two symmetries S1, S2 ∈
S, their compositions S1 ◦ S2 or S2 ◦ S1 and their inverses S–1

1 and S–1
2 are also symmetries

in S.
Suppose that the initialized asymmetric ansatz is U(θ ), Structure Symmetric Pruning

adopts the following method to tailor this ansatz to obey the above symmetries. Structure
symmetry. The structure symmetry Sstr refers to the symmetry for the effective Hamilto-
nian H , which satisfies

SstrHS†
str = H (5)

Moreover, an ansatz V (θ ) is said to be structure symmetric to the problem Hamiltonian
H if there exists a non-trivial symmetry Sstr (i.e., not the identity operation) and θ ∈ �\{0}
such that SstrV (θ )S†

str = V (θ ). A feasible solution of constructing the structure symmetric
ansatz is restricting the corresponding ansatz design that only contains the Pauli terms
of H . Given the pruned ansatz UPr returned by Structure Symmetric Pruning assigns the
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Algorithm 1 Structure Symmetric Pruning (SSP)

Input: Problem Hamiltonian H̃ = (
∑q

j=1 αjHj) ⊗ II⊗m, ansatz design A for CEQAS output
and the parameter space � in Fig. 4.
Output: Pruned ansatz design APr and parameter space �Pr.
1 Initialize an asymmetric ansatz via A and �.
2 for i = 1 to epochs:
3 Sample one new ansatz sA from A, Obtain parameter �s in �;
4 Compute objective function L = 1

ntr

∑ntr
i=1(ỹ(i)(sA, x(i),�s) – y(i))2;

5 Optimize the objective function;
6 Update �s and �.
7 Structure Symmetry identification: Remove the gates such that the pruned ansatz
design.
8 Get the pruned ansatz design sp, Obtain parameter �p in �.
9 for i = 1 to five:
10 Compute objective function L = 1

ntr

∑ntr
i=1(ỹ(i)(sp, x(i),�s) – y(i))2;

11 Optimize the objective function;
12 Update �p and �.

Figure 5 Schematic of Structure Symmetric pruning. Two Structure Symmetric Pruning methods are shown
in the figure, both of which belong to symmetric pruning

structure symmetry on it by removing specific the single-qubit gates and the two-qubit
gates [26]. Algorithm 1 provides a summary of the Structure Symmetric Pruning proce-
dures and Fig. 5 depicts its schematic representation.

4 Experiments
In this section, we describe our experiments’ implementations of Continuous Evolution
for Quantum Architecture Search and Structure Symmetric Pruning. Subsequently, we
select a few ansatzes exhibiting relatively optimal performance from the output CEQAS,
retrain them, and proceed with Structure Symmetric Pruning to assess the performance
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Figure 6 Paradigm of the SuperCircuit [1]

disparities before and after the pruning procedure. Here we apply CEQAS to achieve a
binary classification task under the noiseless which is consistent with [1].

In Fig. 6, CEQAS and QAS use the same scheme to construct SuperCircuit, which de-
fines the ansatze pool to be searched. Parameterizes each ansatz in SuperCircuit via the
specified parameter-sharing strategy. All possible single-qubit gates are highlighted by
hexagons and two-qubit gates are highlighted by the brown rectangle. The unitary Ux

refers to the data encoding layer.

4.1 Experimental settings
Denote D as the synthetic dataset, where its construction rule follows [1]. The dataset D
contains n = 500 samples. For each example {x(i), y(i)}, the feature dimension of the input
x(i) is 5 and the corresponding label y(i) ∈ {0, 1} is binary. At the data preprocessing stage,
we split the dataset D into the training set Dtr , validation set Dva, and test set Dte with size
ntr = 200, nva = 100, nte = 200. The explicit form of the objective function is

L =
1

ntr

ntr∑

i=1

(
ỹ(i)(SupC, x(i), θ

)
– y(i))2 (6)

where {x(i), y(i)} ∈ Dtr and ỹ(i)(SupC, x(i), θ ) ∈ [0, 1] is the output of the quantum classi-
fier (i.e., a function taking the input x(i), the SuperCircuit SupC, and the trainable pa-
rameters θ ). The training (validation and test) accuracy is measured by

