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Abstract
Quantum private information retrieval (QPIR) for quantummessages is a quantum
communication task, in which a user retrieves one of the multiple quantum states
from the server without revealing which state is retrieved. In the one-server setting,
we find an exponential gap in the communication complexities between the
presence and absence of prior entanglement in this problem with the one-server
setting. To achieve this aim, as the first step, we prove that the trivial solution of
downloading all messages is optimal under QPIR for quantummessages, which is a
similar result to that of classical PIR but different from QPIR for classical messages. As
the second step, we propose an efficient one-server one-round QPIR protocol with
prior entanglement by constructing a reduction from a QPIR protocol for classical
messages to a QPIR protocol for quantummessages in the presence of prior
entanglement.

Keywords: Private information retrieval; Quantum private information retrieval;
One-server model; Honest-server model; Quantummessage

1 Introduction
1.1 Private information retrieval (PIR)
Entanglement is a valuable resource for quantum information processing, enabling various
tasks including quantum teleportation [1] and dense coding, also known as entanglement-
assisted communication [2]. Although entanglement-assisted communication enhances
the speed not only for conventional communication but also for secret communication,
their improvements are limited to constant times [3, 4]. In addition, it is often assumed
in theoretical investigations of distributed quantum protocols that prior entanglement is
available as a free resource because prior entanglement can be seen as a quantum coun-
terpart of prior shared randomness [5, 6]. That is, one of great advantages of quantum
system is to use prior entanglement instead of prior randomness. For further develop-
ment of entanglement-assisted communication, we need to find significant improvement
by entanglement-assisted communication.
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Figure 1 One-server QPIR protocol with quantum messages. At round i, the user uploads a query Q(i) and
downloads an answer A(i)

For this aim, we focus on private information retrieval (PIR) as Fig. 1, a task in which
a user retrieves a message from a server without revealing which message has been re-
trieved, when the server possesses multiple messages. Hence, PIR is a key technology for
keeping the privacy because it enables a person to hide his/her demand even with making
his/her request. Therefore, it is a crucial issue for quantum information whether the use
of entanglement enhances the performance of PIR.

Many papers [7–21] studied Quantum PIR (QPIR), i.e., PIR using quantum states, when
the intended messages are given as the classical messages. This problem setting is sim-
plified to C-QPIR. On the other hand, since various types of quantum information pro-
cessings require the transmission of quantum states, i.e., the quantum messages [22–26],
it is needed to develop QPIR for quantum messages, which is simplified to Q-QPIR, while
no preceding paper studied this topic. In addition, in the multi-party quantum computing
[27, 28], we often need to transmit quantum messages, i.e., quantum input states, instead
of classical messages since it requires the protection of the coherence during the process
of quantum computation. Therefore, for further development of quantum computer sci-
ence, it is important to study various communication with quantum messages in addition
to classical messages.

In this paper, to enhance quantum information technology, we study private informa-
tion retrieval for quantum messages with one server, and present an exponential speedup
through the use of prior entanglement as a significant improvement. Although there have
been mainly two approaches: PIR with computational assumptions [29, 30] and PIR with
multiple servers [31–33], recent attention has focused on information-theoretic aspects
of PIR [34–48]. In this paper, we solely consider one-server QPIR without computational
assumptions.

1.2 QPIR for classical messages
PIR has also been studied when quantum communication is allowed between the user and
the server [7–21]. These papers consider the case when the total number of bits in the mes-
sages is m. For the secrecy in C-QPIR, we often focus on the potential information leakage
in all rounds, which is called the all-round criterion in this paper and has been studied un-
der several security models. One is the honest-server model, in which, we discuss the user’s
secrecy only when the server is honest, i.e., the server does not deviate from the protocol.
The other is the specious-server model, in which, we discuss the user’s secrecy even when
the server deviates from the protocol as far as its dishonest operations are not revealed to
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the user, which is called specious adversary. The secrecy under the specious-server model
has a stronger requirement than the secrecy under the honest-server model. Interestingly,
under the honest-server model, Le Gall [11] proposed a C-QPIR protocol with commu-
nication complexity O(

√
m) in the all-round criterion, and Kerenidis et al. [12] improved

this result to O(poly log m) in another criterion, where the communication complexity in
the quantum case is the total number of communicated qubits. Baumeler and Broadbent
[10] considered the case when the specious-server model is adopted and the possible input
states are extended to arbitrary superposition states. Then, they proved that the commu-
nication complexity is at least �(m), i.e., the trivial solution of downloading all messages is
optimal also for this case. While indeed less realistic than the fully dishonest server model,
investigating the honest model and the specious model is very often a fundamental (and
necessary) step in cryptographic applications. Such investigations receive significant at-
tention from the quantum cryptography community. For instance, the key paper [13] also
focused on QPIR in the honest server model and the specious server model. These facts
show that this problem setting has sufficient impact in the area of quantum computer sci-
ence. In this paper, when arbitrary superposition states are allowed as input states, we
consider the following; The user is required to recover the correct classical information
only when the input state is a classical state. In other words, when the input state is a
superposition state, any output is considered as a correct outcome.

Even when prior entanglement is allowed between the user and the server, the com-
munication complexity is also lower bounded by �(m) under the specious-server model
with the above extended possible input states [13]. Therefore, the advantage of prior en-
tanglement is limited under the specious-server model with the above extended possible
input states. In contrast, prior entanglement might potentially have polynomial improve-
ment under the honest-server model, but it is still unclear how much prior entanglement
improves communication complexity under the honest-server model.

When the server truly follows the protocol, the information obtained by the server is
limited to the server’s final state. Hence, the information leakage in the server’s final state
can be considered as another criterion, which is called the final-state criterion. While the
final-state criterion under the honest-server model is a too weak setting, it is reasonable
to consider the final-state criterion under the specious-server model, which is essentially
equivalent to the cheat-sensitive setting studied in [49].

1.3 Our contributions
In this paper, for Q-QPIR protocols and the total number m of qubits, we show that the
communication complexity is at least �(m), i.e., the trivial solution of downloading all
messages is optimal for one-server Q-QPIR even in the final-state criterion and even with
the honest-server model if prior entanglement is not allowed between the server and the
user. This fact shows that prior entanglement between the server and the user is necessary
for further improvement under the one-server model even for Q-QPIR under the honest-
server model, the weakest secrecy requirement. To overcome this problem, we propose
a one-server Q-QPIR protocol with prior entanglement between the server and the user,
which achieves the communication complexity O(log m). That is, prior entanglement has
exponential improvement for Q-QPIR under the honest-server model.
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1.4 Organization of this paper
The remainder of the paper is organized as follows. Section 2 gives the definitions of sev-
eral concepts and the outline of our results including the comparison with existing results.
Section 3 is the technical preliminaries of the paper. Section 4 presents our results for
C-QPIR protocol with communication complexity O(log m). Section 5 derives the lower
bound of the communication complexity for Q-QPIR in the final-state criterion under the
honest-server model when prior entanglement is not shared. Section 6 proposes an effi-
cient Q-QPIR protocol with prior entanglement under various settings. Section 7 is the
conclusion of the paper.

2 Definitions and outline of our results
2.1 Definitions of various concepts
To briefly explain our results, we prepare the definitions of various concepts to cover C-
QPIR protocols and Q-QPIR protocols in a common framework.

