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Abstract
We investigate the dimensionality of bipartite quantum systems by construction of a
device-independent null witness test. This test assesses whether a given bipartite
state conforms with the expected quantum dimension, Schmidt number, and
distinguishes between real and complex spaces. By employing local measurements
on each party, the proposed method aims to determine the minimal rank. By
performing an experimental demonstration on IBM Quantum devices, we prove the
exceptional accuracy of the test and its usefulness in diagnostics beyond routine
calibrations. One of the tests shows agreement with theoretical expectations within
statistical errors. However, the second test failed by more than 6 standard deviations,
indicating unspecified parasitic entanglements, with no known simple origin.
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1 Introduction
Quantum bipartite systems differ from their classical counterparts, especially when en-
tangled. They violate local realism [1–5] and are useful in quantum computation, steering
and teleportation [6–9]. The most common Bell entangled state involves both two-level
parties. In this case, correlations can be predicted from the knowledge of the state and
available measurements.

On the other hand, it is important to assess the dimension of the system in question
(quantum or classical) for the error correction and mitigation tools to work, assuming
restricted Hilbert spaces [10–12]. So far, such tests involved a single party, when a pro-
tocol of independent sets of preparations and measurements allowed construction of a
dimension witness, initially in the form of inequalities [13, 14], also tested experimentally
[15–18]. Analogous tests, as inequalities, have been proposed for bipartite states [19–23]
based on families of Bell-type inequalities [24]. If the contribution from extra states is
small it is better to seek a null test (a function of probabilities is exactly equal to zero),
for instance the Sorkin identity [25] in the three-slit experiment [26–28] verifying Born’s
rule [29] under certain assumptions. The quantum dimension can also be tested by null
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hypotheses [30–32], demonstrated experimentally [33, 34]. Testing an exact value, up to
statistical error, boosts the accuracy of the test.

In this work, we propose the test if a bipartite state is of the expected quantum di-
mension as a null hypothesis, based on independent measurements of each party, i.e. a
measurement-measurement scenario with a single, common preparation, in contrast to
the previous preparation-measurement protocol [30, 33]. We construct a witness, func-
tion of bipartite probabilities, which is zero if any party can be represented in the space
of the expected dimension, depending on whether the space is complex or real [35]. The
measurements can be arbitrary, device-independent, but must be performed in local sub-
spaces. In other words, we test the minimal bipartite space dimension to represent the
state, called Schmidt number [36, 37]. Existing witnesses of the Schmidt number [38–48]
are based on inequalities, often only state-independent, or only narrowly violated in a
larger space. Note that, like Bell-type test, any violation requires nonclassical states for
linear inequalities, and quite faithful implementation of quantum operations on physical
devices. Therefore, linear inequalities, although robust against calibration changes, are in
principle less accurate and less general than null witnesses, as Schmidt number is inde-
pendent of nonclassicality. Then the larger dimension is usually already clear by the imple-
mentation itself. On the other hand, a null device-independent witness is useful when the
space is trusted to be restricted and one has no access to accurate operations, which can be
noisy. It is a precise tool to certify the device solely with respect to its Hilbert dimension,
not errors within the space.

Our witness tests if an entangled state has the expected Schmidt number d by (a) n
measurements chosen by each of the two parties or (b) single measurements with n + 1
outcomes. The measured observables can be arbitrary and their representation is irrel-
evant as long as they are local. The witness is the determinant of the probability matrix
[49], of size depending on the dimension, becoming 0 for sufficiently large n, up to a fi-
nite statistics error. Moreover, we demonstrate the feasibility of the test on qubits on IBM
Quantum, if a created entangled state fits in the 2 × 2 qubit-qubit bipartite space. The
results of the test (a) are in agreement with the null hypothesis within the corresponding
statistical errors. The locality of measurements implies that the parties cannot affect each
other, so one can perform simultaneously the sanity check of no-signaling, common also
in experimental Bell-type tests [50–53]. However, the test (b) failed by more than 6 stan-
dard deviations. Taking into account the robustness of our test against local errors and
negligible leakage and crosstalk contribution, it shows extreme accuracy of our test, re-
vealing problems beyond standard diagnostics, which demand urgent explanation, either
technical or fundamental.