∑
i 1g(ỹ(i))=y(i) /ntr

(
∑

i 1g(ỹ(i))=y(i) /nva and
∑

i 1g(ỹ(i))=y(i) /nte) with g(ỹ(i)) being the predicted label for x(i).
The construction and training methods of SuperCircuit are consistent with those used

in Ref. [1], except that Ref. [1] utilizes 3 qubits for quantum circuits, whereas this work
employs 5 qubits to facilitate the verification of Structure Symmetric Pruning. In the ex-
periments, the single-qubit gates are RX , RY , RZ , the two-qubit gates are CNOT gates.

About CEQAS hyperparameters, the circuit depth for all SuperCircuits is set to L = 3.
The search space of CEQAS is formed by two types of quantum gates. Specifically, at each
layer Ul(θ ), the parameterized gates are fixed to be the rotational quantum gate along X-
axis RX , Y -axis RY , Z-axis RZ . For the two-qubit gates, denoted the index of five qubits as
(0, 1, 2, 3, 4), CEQAS explores whether applying CNOT gates to the qubits pair (0, 1), (1,
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2), (2, 3), (3, 4) or not. Hence, the size of SuperCircuit equals to |SupC| = 163. The num-
ber of sampled ansatzes for ranking is set as K = 4000. The setting K ≈ 163 enables us to
understand how the number of epochs T , and the search strategies affect the learning per-
formance of different ansatzes in the ranking stage. When the number of SuperCircuits is
W = 5 (i.e. the number of expert parameter spaces is 5) QAS performs better [1], there-
fore, W = 5 is still used as the hyperparameter in this work. About the number of epochs
T , in the experiments we set T = 10, T = 100, T = 400, T = 1000 to demonstrate that using
CEQAS can achieve superior search performance compared to QAS without the need for
excessive training epochs.

Evolution Details. After training the SuperCircuit and updating its parameters, the
subsequent step involves the Continuous Evolution Search stage. In this study, NSGA-
II serves as the evolution algorithm for the search stage, facilitating both evolutionary
search and retraining. Both the crossover ratio and mutation ratio are set to 0.25, and we
randomly generate new architectures with a probability of 0.5. Following non-dominated
sorting, the top 20% are chosen for retraining, thereby optimizing the parameter space.

To execute Structure Symmetric Pruning, we manually pick the top 20 performing
ansatzes for retraining from the CEQAS output. The effectiveness of Structure Symmetric
Pruning is then verified by comparing the performance changes of these ansatzes before
and after pruning.

All numerical simulations are implemented in Python in conjunction with the Penny-
Lane [45] and the Qiskit packages [46].

4.2 Results of continuous evolution for quantum architecture search
The parameter settings for NSGA-II include a total of 4000 search ansatzes, with a popu-
lation size of 50 and 80 generations. To obtain better output results from CEQAS, we set
W = 5 and the number of retrained ansatzes to account for 20% of the population size. The
performance of CEQAS with four different epochs is exhibited in Fig. 7. In particular, CE-
QAS with T = 100 attains the best performance, where the validation accuracy for most
ansatz concentrates on 80–90% and 90–100%, highlighted by the orange bar. This also in-
dicates that by increasing the number of epochs, the performance of CEQAS does not get
a significant improvement, especially in the number of ansatzes with high accuracy. The
underlying reason for this phenomenon could potentially stem from the irrational selec-
tion of the number of ansatzes chosen for the retraining of the Pareto boundary during
the evolution process.