2.1.1 Correctness, complexity, and unitary-type
To discuss the properties of our QPIR protocols, we prepare several concepts. First, we
define the set S of possible quantum states as a subset of the set S(Hd) of states on C

d . A
QPIR protocol is called a QPIR protocol with C

d over the set S when it works when the
set S is the set of possible quantum states. For example, when S is the set C of orthogonal
pure states {|j〉}d–1

j=0 , a QPIR protocol is a C-QPIR protocol discussed in [10]. In contrast,
when S is the set Q of all pure states on the system C

d , a QPIR protocol is a Q-QPIR
protocol. When we do not identify the set S , we consider that it is given as the above case.
We denote the number of messages by f. A QPIR protocol � has two types of inputs. The
first input is composed of f messages, whose systems are written as H1, . . . ,Hf. Their state
is written as f states (ρ1, . . . ,ρf) ∈ S f. The second input is the choice of the label of the
message intended by the user, which is written as the random variable K . The quantum
system to describe the variable K is denoted by K. We denote the remaining initial user’s
and server’s systems by Ru and Rs, respectively. The output of the protocol is a state ρout

on Hd .
A QPIR protocol � has bilateral communication. The communication from the user to

the servers is the upload communication, and the communication from the servers to the
users is the download communication. The communication complexity is composed of
the upload complexity and the download complexity. The upload complexity is the sum
of the communication sizes of all upload communications, and the download complexity
is the sum of the communication sizes of all download communications. The sum of the
upload and download complexity is called the communication complexity. We adopt the
communication complexity as the optimality criterion under various security conditions.

A QPIR protocol � is called a deterministic protocol when the following two condi-
tions hold. The upload complexity and the download complexity are determined only
by the protocol �. When the user and the servers are honest, the output is determined
only by (ρ1, . . . ,ρf) and K . When � is a deterministic protocol, we denote the output
state by �out(ρ1, . . . ,ρf, K) = ρout . The upload complexity, the download complexity, and
the communication complexity are denoted by UC(�), DC(�), and CC(�), respectively.
Hence, the communication complexity CC(�) is calculated as UC(�) + DC(�). A pro-
tocol � is called correct when the protocol is a deterministic protocol and the relation
�out(ρ1, . . . ,ρf, k) = ρk holds for any elements k ∈ [f] and (ρ1, . . . ,ρf) ∈ S f.
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Another important class of QPIR protocols is unitary-type protocols. When a QPIR
protocol � satisfies the following conditions, it is called unitary-type.

• The initial states ρRs on Rs and ρRu on Ru are pure.
• At each round, both the user and the server apply only unitary operations to the

systems under their control.
• A measurement is done only when the user reads out the message as the outcome of

the protocol.
The reference [13] refers to the above property as measurement-free due to the third con-
dition while it assumes the first and second conditions implicitly. Since the first and second
conditions are more essential, we call it unitary-type.

2.1.2 Secrecy
In this paper, we address only the secrecy of the user’s choice. There are two security
criteria. One is the final-state criterion, in which, it is required that the server’s final state
does not depend on the user’s choice K . The other is the all-round criterion, in which, it
is required that the server’s state in any round does not depend on the user’s choice K .
When we consider the secrecy, we may extend the set of possible inputs to S̃ that includes
the set S . For example, in the case of C-QPIR, the set S is given as the set C . Then, we can
choose S̃ as the set C or Q. The case with S̃ = C is called the classical input case, and the
case with S̃ = Q is called the superposition input case. Instead, in the case of Q-QPIR, the
set S is given as the set Q. Hence, the set S̃ is chosen as the same set Q.

Even when we fix the security criterion and the setsS and S̃ , there still exist three models
for the secrecy for a QPIR protocol �. The first one is the honest-server model, which
assumes that the servers are honest. We say that a QPIR protocol � satisfies the secrecy
in the final-state criterion under the honest-server model with input states S̃ when the
following condition holds. When the user and the servers are honest, the server has no
information for K in the final state, i.e., the relation

ρS,F (ρ1, . . . ,ρf, k) = ρS,F (ρ1, . . . ,ρf, k′) (1)

holds for any k, k′ ∈ [f] and (ρ1, . . . ,ρf) ∈ S̃ f, where ρS,F (ρ1, . . . ,ρf, K) is the final state on the
server dependent of the variable K . In the condition (1), the states ρk is chosen from S̃ ,
not from S . We say that a QPIR protocol � satisfies the secrecy in the all-round criterion
under the honest-server model with input states S̃ when the following condition holds,
the server has no information for K in all rounds, i.e., the relation

ρS,j(ρ1, . . . ,ρf, k) = ρS,j(ρ1, . . . ,ρf, k′) (2)

holds for any k, k′ ∈ [f] and (ρ1, . . . ,ρf) ∈ S̃ f, where ρS,j(ρ1, . . . ,ρf, K) is the state on the server
dependent of the variable K when the server receives the query in the j-th round. The
following is the meaning of the secrecy in the all-round criterion under the honest-server
model. Assume that the user and the server are honest. Even when the server stops the
protocol at the j-th round for any j, the server cannot obtain any information for K .

The second model is called the specious-server model introduced in [50]. When the
server applies other operations that deviate from the original protocol, such an operation is
called an attack. An attack of the server is called a specious attack when the attack satisfies
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the following conditions. The server sends the answer at the time specified by the protocol,
but the contents of the answer do not follow the protocol. Also, the server does not access
the information under the control of the user. In addition, the attack is not revealed to the
user under the condition that the user is honest, i.e., there exists the server’s operation FS,j

such that the relation

(FS,j ⊗ ι)ρ̃j(ρ1, . . . ,ρf, k) = ρj(ρ1, . . . ,ρf, k) (3)

holds for any k ∈ [f] and (ρ1, . . . ,ρf) ∈ S̃ f, where ρj(ρ1, . . . ,ρf, K) (ρ̃j(ρ1, . . . ,ρf, K)) is the state
on the whole system dependently of the variable K when the user receives the answer in
the j-th round under the assumption that the user is honest and the server is honest (the
server makes the attack). Notice that the definition of a specious attack depends on the
choice of the set S̃ . The meaning of (3) is the following. When the user decides to stop
the protocol to check whether the server follows the protocol after the user receives the
answer in the j-th round, the user asks the server to submit the evidence that the server
follows the protocol. Then, the server sends his system after applying the operation FS,j.
When S̃ is chosen to be the setQ of pure states, a specious attack coincides with a so-called
0-specious adversary, which is introduced in [13, Definition 2.4] because it is sufficient to
check the case with even t in [13, Definition 2.4]. Also, when S̃ is chosen to be the set C ,
the secrecy in the all-round criterion under the specious server model coincides with the
anchored 0-privacy under 0-specious servers [13].

We say that a QPIR protocol � satisfies the secrecy in the final-state criterion (the all-
round criterion) under the specious-server model with input states S̃ when the following
condition holds. When a server performs a specious attack and the user is honest, the
server obtains no information about the user’s request K in all rounds, i.e., the condition
(1) (the condition (2)) holds. In fact, the secrecy condition in the final-state criterion is
weaker than the secrecy condition in the all-round criterion even under the specious-
server model. The secrecy condition in the final-state criterion under the specious-server
model is essentially equivalent to the cheat-sensitive secrecy condition considered in [49].

The third model is called the dishonest-server model. We say that a QPIR protocol �

satisfies the secrecy under the dishonest-server model when the following condition holds.
When the server applies an attack and the user is honest, the server obtains no information
of the user’s request K , i.e., the condition (1) holds. In the dishonest-server model, the
server is allowed to make any attack under the following conditions. The server sends
the answer at the time specified by the protocol, but the contents of the answer do not
follow the protocol. Also, the server does not access the information under the control of
the user. Thus, the server can send any information on each round under this condition.
Hence, the ability of the attack does not depend on the set S̃ . Also, the server can store
the state received in any round. Hence, the server can obtain the same information in the
final state as the information in the j-th round.