2 The witness
Suppose we have a composite (tensor) system of A and B and the initially prepared state
ρ = EAEBρ̃ , where E are local maps in respective subspaces [54]. To shorten notation, we
shall drop the tensor sign whenever unambiguous, i.e. EAEB ≡ EA ⊗ EB and AB ≡ A ⊗ B.
Assuming the form

ρ =
∑

k

∣∣ψk〉〈ψk
∣∣ (1)
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Figure 1 Two parties A and B perform either (a) one
of n independent measurements indexed by i and j
or (b) single measurements with n outcomes, also
indexed by i and j, on the shared bipartite states ρ .
The case (b) differs from (a) by imposed condition
that outcomes sum up to identity measurement

with states |ψk〉, we can purify ρ̃ by adding the auxiliary system C, so that ρ̃ = |ψ〉〈ψ | with
|ψ〉 =

∑
k |ψk , k〉, so that k labels the basis states in C. The Schmidt number [36, 37] is the

minimal possible number d of basis states in the Schmidt decomposition in the respective
spaces A and BC,

|ψ〉 =
d∑

k′=1

|k′
Ak′

BC〉. (2)

In the above purification EA is the identity, while EB = TrC (tracing out C).
We define the probability

pij = Tr AiBjρ =
〈
ψ |ÃiB̃j|ψ

〉
, (3)

with Ãi = E†
AAi, B̃j = E†

BBj for the observables Ai, Bj and local maps EA, EB for the above con-
structed Schmidt decomposition states |ψ〉. Replacing Ãi → Ai, B̃j → Bj, and |ψ〉〈ψ | → ρ ,
we can reduce the whole discussion of the Schmidt number to the d ×d dimensional com-
posite Hilbert space. Let us construct lists of local Hermitian observables (a) 0 ≤ Ai, Bj ≤ 1
for i, j = 1 . . . n with yes/no or 1/0 outcome for n independent measurements and auxiliary
A0 = B0 = 1, or (b) 0 ≤ Ai, Bj for i, j = 1 . . . n + 1 and

∑
i Ai =

∑
i Bi = 1 for single measure-

ments with n+1 outcomes, see Fig. 1. In the case (a) the actual number of measurements is
n × n. Then the first row and column (0) do not need a separate measurement, as one can
simply discard the outcome of the other party from measurements already done. Never-
theless, these entries must satisfy no-signaling (independence of the measurement on the
other party), i.e. pi0 (or p0j) is obtained in the measurement (i, j) but cannot depend on j (or
i). The corner element is constant p00 = 1. In both cases, our witness is the (n + 1) × (n + 1)

determinant Wn = det p which is equal 0 if the Schmidt number satisfies d2 ≤ n (complex
space) or d(d + 1)/2 ≤ n (real space) because the size of p exceeds the maximal rank of the
set of allowed matrices Ai or Bj, which span the available linear space. If the dimension of
the linear space of observables is smaller than the size of the matrix then some observable
must be a linear combination of the rest. By linearity of the matrix (3) as a function of
observables, the same applies to its corresponding column or row, and the determinant
must vanish. The real symmetric matrix d × d is represented by d(d + 1)/2 independent
real numbers. A complex Hermitian matrix has additionally d(d – 1)/2 real independent
numbers representing imaginary antisymmetric matrices. The test is device-independent,
we make no assumption about the actual realization of measurements, that is the test does
not rely on the mathematical model of the observables.

This happens in the case d = 2 real for n ≥ 3, and d = 2 complex for n ≥ 4 which is the
case we test. For instance, if W4 
= 0 then either we have (i) a quantum system of d = 3 or
(ii) a classical system of d = 5. This is why our test is not intended to check just whether
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the system is classical or quantum but rather the value of d, depending on the type of the
system.