By increasing the number of epochs, the performance of QAS is slightly improved as
[1]. Figure 8 shows the number of ansatzes of each accuracy output by CEQAS and QAS
after training T = 10, T = 100, T = 400, T = 1000 epochs. In Fig. 8(a) T = 10, the number
of ansatzes with validation accuracy of 80–100% in the CEQAS output is relatively higher
than that of QAS, but the number of ansatzes obtained by QAS with validation accuracy
of 90–100% is higher than that of CEQAS. This suggests that with a limited number of
epochs for training the SuperCircuit, the parameter space may require further optimiza-
tion. In Fig. 8(b) T = 100, the number of ansatzes with validation accuracy of 80–90%
and 90–100% in CEQAS search results is relatively higher than that of QAS. Figure 8(c)
T = 400, only the number of ansatz validation accuracy in the 90–100% is higher in the
search results of CEQAS than in QAS. Figure 8(d) T = 1000, the number of ansatzes with
validation accuracy of 70–100% in CEQAS search results is higher than that of QAS. This
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Figure 7 SuperCircuit is trained with different epochs, the number of search ansatz is 4000, and CEQAS
outputs the number of ansatzes for each accuracy range

Figure 8 Different search strategies affect the number of ansatzes with different accuracy obtained from the
search. (1) “Continuous-NSGA-2” stands for the use of the CEQAS method. (2) “NSGA-2” indicates that the
SuperCircuit method is trained using QAS, and NSGA-2 is used in the search phase. (3) “Randon” represents
the method of training SuperCircuit using QAS, and the search phase uses random search

suggests that the parameter space can be further optimized through the utilization of
CEQAS. However, it is worth noting that as the T increases, the computational cost of
training SuperCircuit increases. In the actual search process, we do not require an exces-
sive number of training epochs to accomplish SuperCircuit training. As shown in Fig. 7,
T = 100, the number of ansatzes with high accuracy (80-100%) ansatz is already better than
that of T = 400, T = 1000. In fact, completing the SuperCircuit training does not require a
large number of training epochs according to CEQAS. This is attributed to the utilization
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Figure 9 Comparison of search results CEQAS with T = 100 vs. QAS with T = 10, T = 100, T = 400, T = 1000.
(a) CEQAS with T = 100, QAS with T = 10. (b) CEQAS with T = 100, QAS with T = 100. (c) CEQAS with T = 100,
QAS with T = 400. (d) CEQAS with T = 100, QAS with T = 1000

of the “optimizing the parameter space while searching” method during the search stage:
(1) the results of the Pareto front (which can be understood as the approximate optimal
solution) can be accurately retained, and the parameters in the parameter space of the Su-
perCircuit can be updated more accurately when training again; (2) the NSGA-II can be
used to better generate the next generation of populations by using the results of the pre-
vious generation population, better structural optimization operations can be completed;
(3) in the final search results, the search method of “optimizing parameter space while
searching” can more efficiently provide a series of ansatzes on the Pareto front.

In Fig. 9, we further demonstrate the superiority of CEQAS with T = 100 search results.
CEQAS with T = 100 compares to QAS with T = 10, T = 100, T = 400 and T = 1000,
the validation accuracy for most ansatzes concentrates on 80–90% and 90–100%. In
Fig. 9(b)(c)(d) it is more evident that the CEQAS can search for more quantum circuit
architectures with better performance (mainly reflected in the number of ansatzes with
the accuracy of 80–90% and 90–100%) through the search method of “optimizing param-
eter space while searching.”

How many ansatzes with good performance in the population are selected for retraining
to complete the parameter space parameter optimization? Here we give some experimen-
tal results: when the search number is 4000, train epochs T = 100, the population size is
50, and the generation number is 80, the number of retrained ansatzes changes from 10,
20, 30, and 40 (20%, 40%,60%, 80% of the population), the result is shown in Fig. 10.

With the increase of the number of retrained ansatzes, the number of low-accuracy
ansatzes gradually decreases, mainly reflected in the number of ansatzes in the 0–50%
accuracy, and the number of high-accuracy ansatzes gradually increases, mainly reflected
in the number of ansatzes in the 80–100% accuracy. This observation indicates that as the
number of retrained ansatzes increases, the parameter space can be further optimized,
but at the cost of increasing the processing cost of the search process.