Further, when the protocol has only one round and we adopt the all-round criterion,
there is no difference among the honest-server model, the specious-server model, and the
dishonest-server model because all information obtained by the server is reduced to the
state on the server when the server received the query in the first round. As a result, the
information obtained by the server does not depend on the server’s operation, i.e., the
server’s attack model.
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Remark 1 In the papers [10, 13], the security against specious adversaries means the se-
crecy in the all-round criterion under the specious-server model with input states Q for
C-QPIR in our definition. Instead, in the paper [13], the anchored specious security means
the secrecy in the all-round criterion under the specious-server model with input states C
for C-QPIR in our definition. The papers [10, 13] did not consider the final-state criterion.

2.2 Outline of results and comparison
2.2.1 Optimality of trivial solution for one-server Q-QPIR
First, we discuss our result for one-server Q-QPIR for the honest-server model without
prior entanglement, and its relation to existing results. The result by the reference [10] is
summarized as follows. The C-QPIR protocol discussed in [10] is considered as a QPIR
protocol over the set C . The reference [10] showed that the trivial protocol over the set
C is optimal in the all-round criterion under the specious-server model with input states
Q, i.e., when the secrecy in the all-round criterion is imposed under the specious-server
model with input states Q. Since the set C = {|j〉}d–1

j=0 is included in the set Q, a Q-QPIR
protocol over the set Q works a QPIR protocol over the set C . Hence, the result by [10]
implies the optimality of the trivial protocol over the set Q in the all-round criterion under
the specious-server model. In addition, such an impossibility result was extended to the
case with prior entanglement by the paper [13].

However, the secrecy in the all-round criterion under the specious-server model is a
stronger condition than the secrecy in the final-state criterion under the honest-server
model because the secrecy in the all-round criterion is a stronger condition the secrecy in
the final-state criterion and the specious-server model allows the server to have a larger
choice than the honest-server model.

To seek further possibility for C-QPIR protocols, in Sects. 4.1 and 4.2, inspired by the
idea presented in [49], we propose more efficient one-round C-QPIR protocols in the final-
state criterion under the honest-server and specious-server models with input states C or
Q whose communication complexities are at most 4 log m. In addition, the reference [11]
proposed a C-QPIR protocol in the all-round criterion under the honest one-server model
that has communication complexity O(

√
m). The reference [12] also proposed a C-QPIR

protocol with communication complexity O(poly log m) without prior entanglement and
a C-QPIR protocol with communication complexity O(log m) with prior entanglement. In
Sect. 4.3, we show that these two protocols satisfy the secrecy in the all-round criterion
under the honest-server model with input states C . In addition, using a conversion result
[13], we show that these two protocols satisfy the secrecy in the all-round criterion under
the specious-server model with input states C .

Hence, we cannot exclude the possibility of more efficient one-server Q-QPIR protocols
than the trivial solution in the final-state criterion or under the honest one-server model.
Furthermore, while the trivial solution is optimal under the honest-server model of clas-
sical PIR [51], its optimality proof uses the communication transcript between the server
and the user, which is based on classical communication. Unfortunately, we cannot ap-
ply the same technique under the honest one-server model of Q-QPIR because quantum
states cannot be copied because of the no-cloning theorem. Therefore, we have a ques-
tion of whether there exists a Q-QPIR protocol over pure states that satisfies the secrecy
in the final-state criterion under the honest-server model, and improves the communica-
tion complexity over the trivial protocol.
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Table 1 Optimal communication complexity of one-server C-QPIR

m is the total size of messages. * expresses the case when each message size is fixed. The symbol [12] + [Lemma 8] shows that
the protocol was proposed in [12], but its secrecy is shown in Lemma 8 of this paper. These notations are applied to Table 2
as well.

Table 2 Optimal communication complexity of one-server Q-QPIR

This table employs the same notations as Table 1.

As its solution, we show that the trivial solution is optimal for one-server Q-QPIR in
the final-state criterion for the honest-server model. In Tables 1 and 2, we summarize the
comparison of our results with previous results for the one-server case. In our proof, the
entropic inequalities are the key instruments for the proof. Since the pair of the final-state
criterion and the honest-server model is the weakest attack model, this result implies that
the trivial solution is also optimal for any attack model.

2.2.2 One-server Q-QPIR protocol with prior entanglement
However, the above discussion assumes that there is no prior entanglement shared be-
tween the sender and the user. Hence, secondly, with prior entanglement between the
user and the server, we prove that there exists an efficient Q-QPIR protocol on the honest-
server model or on the final-state criterion. To be precise, we propose a method to con-
struct a Q-QPIR protocol of communication complexity O(f (m)) with prior entanglement
from a C-QPIR protocol of communication complexity O(f (m)) with prior entanglement.
This method is based on the combination of C-QPIR and quantum teleportation [1]. The
proposed Q-QPIR protocol inherits the security of the C-QPIR protocol. With this prop-
erty, we show three types of Q-QPIR protocols of communication complexity O(log m)

with prior entanglement. One is the secrecy in the final-state criterion under the honest-
server model. The second is the secrecy in the final-state criterion under the specious-
server model. The third is the secrecy in the all-round criterion under the honest-server
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model. Combining this result with the above result, we find that prior entanglement re-
alizes an exponential speedup for one-server Q-QPIR in the final-state criterion or under
the honest-server model. Therefore, the obtained results are summarized as Table 1 in
terms of the communication complexity m.

3 Preliminaries
We define [a : b] = {a, a + 1, . . . , b} and [a] = {1, . . . , a}. The dimension of a quantum system
X is denoted by |X|. The von Neumann entropy is defined as H(X) = H(ρX) = TrρX logρX ,
where ρX is the state on the quantum system X.

Proposition 1 The von Neumann entropy satisfies the following properties.
(a) H(X) = H(Y ) if the state on X ⊗ Y is a pure state.
(b) The inequality H(XY ) ≤ H(X) + H(Y ) holds, and the equality holds for product states

on X ⊗ Y .
(c) Entropy does not change by unitary operations.
(d) H(XY ) + H(X) ≥ H(Y ).
(e) H(

∑
s psρs) =

∑
s ps(H(ρs) – log ps) if Trρsρt = 0 for any s 	= t.

The property (d) is proved as follows. Since other properties can be easily shown, we
omit their proofs. For example, see the book [52, Sects. 3.1 and 8.1]. Let Z be the reference
system in which the state on XYZ is pure. Then, H(XY ) + H(X) = H(Z) + H(X) ≥ H(XZ) =
H(Y ). Throughout the paper, we use the symbols (a), (b), (c), (d), (e) to denote which
property is used, e.g., (a)= means that the equality holds from the property (a).

Next, for a TP-CP map from the system HX to the system HY and a state ρ on HX , we
define the transmission information I(ρ,�). We choose a purification |ψ〉 of ρ with the
environment HZ . Then, the transmission information I(ρ,�) is defined as

I(ρ,�) := H(ρ) + H(�(ρ)) – H((ιZ ⊗ �)(|ψ〉〈ψ |)), (4)

where ιZ is the identity operation on HZ . When � is the identity operator,

I(ρ,�) = 2H(ρ). (5)

Throughout this paper, Cd expresses the d-dimensional Hilbert space spanned by the
orthogonal basis {|s〉}d–1

s=0 . For a d1 × d2 matrix

M =
d1–1∑

s=0

d2–1∑

t=0

mst|s〉〈t| ∈ C
d1×d2 , (6)

we define

|M〉〉 =
1√
d

d1–1∑

s=0

d2–1∑

t=0

mst|s〉|t〉 ∈C
d1 ⊗C

d2 . (7)

For A ∈C
d1×d2 , B ∈C

d1×d1 , and C ∈C
d2×d2 , we have the relation

(B ⊗ C�)|A〉〉 = |BAC〉〉. (8)
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We call a d-dimensional system C
d a qudit. Define generalized Pauli matrices and the

maximally entangled state on qudits as

Xd =
d–1∑

s=0

|s + 1〉〈s|, (9)