Even if the Schmidt number is larger than expected, the witness can remain zero
by accident. Nevertheless, the absolute upper bound on Wn, the same in the classi-
cal and quantum case (see detailed proof in Appendix A), allows us to estimate how
large the witness can be if the expected d is exceeded. To determine it over possible
states and measurements, let us consider a simpler, classical case. Suppose the compos-
ite system has the states (i′, j′) for the parties A and B, i′, j′ = 1 . . . d. Then the probability
reads

pij =
∑

i′j′
Aii′ρi′j′Bj′j (4)

where ρrs is the probability distribution of the systems, ρi′j′ ≥ 0,
∑

i′j′ ρi′j′ = 1, Aii′ ∈ [0, 1]

is the probability to read 1 from i′ in the measurement i ≥ 1 (A0i′ = 1 in the case (a)),
and analogously Bj′j. By linearity of the determinant with respect to rows/columns and
Cauchy-Binet formula, the upper bound turns out to be 4–n in the case (a). In the case
(b), the determinant is the product of eigenvalues whose sum is bounded by trace, and the
trace is bounded by 1 (sum of all probabilities), so by arithmetic and geometric means the
maximum is (n + 1)–n–1, saturated whenever d > n, taking ρi′ = 1/(n + 1) for i′ = 1 . . . n + 1
and Aii′ = Bi′i = δii′ .

For the limited d in the case (a), the classical extremal cases have been tabularized in
Table 1. In the quantum case of (a), we reach the bound for n = 1, 2 for d = 2, in the real
case, and n = 3 for d = 2 in the complex case. For d = 4 the upper bound Wn = 4–n is
reached for n ≤ 9 and n ≤ 15 in the real and complex cases, respectively. The result for
d = 4 (ququarts) is obtained as follows. We take two qubits for each party to span d = 4
space. We use the maximally entangled state |ψ〉 =

∑
x |x, x〉/2 with x = 00, 01, 10, 11 in this

space for a single party. In such a case, the probabilities from (3) read

pij =
∑

xy

〈
x, x|AiBj|y, y

〉
/2 =

∑

xy
(Ai)xy(Bj)xy/4 = Tr AiB∗

j /4, (5)

i.e. a direct matrix product (not tensor) for Ai and Bj written in the basis |x〉, according to
(3). Here the observables are represented by Ast = B∗

st = (1 + σ 1
s σ 2

t )/2 with the upper index
denoting the qubit, and st = 0, 1, 2, 3 denoting the standard Pauli matrices. It is clear that
any subset of such observables built for pairs (st) (with st = 0, 1, 3 except s = t = 0) will
maximize W because of mutual orthogonality in terms of Hilbert-Schmidt scalar product
Tr XY †. All observables from the set are real, plus one extra for s = t = 2. We then get the

Table 1 The calculated maxima for the test (a) of the witness quantity 4nWn in the classical approach
for d = 2 . . .8 and number of measurements n = 1 . . .5. Entries in the empty cells saturate the bound
at 1

n\d 2 3 4 5 6 7 8

1 1
2 0 0.59 1
3 0 0 1
4 0 0 0 0.74 0.76 0.79 1
5 0 0 0 0 0.55 0.59 1
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Table 2 The calculated fully quantummaxima for the test (a) of the witness quantity 4nWn for
d = 2(r/c), 3(r/c) with (r/c) denoting the real/complex case

n\d 2r 2c 3r 3c

1 1 1 1 1
2 1 1 1 1
3 0 1 0.85 1
4 0 0 0.55 0.78
5 0 0 0.38 0.69
6 0 0 0 0.54
7 0 0 0 0.35
8 0 0 0 0.25

upper bound for real ququarts up to n ≤ 9. In the complex case, to get the upper bound, we
can take all possible (st) except (00) up to n ≤ 15. For lower d we determined the bounds
of W numerically and collected the results in Table 2 (see details in Appendix B).