The above experiments are performed under the noiseless setting. In Appendix A, we
give the results of the experiments under the noisy setting. Then, we apply CEQAS to find
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Figure 10 The effect of the number of retrained ansatzes on CEQA performance

the ground state energy of the Hydrogen molecule [47, 48] in Appendix B to demonstrate
the effectiveness of our method.

4.3 Quantum structure symmetric pruning
Symmetry is a very important concept in physics especially in quantum mechanics. Ap-
plying symmetry in quantum circuits of QNNs enables an improved trainability of QNNs,
including alleviating the barren plateaus and reducing the number of parameters and the
circuit depth [26]. Therefore, after retraining the quantum circuit with good performance
searched by CEQAS, the above two Structure Symmetric Pruning methods are used in
Fig. 5, reducing the number of parameters and improving the trainability of the quantum
circuit. In this section, we present the experimental results of Quantum Structure Sym-
metric Pruning.

Structure Symmetric Pruning method 1 In the CEQAS output, we selected the top 20
ansatzes with the highest performance for retraining. Subsequently, Structure Symmet-
ric Pruning was carried out. To elucidate a clearer retraining process, only the retraining
of 4 ansatzes is depicted in Fig. 11, while the retraining of all 20 ansatzes is displayed in
Appendix C (Fig. 19). On the one hand, we can verify that the ansatzes obtained by CE-
QAS can achieve better performance after individual training from scratch. On the other
hand, we can verify the effectiveness of Structure Symmetric Pruning on ansatzes. Doing
this work will allow us to show that CEQAS and Structure Symmetric Pruning can be well
connected to a certain extent. Figure 11 displays the training accuracy and test accuracy of
the top-performing ansatzes after training from scratch (100 epochs), as well as the train-
ing accuracy, test accuracy, and ansatzes (utilizing Structure Symmetric Pruning method
1) trained for an additional 5 epochs.

From Fig. 11, it is evident that the accuracy of the top-performing ansatzes achieved by
CEQAS reaches convergence to 1 after training from scratch. In Fig. 11, a more detailed re-
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Figure 11 The training accuracy, test accuracy of quantum circuit retraining, and the training accuracy, test
accuracy of the quantum circuit (trained for 5 additional epochs) after using the structure symmetric pruning
method 1. Different xxx-xxx-xxx represent different quantum circuit structures. global train/test acc represents
the accuracy change curve of the quantum circuit during training with the original structure, while pruning
train/test acc represents the accuracy change curve of the quantum circuit after pruning

training process is provided for 4 ansatzes, while the retraining process for all 20 ansatzes
is depicted in Appendix C (Fig. 19). The average test accuracy of the 20 ansatzes converged
to 0.9830, which indicates that the ansatzes with good performance in the CEQAS search
results can achieve better performance after training from scratch. After the ansatzes were
trained again, we perform Structure Symmetric Pruning method 1 on these ansatzes. Fig-
ure 11’s results demonstrate that, both before and after using structure symmetry pruning
method 1, ansatzes’ performance remained almost unaltered. The pruning train acc and
pruning test acc demonstrated a similar trend to the global train acc and global test acc.
The trend of change in training accuracy and test accuracy post-pruning aligns with the
values and trends observed in training accuracy and test accuracy before pruning. The av-
erage test accuracy of the 20 ansatzes after utilizing Structure Symmetric Pruning method
1 continues to converge at 0.9830. Upon the completion of 5 more training epochs on the
pruned ansatzes, the average test accuracy converges to 0.9875. The number of parame-
ters has been decreased from 15 to 11, a reduction of about 1

3 . This reduction effectively
minimizes the parameter count without compromising the performance of the ansatzes.