Zd =
d–1∑

s=0

ωs|s〉〈s|, (10)

|Id〉〉 =
1√
d

d–1∑

s=0

|s, s〉, (11)

where ω = exp(2πι/d) and ι =
√

–1. We define the generalized Bell measurements

MXZ,d = {|XaZb〉〉 | a, b ∈ [0 : d – 1]}. (12)

If there is no confusion, we denote Xd , Zd , Id , MXZ,d by X, Z, I, MXZ. Let A, A′, B, B′ be qudits.
If the state on A ⊗ A′ ⊗ B ⊗ B′ is |A〉〉 ⊗ |B〉〉 and the measurement MXZ is performed on
A′ ⊗ B′ with outcome (a, b) ∈ [0 : d – 1]2, the resultant state is

|AXaZ–bB�〉〉 ∈ A ⊗ B. (13)

We also define the dual basis

|uj〉 :=
d–1∑

k=0

1√
d

e
2πkji

d |k〉. (14)

4 Protocols for C-QPIR
4.1 One-round C-QPIR of the final-state criterion under honest-server model
This section presents a protocol that satisfies the secrecy in the final-state criterion under
the honest-server model with the input states C . We assume that the 
-th message X
 is
an element of Zd


for 
 ∈ [f]. We define d as the maximum max
∈[f] d
.

Protocol 1 The following protocol is denoted by �f,d .
0) Preparation: The server prepares f + 1 quantum systems H0,H1, . . . ,Hf, where H0

is spanned by {|j〉}d–1
j=0 , and H
 is spanned by {|j〉}d
–1

j=0 . When the 
-th message is X
,
the state on the quantum system H
 is set to be |X
〉. Also, the state on the quantum
system H0 is set to be |0〉. The user prepares the system K spanned by {|
〉}f


=1.
1) Query (upload): The user sets the state on the system K to be |K〉. The user sends

the system K to the server.
2) Answer (download): The server applies the measurement based on the

computation basis {|j〉} on the systems H1, . . . ,Hf with the projective state
reduction. The server applies the controlled unitary U :=

∑f

=1 |
〉〈
| ⊗ U
 on

K⊗H0 ⊗H1 ⊗ · · · ⊗Hf, where U
 acts only on H0 ⊗H
 and is defined as

U
 :=
d–1∑

j′=0

d
–1∑

j=0

|j + j′〉〈j′| ⊗ |j〉〈j|. (15)
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The server sends the system K ⊗H0 to the user.
3) Reconstruction: The user measures H0, and obtains the message XK .

Lemma 1 Protocol 1 is correct and satisfies the secrecy in the final-state criterion under
the honest-server model with the input states C .

Its upload and download complexities are UC(�f,d) = log f and DC(�f,d) = log f + log d.
The communication complexity is CC(�f,d) = 2 log f + log d. When d is fixed, CC(�f,d) =
2 log m + o(m).

Proof The correctness of Protocol 1 can be checked as follows. Since U
|0〉⊗|X
〉 = |X
〉⊗
|X
〉, we have

U|K〉|0〉|X1〉 · · · |Xf〉 = |K〉|XK 〉|X1〉 · · · |Xf〉. (16)

Hence, the user gets the state |K〉|XK 〉, which contains the correct information XK .
As shown in the following; Protocol 1 satisfies the secrecy in the final-state criterion

under the honest-server model with the input states C . We assume that the server and the
user are honest. Since the server follows the protocol, the server has only the f systems
H1, . . . ,Hf. The final state on the composite system H1 ⊗ · · · ⊗ Hf is |X1〉 · · · |Xf〉, which
does not depend on the user’s choice K . Hence, the above secrecy holds. �

Lemma 1 can be strengthened as follows.

Lemma 2 When we add the measurement with the computational basis on H1 ⊗ · · ·⊗Hf

in Step 2) in Protocol 1 before the unitary U is applied, the protocol is correct and satisfies
the secrecy in the final-state criterion under the honest-server model even with the input
states Q.

Proof Even when the initial states in H1, . . . ,Hf prepared as quantum states, due to the
measurement, the initial states in H1, . . . ,Hf are convex mixtures of states {|j〉〈j|}. Hence,
the final state on the composite system H1 ⊗ · · · ⊗ Hf is the same as the state after the
measurement, which does not depend on user’s choice K . Hence, the above secrecy holds.

�

The following lemma shows the importance of measurement in Lemma 2.

Lemma 3 Protocol 1 does not satisfy the secrecy in the final-state criterion under the
honest-server model even with the input states Q.

Proof Assume that the server set initial state in H
 to be
∑d


j=1
1√
d


|j〉. Also, we assume
that the server and the user follow Steps 1), 2), 3). Then, the final state on HK ⊗ H0 is
∑d


j=1
1√
d


|j〉|j〉. That is, the final state on HK is the completely mixed state. In contrast, the
final state on H
 is the same as the initial state for 
 	= K . Hence, the secrecy condition (1)
does not hold. �

Also, we have the following lemma. That is, we need to modify Protocol 1 for the
specious-server model.
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Lemma 4 Protocol 1 does not satisfy the secrecy in the final-state criterion under the
specious-server model even with the input states Q.

Proof A specious server is allowed to make a measurement if the measurement does not
destroy the quantum state. Since the state on the composite system K⊗H0 ⊗H1 ⊗· · ·⊗Hf

is one of the computation basis, it is not destroyed by the measurement of the computation
basis. Hence, the server can obtain the user’s choice K without state demolition. This
fact shows that the specious-server model is needed in order to forbid such an insecure
protocol. However, as shown in Sect. 5, even under the honest-server model, a protocol
similar to Protocol 1 does not work when the messages are given as quantum states. �

4.2 One-round C-QPIR of the final-state criterion under specious-server model
Protocol 1 presented in the previous subsection does not work under the specious-server
model. To resolve this problem, this section presents a protocol that satisfies the secrecy
in the final-state criterion under the specious-server model with the input states C . We
assume that each message X
 is an element of Zd


. We define d as the maximum max
 d
.

Protocol 2 The following protocol is denoted by �f,d .
0) Preparation: The server prepares f + 2 quantum systems H′

0,H′
1,H1, . . . ,Hf, where

H′
0, H′

1 is spanned by {|j〉}d–1
j=0 , and H
 is spanned by {|j〉}d
–1

j=0 . When the 
-th message
is X
, the state on the quantum system H
 is set to be |X
〉. Also, the state on the
quantum system H′

0, H′
1 is set to be |0〉. The user prepares the systems K0,K1

spanned by {|
〉}f

=1.

1) Query (upload): The user generates the binary random variable A and the variable
B ∈ [f] subject to the uniform distribution. The user sets the state on the system KA

to be |K〉, and the state on the system KA⊕1 to be 1√
f

∑f

=1 ZB

f |
〉. The user sends the
systems K0, K1 to the server.

2) Answer (download): The server applies the controlled unitary
U :=

∑f

=1 |
〉〈
| ⊗ U
 on K0 ⊗H′

0 ⊗H1 ⊗ · · · ⊗Hf, where U
 acts only on
H′

0 ⊗H
(= H′
1 ⊗H
) and is defined as

U
 :=
d–1∑

j′=0

d
–1∑

j=0

|j + j′〉〈j′| ⊗ |j〉〈j|. (17)

Then, the server applies the controlled unitary U on K1 ⊗H′
1 ⊗H1 ⊗ · · · ⊗Hf. The

server sends the systems K0 ⊗H′
0, K1 ⊗H′

1 to the user.
3) Reconstruction: The user measures H′

A, and obtains the message XK .

Lemma 5 Protocol 2 is correct and satisfies the secrecy in the final-state criterion under
the specious-server model with the input states C .