Figure 12 illustrates the training accuracy and test accuracy of the ansatzes before and
after performing random pruning. The retraining process for four ansatzes is depicted
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Figure 12 The training accuracy, test accuracy of quantum circuit retraining, and the training accuracy, test
accuracy of the quantum circuit (trained for 5 additional epochs) after using the random pruning while
maintaining 11 parameters. Different xxx-xxx-xxx represent different quantum circuit structures. global
train/test acc represents the accuracy change curve of the quantum circuit during training with the original
structure, while pruning train/test acc represents the accuracy change curve of the quantum circuit after
pruning

Table 1 A comparison of the accuracy (Structure Symmetric Pruning method 1 and random
pruning)

Structure Symmetric Pruning Random pruning

Average test accuracy 0.9875 0.8655

in Fig. 12, while the retraining process for 20 ansatzes is detailed in Appendix C Fig. 20.
Here, the random pruning of ansatzes maintains an equal number of parameters as the
ansatzes after pruning with Structure Symmetric Pruning Method 1. Most of the ansatzes
exhibit a significant performance change, with both training accuracy and test accuracy
decreasing to below 0.7. The average test accuracy convergence of the remaining ansatzes
that were not significantly altered after random pruning was 0.86 (shown in Appendix C
Fig. 20). This observation indicates that utilizing Structure Symmetric Pruning is more
effective than random pruning in preserving the performance of ansatzes while retaining
the same number of parameters. Structure Symmetric Pruning is more suitable for the
output of CEQAS. The accuracy of ansatzes using Structure Symmetric Pruning method
1 and random pruning is compared in Table 1.
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Figure 13 The training accuracy, test accuracy of quantum circuit retraining, and the training accuracy, test
accuracy of the quantum circuit (trained for 5 additional epochs) after using the structure symmetric pruning
method 2. Different xxx-xxx-xxx represent different quantum circuit structures. global train/test acc represents
the accuracy change curve of the quantum circuit during training with the original structure, while pruning
train/test acc represents the accuracy change curve of the quantum circuit after pruning

Structure Symmetric Pruning method 2 The retraining process for 4 ansatzes is visual-
ized in Fig. 13, while the process for all 20 ansatzes is detailed in Appendix C Fig. 21. This
representation illustrates the performance before and after implementing Structure Sym-
metric Pruning Method 2. From Fig. 13, while some ansatzes have experienced changes in
their test accuracy following pruning, none of them have decreased to below 0.7. Struc-
ture Symmetric Pruning method 2 preserves 60% of the parameters in the original ansatz.
The average test accuracy converges to 0.9305, which is 0.0525 lower than the average
test accuracy before pruning. The performance of the ansatzes performed by Structure
Symmetric Pruning method 2 is worse than that of the ansatzes performed by Structure
Symmetric Pruning method 1, but after all, it reduces more parameters in ansatzes. Af-
ter 5 additional epochs of training following the implementation of Structure Symmetric
Pruning Method 2 on the ansatzes, the average exact test accuracy converges to 0.9392.
This result represents a decrease of 0.0438 compared to the accuracy of 0.9830 before
pruning. Figure 14 shows the performance curve of ansatzes with random pruning while
maintaining 9 parameters.

Figure 14 illustrates the outcomes of random pruning applied to ansatzes, maintaining
an equal number of parameters as Structure Symmetric Pruning Method 2. In Fig. 14,
the retraining process for a selective group of four ansatzes is depicted to ensure a clear
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Figure 14 The training accuracy, test accuracy of quantum circuit retraining, and the training accuracy, test
accuracy of the quantum circuit (trained for 5 additional epochs) after using the random pruning while
maintaining 9 parameters. Different xxx-xxx-xxx represent different quantum circuit structures. global train/test
acc represents the accuracy change curve of the quantum circuit during training with the original structure,
while pruning train/test acc represents the accuracy change curve of the quantum circuit after pruning

Table 2 Another comparison of the accuracy (Structure Symmetric Pruning method 2 and random
pruning)

Structure Symmetric Pruning Random pruning

Average test accuracy 0.9392 0.8386

display, while the detailed process for all 20 ansatzes can be found in Appendix C Fig. 22.
For the remaining ansatzes that have not undergone significant changes, the average accu-
racy converges to 0.8386, aligning with the number of parameters compared to Structure
Symmetric Pruning Method 2. Notably, the performance of ansatzes declines further after
random pruning. Table 2 provides a comparison of the accuracy between ansatzes using
Structure Symmetric Pruning Method 2 and random pruning.

Following the application of either Structure Symmetric Pruning Method 1 or Method
2 on the ansatzes generated by CEQAS, and subsequent retraining of the pruned ansatzes,
the average test accuracy demonstrates an increase compared to before retraining. This
observation, as depicted in Fig. 19 and Fig. 21, highlights that Structure Symmetric Prun-
ing contributes to maintaining the trainability of ansatzes.
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In terms of overall adaptability, there is minimal variance between the test accuracy of
all ansatzes subjected to Structure Symmetric Pruning Method 1 and the test accuracy
of the ansatzes before pruning. Some ansatzes even demonstrate improved performance
following pruning. The accuracy of certain ansatzes (6 out of 20) that underwent Struc-
ture Symmetric Pruning Method 2 significantly differs from their accuracy before prun-
ing. This suggests that employing Structure Symmetric Pruning Method 1 in ansatzes can
better maintain consistent performance without significant changes and enhance adapt-
ability when pruning the ansatzes generated by CEQAS, as Structure Symmetric Pruning
Method 1 retains a greater number of parameters in the ansatzes. Regarding the number
of parameters in ansatzes, the performance may remain relatively unaffected if a substan-
tial number of parameters are retained following the application of Structure Symmet-
ric Pruning, exemplified by Structure Symmetric Pruning method 1. If ansatzes retain a
limited number of parameters after undergoing Structure Symmetric Pruning, the perfor-
mance of the ansatzes will be somewhat affected.

4.4 Runtime complexity
We analyze the runtime complexity of CEQAS. In particular, at the first step, the setup
of SuperCircuit, i.e., configuring out the ansatz pool and the correlating rule, takes O(1)

runtime. In the second step, CEQAS proceeds T iterations to optimize trainable param-
eters. The runtime cost of QAS at each iteration scales with O(d), where d refers to the
number of trainable parameters in Eq. (1). Such cost origins from the calculation of gra-
dients via parameter shift rule, which is similar to the optimization of VQAs with a fixed
ansatz. In the strategy of “optimizing the parameter space while searching,” CEQAS pro-
ceeds TR iterations to optimize trainable parameters again, where TR refers to the number
of retrained ansatzes. Therefore, the total runtime cost of the second step is O(dTTR). In
the ranking step, CEQAS samples K ansatzes and compares their objective values using
the optimized parameters. This step takes at most O(K) runtime. CEQAS fine-tunes the
parameters based on the searched ansatz with few iterations (i.e., a very small constant).
The required runtime is identical to conventional VQAs, which satisfies O(d). The total
runtime complexity of CEQAS is hence O(dTTR + K).

Compared to the total runtime complexity O(dT + K) in Ref. [1], our algorithm does
increase the complexity of runtime, which is mainly reflected in the number of retrained
ansatzes. The runtime complexity of our algorithm will grow relative to that in Ref. [1],
while the number of trainable parameters d in quantum circuits and the number of re-
trained ansatzes TR increase. The ansatzes with good performance output by CEQAS
can be further refined using Structure Symmetric Pruning to reduce the number of gates
within the circuit. For a quantum circuit with great performance obtained by CEQAS,
Structure Symmetric Pruning can guarantee minimal changes in performance by reducing
the gate parameters by about 1