Its upload and download complexities are UC(�f,d) = 2 log f and DC(�f,d) = 2 log f +
2 log d. The communication complexity is CC(�f,d) = 4 log f + 2 log d. When d is fixed,
CC(�f,d) = 4 log m + o(m).

Proof The correctness of Protocol 2 can be checked as follows. Due to the relation (16),
when A = 0, the state on the whole system K0 ⊗ H′

0 ⊗ K1 ⊗ H′
1 ⊗ H1 ⊗ · · · ⊗ Hf before
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the server sends back the system is |K〉|XK 〉 1√
f

∑f

=1 ZB

f |
〉|X
〉|X1〉 · · · |Xf〉. Hence, the user
receives the state |K〉|XK 〉 1√

f

∑f

=1 ZB

f |
〉|X
〉, which contains the correct information XK .
Similarly, when A = 1, the user receives a state containing the correct information XK .

Next, we show that Protocol 2 satisfies the secrecy in the final-state criterion under the
specious-server model with the input states C . Assume that the server and the user follow
the protocol. Then, the resultant state in the server’s system H1 ⊗ · · · ⊗Hf is the product
state |X1〉 . . . |Xf〉. The resultant state in KA ⊗H′

A is |K〉|XK 〉. The resultant state in KA⊕1 ⊗
H′

A⊕1 is 1√
f

∑f

=1 ZB

f |
〉|X
〉.
Hence, when A = 0, the specious server needs to generate the state |K〉|XK 〉 1√

f
×

∑f

=1 ZB

f |
〉|X
〉 from the state |K〉 1√
f

∑f

=1 ZB

f |
〉. Also, when A = 1, the specious server
needs to generate the state 1√

f

∑f

=1 ZB

f |
〉|X
〉|K〉|XK 〉 from the state 1√
f

∑f

=1 ZB

f |
〉|K〉.
Since the resultant states |K〉|XK 〉 1√

f

∑f

=1 ZB

f |
〉|X
〉 and 1√
f

∑f

=1 ZB

f |
〉|X
〉|K〉|XK 〉 are
unitarily equivalent to the states |K〉 1√

f

∑f

=1 ZB

f |
〉 and 1√
f

∑f

=1 ZB

f |
〉|K〉, it is sufficient
to discuss whether the server can get certain information from the state family F :=
{|k〉 1√

f

∑f

=1 Zb

f |
〉, 1√
f

∑f

=1 Zb

f |
〉|k〉}f
k,b=1 without disturbance.

However, due to Koashi-Imoto [53, 54] theory (Proposition 3 in the Appendix), any mea-
surement obtains no information for K . When the states need to be recovered because
the state family F satisfies the condition (A) in the Appendix. Therefore, when the server
keeps the condition for the specious server, the server cannot obtain any information for
K . �

Unfortunately, adding the measurement in Step 2) cannot guarantee that the protocol
satisfies the secrecy in the final-state criterion under the specious-server model with the
input states Q. That is, we have the following lemma.

Lemma 6 Even when we add the measurement with the computational basis on H1 ⊗· · ·⊗
Hf in Step 2) before the unitary U is applied, the protocol does not satisfy the secrecy in the
final-state criterion under the specious-server model with the input states Q.

Proof Assume that the server sets a general initial pure state on H1 ⊗ · · · ⊗ Hf, which
is potentially a superposition state. When the server applies the measurement with the
computational basis on H1 ⊗· · ·⊗Hf in Step 2) after the unitary U is applied, the state on
K0 ⊗H′

0 ⊗K1 ⊗H′
1 is not changed. Further, even when the order of the above measure-

ment and the unitary U is exchanged, the state on K0 ⊗ H′
0 ⊗ K1 ⊗ H′

1 is not changed.
Therefore, even when the server does not make the measurement with the computational
basis on H1 ⊗ · · · ⊗Hf in Step 2) before the unitary U is applied, the state sent to the user
is not changed.

Now, we assume that the server sets the initial state in H
 to be |�
〉 :=
∑d


j=1
1√
d


|j〉.
When U
 is applied, the resultant state on H
 is the completely mixed state ρmix,
. Oth-
erwise, it is |�
〉. The resultant state on H1 ⊗ · · · ⊗ Hf does not depend on whether the
measurement on the computational basis on K0 ⊗K1 is done before the unitary U . Hence,
we can consider the following. When K = 
, U
 is applied with probability 1. Otherwise, U


is applied with probability 1
f . Therefore, when K = 
, the resultant state on H
 is the com-

pletely mixed state ρmix,
. Otherwise, the resultant state on H
 is 1
f ρmix,
 + (1 – 1

f )|�
〉〈�
|.
Hence, the server obtains a certain information for the value K in the final state. �
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4.3 C-QPIR in all-round criterion
In this section, we discuss the secrecy in the all-round criterion of the C-QPIR protocol
with communication complexity O(poly log m) under the fixed message size d = 2 from
[12, Sect. 5], which does not use any prior entanglement, and the C-QPIR protocol with
communication O(log m) under the fixed message size d = 2 from [12, Sect. 6], which uses
�(m) ebits of prior entanglement. Although these protocols fix the message size d to be
2, they can be generalized to protocols whose message sizes are fixed to an arbitrary d by
treating log2 d� messages as one message.

4.3.1 Secrecy of the protocol from [12, Sect. 5] under the honest server model
The protocol from [12, Sect. 5] works for the case d = 2. The server’s input is thus
(a1, . . . , af) for a1, . . . , af ∈ {0, 1}. The user’s input is an index K ∈ {1, . . . , f}.

The main idea is to simulate a classical multi-server PIR protocol with s = O(log m)

servers that has total communication complexity O(poly log m). Such protocols are
known to exist (see, e.g., [51]) and can be described generically as follows. The user
picks a uniform random variable G from {1, . . . , g}, computes an s-tuple of queries
{q1(G, K), . . . , qs(G, K)} from (G, K) by using a function qt , and asks query qt(G, K) to the
t-th server. Here, for each t ∈ {1, . . . , s}, the function qt satisfies the condition that the
distribution of query qt(G, K) is independent of K . Each server t then sends its answer
anst(qt(G, K)) to the user, who recovers aK from {ans1(q1(G, K)), . . . , anss(qs(G, K))}.

The protocol from [12, Sect. 5] simulates this protocol using only one server. The pro-
tocol uses 2s + 1 quantum registers denoted Q, Q1, . . . , Qs, Ans1, . . . , Anss. For each t ∈
{1, . . . , s}, let us define the following quantum state:

|�t〉

=
1√
g

∑

g
|q1(g, K), . . . , qs(g, K)〉Q |q1(g, K)〉Q1

· · · |qs(g, K)〉Qs

⊗ |ans1(q1(g, K))〉Ans1
· · · |anst–1(qt–1(g, K))〉Anst–1

⊗ |0〉Anst · · · |0〉Anss .

Note that we have in particular

|�1〉

=
1√
g

∑

g
|q1(g, K), . . . , qs(g, K)〉Q |q1(g, K)〉Q1

· · · |qs(g, K)〉Qs

⊗ |0〉Ans1 · · · |0〉Anss .

The protocol from [12, Sect. 5] consists of the following interaction between the user and
the server (some details of the manipulations of the states are omitted since they are irrel-
evant to the secrecy proof ):

1. The user prepares the state |�1〉.
2. The user and the server iterate the following for t = 1 to s:

2.1 The user sends Registers Qt , Anst to the server;
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2.2 The server applies a controlled unitary, where the controlling system is Qt and
the controlled system is Anst . Then, the server sends back Registers Qt , Anst to
the user.

3. The user measures the joint system composed of Registers
Q, Q1, . . . , Qs, Ans1, . . . , Anss to obtain the outcome aK after certain unitary
operations.