3 . Utilizing quantum circuits with good performance, both
from the method outlined in Ref. [1] and those obtained through CEQAS, we have applied
Structure Symmetric Pruning to these circuits. We anticipate that the training process for
these pruned circuits will be significantly faster compared to those that have not under-
gone this optimization technique. Studies of the same kind have also been carried out in
the Refs. [26] and [37]. In further work, we will investigate further how much training time
may be saved by utilizing Structure Symmetric Pruning in our CEQAS algorithm.
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5 Conclusion
The SuperCircuit-based QAS methods excel at discovering high-performance models
(Quantum Circuits) with high-performance [1, 20], However, there is still potential for
optimizing the parameter space related to the SuperCircuit. For this reason, we propose
a continuous evolution architecture search method, namely, CEQAS. During evolution,
CEQAS maximally utilizes the learned knowledge in the latest evolution generation, such
as architectures and parameters. A SuperCircuit is constructed with considerable single-
qubit gates and two-qubit gates. Individuals are generated through the benchmark op-
erations in the evolutionary algorithm. The non-dominated sorting strategy (NSGA-II)
is used to select ansatzes for updating the parameter space of the SuperCircuit. The ex-
periments demonstrate that CEQAS effectively generates multiple ansatzes on the Pareto
front. Structure Symmetric Pruning can be applied to the ansatzes produced by CEQAS,
effectively reducing the parameter count while maintaining ansatz performance within
acceptable limits. There are still many issues to be answered in the CEQAS investigation.
First, We admit that compared to the total runtime complexity O(dT + K) in Ref. [1], our
algorithm does increase the complexity of runtime. Our CEQAS aims to propose a strategy
of “optimizing the parameter space while searching,” which does indeed sacrifice runtime
for better performance. For the searched quantum circuits, CEQAS may compensate for
the complexity of runtime to some extent when they are trained from scratch after using
Structure Symmetric Pruning. We also refer to Ref. [1] for the time in a noisy environment,
and only do experimental verification in a specific noisy environment.

Our future work includes the following several directions. First, with every iteration, we
shall investigate more effective methods for sampling ansatz. For example, we can consider
using NSGA-III. Next, for the “Structure Symmetric Pruning” strategy of shrinking the
parameter space, we still need to further consider the actual situation of this strategy in
ground state energy estimation. We intend to investigate the impact of noise on CEQAS
for the noisy environment experiment.

Appendix A: Simulation results for the classification task under the noisy
setting

In this section, we give simulation results of CEQAS for the classification task under the
noisy setting. The experimental parameters are set as described in 4.1 Experimental Set-
tings. It is important to note that since these experiments are conducted in a noisy envi-
ronment. The noisy environment we used was provided by the Qiskit package, which can
approximately simulate the quantum gates error and readout error in ‘Ibmq_ourense’. The
error probabilities of the 1-qubit gate were set as 0.05, and the noise probabilities of the
2-qubit gate were set as 0.2. The setting in noisy simulation was also referred to [1].

More training epochs for the SuperCircuit could theoretically improve parameter space
optimization and reduce the effect of noise. Therefore, we set the epochs T = 400. In
Fig. 15, T = 400, the number of ansatzes with validation accuracy of 70–80% and 90–100%
of in CEQAS search results is relatively higher than that of QAS. The count of ansatzes
with validation accuracy ranging from 80% to 90% in the CEQAS search outcomes is nearly
equivalent to that of QAS. This outcome further demonstrates that, even in a noisy envi-
ronment, the performance of CEQAS surpasses that of QAS.
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Figure 15 Simulation result for the classification task under the noisy setting. CEQAS and QAS with T = 400

Figure 16 Comparison of search results CEQAS with T = 400, QAS with T = 1000 under the noisy setting

In Fig. 16, we further demonstrate the superiority of CEQAS with T = 400 search results.
CEQAS with T = 400 compares to QAS with T = 1000, the validation accuracy for most
ansatzes concentrates on 70–80%, 80–90% and 90–100%.

Despite a reduction in the count of ansatzes with validation accuracy between 80% and
90% in CEQAS search results compared to noiseless conditions, there remains a higher
number of ansatzes achieving validation accuracy between 70% and 80% as opposed to
QAS. These experimental outcomes in noisy conditions further validate the efficacy of
our proposed method to a certain extent.



Ma et al. EPJ Quantum Technology           (2024) 11:54 Page 22 of 29

Appendix B: Simulation results for the ground state energy estimation of
Hydrogen

Here we apply CEQAS to find the ground state energy of the Hydrogen molecule [47, 48]
under the noiseless and noisy setting. The molecular hydrogen Hamiltonian is formulated
as:

Hh = g +
3∑

i=0

giZi +
3∑

i=1,k=1,i<k

gi,kZiZk

+ gaY0X1X2Y3 + gbY0Y1X2X3 + gcX0X1Y2Y3 + gdX0Y1Y2X3 (7)

where {Xi, Yi, Zi} denote the Pauli matrices acting on the i-th qubit and the real scalars g
with or without subscripts are efficiently computable functions of the hydrogen–hydrogen
bond length. In particular, the explicit form of the molecular hydrogen Hamiltonian Hh is:

Hh = –0.042 + 0.178(Z0 + Z1) – 0.243(Z2 + Z3) + 0.171Z0Z1

+ 0.123(Z0Z2 + Z1Z3) + 0.168(Z0Z3 + Z1Z2)

+ 0.176Z2Z3 + 0.045(Y0X1X2Y – Y0Y1X2X3 – X0X1Y2Y3 + X0Y1Y2X3) (8)

The goal of the variational Eigen-solver is generating a parameterized wave-function
|�(θ )〉 to achieve:

min
θ

∣
∣
〈
�(θ )

∣
∣Hh

∣
∣�(θ )

〉
– Em

∣
∣ (9)

The linear property of Hh in Eqn.(9) implies that the value 〈�(θ )|Hh|�(θ )〉 can be ob-
tained by iteratively measuring |�(θ )〉 using Pauli operators in Hh, e.g., such as |〈�(θ )|II8 ⊗
Z0|�(θ )〉, |〈�(θ )|X0Y1Y1X3|�(θ )〉. The lowest energy of Hh equals to Em = –1.136Ha
where ‘Ha’ is the abbreviation of Hartree, i.e., a unit of energy used in molecular orbital
calculations with 1Ha = 627.5 kcal/mol. The exact value of Em is acquired from a full
configuration-interaction calculation [49].

The hyper-parameters of CEQAS to compute the lowest energy eigenvalues of Hh are as
follows. The number of SuperCircuit has one setting, i.e., W = 5. The layer number for all
ansatzes is L = 3. The number of iterations and the number of search ansatzes for ranking
is T = 100 and K = 500, respectively. The search space of CEQAS for the single-qubit gates
is fixed to be the rotational quantum gates along Y and Z axis. For the two-qubit gates,
denoted by the index of four qubits as (0, 1, 2, 3), QAS explores whether applying CNOT
gates to the qubits pair (0, 1), (1, 2), (2, 3) or not.

Figure 17 is the output ansatz of QAS under the noiseless setting. Figure 18 is the out-
put ansatz of QAS under the noisy setting. In Fig. 17 and Fig. 18, the x-axis means that
the estimated energy of the sampled ansatz is in the range of (a, b], e.g., a = –0.6Ha, and
b = –0.4Ha, the y-axis means that the number of sampled ansatz. “Continuous-NSGA-2”
stands for the use of the CEQAS method. “Randon” represents the method of training Su-
perCircuit using QAS, and the search phase uses random search. “evolution” indicates that
the SuperCircuit method is trained using QAS, and NSGA-II is employed in the search
phase.

The lowest energy of Hh equals to Em = –1.136Ha, (–1.2Ha, –1Ha] is the interval with
the smallest error in estimating energy. In Fig. 17, under the noiseless setting, CEQAS
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Figure 17 Simulation results for the ground state energy estimation of Hydrogen under the noiseless setting

Figure 18 Simulation results for the ground state energy estimation of Hydrogen under the noisy setting

gives the number of ansatzes in the energy interval (–1.2Ha, –1Ha] higher than QAS (105
> 92). In Fig. 18 under the noisy setting, the number of ansatzes in the energy interval
(–1.2Ha, –1Ha] obtained by CEQAS is lower than that under the noiseless setting (77 <
105), but it is still better than that of QAS (77 > 59). This shows that CEQAS can not only
achieve better optimization of parameter space in binary classification task, but also has
certain effectiveness in ground state energy estimation.

Appendix C: Extended version of Fig. 11–14
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Figure 19 An extended version of Fig. 11
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Figure 20 An extended version of Fig. 12
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Figure 21 An extended version of Fig. 13
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Figure 22 An extended version of Fig. 14
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