We now show the secrecy of this protocol under the honest server model.

Lemma 7 The protocol from [12, Sect. 5] is unitary-type and satisfies the secrecy in the
all-round criterion under the honest server model when the set S̃ of possible inputs is C .

Proof The protocol is clearly unitary-type. The remaining task is then to show the secrecy
of this protocol in the all-round criterion under the honest server model when the set S̃
of possible inputs is C . Observe that at each iteration there is only a message sent to the
server, at Step 2.1. We thus only need to show that for each t, this message does not reveal
any information about K . The state of the whole system at the end of Step 2.1 of the t-th
iteration is |�t〉. The state of the server, obtained by tracing out all registers except Qt ,
Anst of |�t〉 〈�t| is

1
g

∑

g
|qt(g, K)〉Qt |0〉Anst 〈qt(g, K)|Qt 〈0|Anst . (18)

Since the distribution of query qt(G, K) is independent of K , we conclude that the whole
state of the server at the end of Step 2.1 is independent of K , for each t. �

4.3.2 Secrecy of the protocol from [12, Sect. 6] under the honest server model
The protocol from [12, Sect. 6] works for the case d = 2 and f = 2h, for h ≥ 1. The server’s
input is thus (a1, . . . , af) for a1, . . . , af ∈ {0, 1}. The user’s input is an index K ∈ {1, . . . , f}.

The protocol uses 2h + 2 quantum registers denoted R1, . . . , Rh, R′
1, . . . , R′

h, Q0, Q1. For
each p ∈ {1, . . . , h}, let us define the following quantum state over the two registers Rt , R′

p:

|�p〉 =
1

√
22h–p

∑

z∈{0,1}2h–p

|z〉Rp |z〉R′p .

For any binary string z ∈ {0, 1}s with s even, we denote z[0] the first half of z, and z[1] the
second half of z. For any binary strings z, z′ ∈ {0, 1}s, we write z ⊕ z′ ∈ {0, 1}s the string
obtained by taking the bitwise parity of z and z′.

The protocol from [12, Sect. 6] assumes that the server and the user initially share the
state

|�1〉 ⊗ · · · ⊗ |�h〉 · · · ⊗ |0〉Q0 |0〉Q′
0

,

where R1, . . . , Rh, Q0, Q1 are owned by the server and R′
1, . . . , R′

h are owned by the user. The
protocol consists of the following interaction between the user and the server (some de-
tails of the manipulations of the states are omitted since they are irrelevant to the secrecy
proof ):

1. For p from 1 to h the server and the user do the following:
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1.1 The server applies a unitary Vp (defined in [12, Eq. (27)]) on Registers Rp–1, Rp,
Q0, Q1 and then sends Registers Q0, Q1 to the user;

1.2 If the p-th bit of its input K is 0, the user applies the Pauli gate Z on Register Q0.
If the p-th bit of K is 1, the user applies Z on Register Q1. The user then sends
back Registers Q0, Q1 to the server.

1.3 The server applies again the unitary Vp on Registers Rp–1, Rp, Q0, Q1, and then
applies a Hadamard transform on each qubit in Register Rp.

1.4 The user applies a Hadamard transform on each qubit in Register R′
p.

2. The server sends Register Rh to the user. The user measures the joint system
composed of Registers R′

1, . . . , R′
h and Register Rh, and performs some classical

post-processing on the outcome to obtain aK

The following lemma from [12] will be useful for our secrecy proof: Lemma 2 in [12]
shows that the state of the whole system at the end of Step 1.3 is

|�p〉 ⊗
h⊗

j=p+1

|�j〉(Rj ,R′
j)

⊗ |0〉Q0 |0〉Q′
0

with

|�p〉 =
1

√
22h–1 · · ·22h–p

∑

y1,...,yp

p⊗

j=1

|yj〉Rj
|yj–1[ij] ⊕ yj〉R′

j
,

where the sum is over all strings y1 ∈ {0, 1}2h–1 , . . . , yp ∈ {0, 1}2h–p and we use the convention
that y0 is the server’s input (a1, . . . , af).1 Here the server owns Registers R1, . . . , Rh, Q0, Q1

while the user owns Registers R′
1, . . . , R′

h.
We now show the secrecy of this protocol under the honest server model (see also Ap-

pendix B in [13]).

Lemma 8 The protocol from [12, Sect. 6] is unitary-type and satisfies the secrecy in the
all-round criterion under the honest server model when the set S̃ of possible inputs is C .

Proof The protocol is clearly unitary-type. The remaining task is then to show the secrecy
of this protocol in the all-round criterion under the honest server model when the set S̃
of possible inputs is C . Since the initial state does not depend on K , it is sufficient to show
that the whole state on Register R1, . . . , Rh, Q0, Q1 at the end of Step 1.2 of the p-th round
is independent of K .

Observing that tracing out Registers R′
1, . . . , R′

j from |�p〉 〈�p| gives the state

1
22h–1 · · ·22h–p

∑

y1,...,yp

|y1〉R1 · · · |yp〉Rp 〈y1|R1 · · · 〈yp|Rp ,

which is independent of K , we find that the whole state on Register R1, . . . , Rh, Q0, Q1 at
the end of Step 1.3 of the p-th round is independent of K , for each p. Since the unitaries

1Observe that yj–1 is a binary string of length 2h–(j–1) , and then yj–1[ij ] is a binary string of length 2h–(j–1)–1 = 2h–j . The term
yj–1[ij]⊕ yj in the definition of |�p〉 is thus well defined.
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applied in Step 1.3 by the server are independent of K , we conclude that the whole state
on Register R1, . . . , Rh, Q0, Q1 at the end of Step 1.2 of the p-th round is independent of
K . �

4.3.3 Secrecy under the specious server model
Finally, we discuss the secrecy under the specious server model. We will rely on the fol-
lowing theorem from [13] for unitary-type QPIR protocols.

Proposition 2 (Theorem 3.2 in [13]) When a unitary-type QPIR protocol satisfies the se-
crecy in the all-round criterion under the honest server model with the set S̃ = C , it satisfies
the secrecy in the all-round criterion under the specious server model with the same set
S̃ = C .

We thus obtain the following corollary of Lemmas 7 and 8.

Corollary 1 The protocols from [12, Sect. 5] and [12, Sect. 6] satisfy the secrecy in the all-
round criterion under the specious server model when the set S̃ of possible inputs is C .

Therefore, when the message size d is fixed to a constant, there exists a C-QPIR protocol
with communication complexity O(poly log m) (O(log m)) and without any prior entangle-
ment (with prior entanglement) that satisfies the secrecy in the all-round criterion under
the specious server model when the set S̃ of possible inputs is C .

5 Optimality of trivial protocol in final-state criterion for Q-QPIR under honest
server model

In this section, we prove that the trivial solution of downloading all messages is optimal for
Q-QPIR. In particular, this section, unlike the references [10, 13], we show the optimality
in the final-state criterion under the honest-server model. Since our setting is discussed
under the honest-server model, the secrecy in the final-state criterion is required only
when the server follows the determined state preparation process and determined quan-
tum operations. In the formal description of our protocols, we consider that the user and
the server apply CPTP maps but we describe the CPTP maps by the equivalent represen-
tation with the unitary maps and the local quantum memories.

To be precise, we define the r-round Q-QPIR protocol as follows. A 2-round protocol is
depicted in Fig. 2, and the symbols are summarized as Table 3. The message states are given
as arbitrary f states ρ[f] := ρ1 ⊗ · · · ⊗ ρf on S(0) = X1 ⊗ · · · ⊗ Xf, where each of ρ
 is purified
in X
 ⊗ R
. We use the notation R[f] := R1 ⊗ · · · ⊗ Rf. The server contains the system S(0).
The user chooses the index of the targeted message K ∈ [f], i.e., ρk is the targeted quantum
state when K = k. When K = k, the user prepares the initial state as |k〉 ⊗ |0〉 ∈ A(0) ⊗ T (0).
Although we consider the model in which the user and the server apply CPTP maps, we
describe it by the equivalent representation with the unitary maps and the local quantum
memories. A Q-QPIR protocol � is described by unitary maps D(0), . . . ,D(r),E (1), . . . ,E (r)

in the following steps.
1. Query (upload): For all i ∈ [r], the user applies a unitary map D(i–1) from

A(i–1) ⊗ T (i–1) to Q(i) ⊗ T (i), and sends Q(i) to the sender. Here, T (i) are the user’s local
quantum systems for describing the CPTP maps applied by the user.



Song et al. EPJ Quantum Technology           (2024) 11:55 Page 18 of 25

Figure 2 2-round QPIR protocol. The user sends the systems Q(1) and Q(2) to the server. The server sends the
systems A(1) and A(2) to the user. The initial state ρ[f] on S(0) is arbitrary chosen. R[f] is the reference of the
system S(0)

Table 3 Definition of symbols

Symbol Definition

m Total size of messages (states)
f Number of messages (states)
r Number of rounds in multi-round models

2. Answer (download): For all i ∈ [r], the server applies a unitary map E (i) from
Q(i) ⊗ S(i–1) to A(i) ⊗ S(i) and sends A(i) to the user. Here, S(i) are the server’s local
quantum systems for describing the CPTP maps applied by the server.

3. Reconstruction: The user applies D(r) from A(r) ⊗ T (r) to Y ⊗ E, and outputs the
state on Y as the protocol output.

The input-output relation �� of the protocol � is written with a CPTP ��,k from S(0)

to Y as

��(k,ρ1, . . . ,ρf) = ��,k(ρ[f]) = TrS(r) ,E D ∗ E(ρ[f] ⊗D(0)(|k〉〈k| ⊗ |0〉〈0|)),

where D ∗ E = (D(r) ◦ E (r)) ◦ · · · ◦ (D(1) ◦ E (1)). The QPIR protocol � should satisfy the
following conditions.

• Correctness: When |ψk〉〈ψk| denotes a purification of ρk with the reference system
Rk , the correctness is

��,k ⊗ idRk (ρ[f]\{k} ⊗ |ψk〉〈ψk|) = |ψk〉〈ψk| (19)

for any K = k and any state ρ[f].
• Secrecy: When the final state on S(r) ⊗ R[f] with the target index K = k is denoted by

ρk
S(r)R[f]

, the secrecy is

ρk
S(r)R[f]

= ρk′
S(r)R[f]

(20)

for any k, k′.
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The communication complexity of the one-server multi-round Q-QPIR is written as
CC(�) =

∑r
i=1 log |Q(i)| + log |A(i)|.

Theorem 1 For any multi-round Q-QPIR protocol �, the communication complexity
CC(�) is lower bounded by

∑f

=1 log |X
|, where X
 is the system of the 
-th message ρ
.

For the proof of Theorem 1, we prepare the following lemmas.

Lemma 9 H(A(i)) + H(Q(i+1)) ≥ H(T (i+1)) – H(T (i)).

Proof Lemma 9 is shown by the relation

H(A(i)) + H(T (i)) + H(Q(i+1))

(b)≥ H(A(i)T (i)) + H(Q(i+1))

(c)= H(Q(i+1)T (i+1)) + H(Q(i+1))

(d)≥ H(T (i+1)).

Here, (b), (c), and (d) express the respective properties presented in Proposition 1. �

Lemma 10 The relation H(R[f]S(r)) ≥ ∑f

=1 H(R
) holds.

Proof Given the user’s input k, Correctness (19) guarantees that the final state on Rk ⊗ Y
is a pure state, and therefore, Rk is independent of any system except for Y . Thus, Rk is
independent of R[f]\{k}S(r). The secrecy condition (20) guarantees that the final state on
R[f] ⊗ S(r) does not depend on k. Hence, R1, . . . , Rf, and S(r) are independent of each other.
Therefore, we have

H(R[f]S(r)) = H(S(r)) +
f∑


=1

H(R
) ≥
f∑


=1

H(R
). (21)

Proof of Theorem 1 We choose the initial state on R
 ⊗ X
 to be the maximally entangled
state for 
 = 1, . . . , f. From Lemmas 9 and 10, we derive the following inequalities:

CC(�) ≥
r∑

i=1

(
H(A(i)) + H(Q(i))

)

= H(A(r)) + H(Q(1)) +
r–1∑

i=1

(
H(A(i)) + H(Q(i+1))

)

≥ H(A(r)) + H(Q(1)) + H(T (r)) – H(T (1)) (22)

= H(A(r)) + H(T (r)) (23)

(b)≥ H(A(r)T (r))
(a)= H(R[f]S(r))

≥
f∑


=1

H(R
) =
f∑


=1

log |X
|, (24)
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where (a) and (b) express the respective properties presented in Proposition 1. In addition,
(22) is obtained by applying Lemma 9 for all i = 1, . . . , r – 1. The step (23) follows from
H(Q(1)) = H(T (1)) which holds due to the property (a) in Proposition 1, because the state
on Q(1)T (1) is the pure state as the state on Q(0)T (0) is the pure state. The step (24) follows
from Lemma 10. �

6 Q-QPIR protocol with prior entanglement under honest-server model
In the previous section, we proved that the trivial solution is optimal even in the final-state
criterion under the honest one-server model of Q-QPIR. In this section, we construct a
Q-QPIR protocol with lower communication complexity under various secrecy models
than the trivial solution when we allow shared entanglement between the user and the
server.

Let m =
∑f


=1 log |X
| be the size of all messages. To measure the amount of the prior en-
tanglement, we count sharing one copy of |I2〉〉 = (1/

√
2)(|00〉+ |11〉) as an ebit. Accordingly,

we count sharing the state |Id〉〉 ∈C
d ⊗C

d as log d ebits.

Theorem 2 Suppose there exists a C-QPIR protocol under a certain secrecy model
with communication complexity f (d1, . . . , df) when g(d1, . . . , df)-ebit prior entanglement is
shared between the user and the server. Then, there exists a Q-QPIR protocol under the
same secrecy model with communication complexity f (d2

1, . . . , d2
f ) when m + g(d1, . . . , df)-

ebit prior entanglement is shared between the user and the server.

The protocol satisfying Theorem 2 is a simple combination of quantum teleportation
[1] and any C-QPIR protocol. For the description of the protocol, we use the generalized
Pauli operators and maximally entangled state for d-dimensional systems defined in (11).
Hence, the type of guaranteed secrecy in the original C-QPIR protocol is inherited to the
converted QPIR protocol. We construct the Q-QPIR protocol satisfying Theorem 2 as
follows.

Protocol 3 Let �cl be a C-QPIR protocol and d1, . . . , df be the size of the f classical mes-
sages. From this protocol, we construct a Q-QPIR protocol as follows.

Let X1, . . . , Xf be the quantum systems with dimensions d1, . . . , df, respectively, and
ρ1, . . . ,ρf be the quantum message states on systems X1, . . . , Xf. The user and the server
share the maximally entangled states |Id


〉〉, defined in (11), on Y
 ⊗ Y ′

 for all 
 ∈ [f], where

Y[f] and Y ′
[f] are possessed by the user and the server, respectively.

The user and the server perform the following steps.
1) Preparation: For all 
 ∈ [f], the server performs the generalized Bell measurement

MXZ,d

, defined in (12), on X
 ⊗ Y ′


, where the measurement outcome is written as
m
 = (a
, b
) ∈ [0 : d
 – 1]2.

2) Use of C-QPIR protocol: The user and the server perform the C-QPIR protocol �cl

to retrieve mk = (ak , bk).
3) Reconstruction: The user recovers the k-th message ρk by applying X–ak

dk
Zbk

dk
on Yk .

The correctness of the protocol is guaranteed by the correctness of the teleportation
protocol and the C-QPIR protocol �cl. When the 
-th message state is prepared as ρ
 and
its purification |φ
〉 is denoted with the reference system R
, after Step 1, the states on
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R
 ⊗ Y
 is

(I ⊗ Xa


d

Z–b


d

)|φ
〉 (25)

for all 
 ∈ [f]. Thus after Step 3, the targeted state |φk〉 is recovered in Rk ⊗ Yk .
To analyze the secrecy of Protocol 3, note that only Step 2 has the communication be-

tween the user and the server. Thus the secrecy of Protocol 3 is guaranteed by the secrecy
of the underlying protocol �cl.

Protocol 1 (Protocol 2) is a one-round C-QPIR protocol in the final-state criterion under
the honest-server model (the specious-server model) with input states C with communi-
cation complexity 2 log f + log d (4 log f + 2 log d). Therefore, the combination of Protocols
1 and 3 and the combination of Protocols 2 and 3 yield the following corollary.

Corollary 2 There exists a Q-QPIR protocol with communication complexity 2 log f +
log d2 = 2 log fd (4 log f + 2 log d2 = 4 log fd) and prior entanglement m that satisfies the se-
crecy in the final-state criterion under the honest-server model (the specious-server model).
When d is a constant, the communication complexity is 2 log m + o(m) (4 log m + o(m)).

Proof The case under the honest-server model is trivial. Hence, we show the desired state-
ment under the specious-server model.

Assume that the server makes a specious attack. The user’s state at the end of Step 2)
of Protocol 3 is the pair of entanglement halves σ1 and the state transmitted at Step 2) of
Protocol 2 σ2. Due to the specious condition, the state σ1 needs to be one of the states
{XaZbρK (XaZb)†}(a,b)∈[0:d–1]2 with equal probability. That is, using the random variable
(a, b) ∈ [0 : d – 1]2 under the uniform distribution, the state σ1 is written as XaZbρK (XaZb)†.
Hence, the state σ2 needs to be decided according to the random variable (a, b) in the same
way as the honest case. That is, the state σ2 satisfies the condition for the state transmitted
by a specious server of Protocol 2 at Step 2). Since Protocol 2 satisfies the secrecy under
the final-state criterion under the specious-server model with input states C , the specious
server obtains no information in the final state. That is, the combined Q-QPIR proto-
col with prior entanglement satisfies the secrecy under the final-state criterion under the
specious-server model. �

Combining Theorem 2 and Corollary 1, we obtain the following corollary.

Corollary 3 There exists a Q-QPIR protocol with communication complexity O(log m)

and prior entanglement of �(m) ebits that satisfies the secrecy in the all-round criterion
under the honest-server model when the message size d is fixed to a constant.

One property of Protocol 3 is that all other states in the server are destroyed at Step 1.
This is a disadvantage for the server but an advantage for the user since the user can re-
trieve other states ρ
 if the user could retrieve classical information m
 ∈ [0 : d
 – 1]2 cor-
responding to the state ρ
.

7 Conclusion
We have shown an exponential gap for the communication complexity of one-server Q-
QPIR in the final-state criterion or under the honest-server model between the existence
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and the non-existence of prior entanglement. For this aim, as the first step, we have pro-
posed an efficient one-server one-round C-QPIR protocol in the final-state criterion. Also,
we have shown that the protocols proposed in [12] satisfies the secrecy in the all-round
criterion under the honest server model. Then, as the second step, we have proved that
the trivial solution of downloading all messages is optimal even in the final-state criterion
for honest one-server Q-QPIR, which is a similar result to that of classical PIR but differ-
ent from C-QPIR. As the third step, we have developed a conversion from any C-QPIR
protocol to a Q-QPIR protocol, which yields an efficient Q-QPIR protocol with prior en-
tanglement from a C-QPIR protocol. The proposed protocols exhibit an exponential im-
provement over the Q-QPIR’s trivial solution.

In fact, Protocols 1 and 2 work as one-server one-round C-QPIR protocol in the final-
state criterion under the honest-server model or the specious-server model. However,
Theorem 1 shows that no analogy of Protocol 1 nor 2 works for Q-QPIR protocol un-
der similar settings without prior entanglement. This impossibility is caused by the non-
cloning property of the quantum system, i.e., the property that the noiseless channel has
no information leakage to the third party, because the proof of Theorem 1 relies on the
fact that noiseless quantum communication ensures that the entropy of the final state on
the third party is equal to the entropy of the final state on the composite system compris-
ing the output system and the reference system. This impossibility is one of the reasons
for our obtained exponential gap.

The above exponential gap has been established under three problem settings. The first
and the second are the final-state criterion under the honest-server model and under the
specious-server model. The third is the all-round criterion under the honest-server model.
In other words, other problem settings do not have such an exponential improvement
by using prior entanglement. This exponential improvement is much larger than the im-
provement achieved through the use of dense coding [2]. This exponential improvement
can be considered as a useful application of prior entanglement. It is an interesting open
problem to find similar exponential improvement by using prior entanglement.

Appendix: Koashi-Imoto theory
Here, we discuss Koashi-Imoto theory [53] under the following assumption. We assume a
state family S = {ρx}x∈X on H satisfies the following condition.

(A) When a subspace K ⊂H satisfies the condition PKρx = ρxPK for any element x ∈X ,
the K is {0} or H, where PK is the projection to K,

Under the above assumption, we have the following proposition.

Proposition 3 Assume the assumption (A). We consider a POVM {My}y∈Y on H. When
there exists a TP-CP map �y for any element y ∈ Y such that the relation

∑
y �y(

√
Myρx ×√

My) = ρx holds for any element x ∈X , then My is a constant times of the identity operator.

To prove Proposition 3, we rewrite Theorem 9 of [54] under the assumption (A).

Proposition 4 ([54, Theorem 9], [53]) Assume the assumption (A). When a TP-CP map �

satisfies the relation �(ρx) = ρx holds for any element x ∈X , then � is the identity operator.

Proof We choose the TP-CP map �(ρ) :=
∑

y �y(
√

Myρ
√

My). The TP-CP map � satisfies
the condition for Proposition 4. We choose Steinspring representation of �y as an ancilla
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system R, an initial pure state ρ0 on R, and a unitary Uy on H ⊗ R such that �y(ρ) =
TrR Uy(ρ ⊗ρ0)U†

y , where we can choose R and ρ0 commonly for �y. Here, we assume that
R is spanned by {|1〉R, . . . , |dR〉R} and ρ0 is |1〉RR〈1|.

Therefore, we have
∑

y TrR Uy(
√

Myρ
√

My ⊗ ρ0)U†
y = ρ . Since the above relation holds

for any pure state ρ , TrR Uy(
√

Myρ
√

My ⊗ ρ0)U†
y is a constant times of ρ for any x. Fur-

ther, since TrR Uy(
√

Myρ
√

My ⊗ ρ0)U†
y is a pure state for any pure state ρ , R〈j|Uy|1〉R is

a constant times of R〈1|Uy|1〉R for j = 2, . . . , dR. Since Uy is a unitary, R〈j|Uy|1〉R is also a
unitary. Thus, R〈j|Uy|1〉R

√
Myρ

√
My( R〈j|Uy|1〉R)† is a constant times of ρ . Thus,

√
My is

a constant times of a unitary. That is,
√

My is a constant times of the identity operator. �
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