In the case (b), the maximum is classical for d > n. For d ≤ n the total maximum is
[(d – 1)/n]n/(n + 1)n+1, saturated for maximally entangled states and single projection ob-
servables Ai = Bi equal single projections corresponding to equiangular tight frames [55]
times a constant, see details in Appendix A. In cases without equiangular tight frames, one
has to determine the maxima numerically. For n < 5, the only such cases are n = 4, d = 3
real 1.6875 · 10–5 and complex 1.8746 · 10–5, lower than the equiangular bound 2 · 10–5,
see details in Appendix B.

We also stress that the naive application of a preparation and measurement scenario [33]
cannot verify per se the Schmidt number in the bipartite case because of the nonlinearity
of the product states (we present a counterexample in Appendix C).

3 Error analysis
To determine the value of the witness Wn, we collect data from N repetitions of each mea-
surement combination. The uncertainty in determining Wn is analogous to the prepare-
measure scheme in Ref. [32] for finite statistics and assuming 〈Wn〉 = 0. In our notation,
the resulting error, N�W 2

n , is

∑

kj

A2
jkpkj(1 – pkj) case (a),

∑

kj

A2
jkpkj –

(∑

kj

Ajkpkj

)2

case (b), (6)

with the adjugate matrix A = Adj p calculated directly, since p–1 det p does not exist when
det p = 0. One should also avoid the situation of A = 0, i.e. when the rank is already smaller,
as the error becomes not reliable, and one has to consider second-order minors. In our
measure-measure approach, in the case (a), the no-signaling assumption means that, in
principle, the probabilities p0j and pk0 are not independently measured. The simplest ap-
proach is to take them averaged from other experiments, while still treating them as in-
dependent. In this way, we just find an upper estimate for the error. On the other hand,
verifying no-signaling is an important sanity check, which we perform in Appendix D.
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4 Demonstration on IBM Quantum
We have demonstrated the feasibility of the above test on IBM Quantum devices. A mi-
crowave pulse tuned to the interlevel drive frequency allows one to apply the parametri-
cally controlled gates. The native single qubit gate is the π/2 rotation

S =
√

–iX = (σ0 – iσ1)/
√

2, (7)

in the |0〉, |1〉 basis. The rotation for a given angle θ is realized with the native gate S and
two gates Zθ

Sθ = Z†
θ SZθ , Zθ = σ0 cos θ/2 – iσ3 sin θ/2, (8)

with shorthand notation Z = iZπ , Z± = Z±π/2. In addition, there is a native two-qubit
CNOT gate on most of IBM quantum devices, operating as

|00〉〈00| + |01
〉〈

01| + |11
〉〈

10| +
∣∣10

〉〈11
∣∣, (9)

where for |ab〉 the control qubit state is a (depicted as •) and target qubit state is b (de-
picted as ⊕ in Fig. 2). The newest devices use Echoed Crossed Resonance (ECR) gate,
instead of CNOT but one can transpile the latter by additional single-qubits gates, see
Appendix E.

In the case (a), we create the Bell state (| + –〉 – | – +〉)/√2 with 2 or 3 qubits between A
and B, where |+〉 = |0〉, |–〉 = |1〉 for A and |+〉 = i|1〉, |–〉 = |0〉 for B. The final measurement
is fixed by two subsequent local gates S1,2 from (8), with appropriately chosen angles θ1,
θ2 as explained below. We took two different sets of measurements: set I and set II. In the
language of the Bloch sphere, our measurement directions are eigenstates of �a · �σ with
the eigenvalue +1 for a unit vector �a. We took four vectors for A and the opposite vectors

Figure 2 The implementation of the test (a) on IBM Quantum with two (top) and three (bottom)
intermediate qubits. The dashed box represents entanglement creation while the dotted ones swap
entanglement to the next neighbors. The extra swap box is indicated in the bottom circuit
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Figure 3 The Bloch vectors for the sets of measurements used in the work, left set I and right set II, in the test
(a)

for B. Vectors in the set I correspond to tetrahedron vertices: �a = (±1,±1, 1)/
√

3. In the
set II, �a are along principal axes xyz, and the last direction is (1, 1, 1)/

√
3, see Fig. 3 for an

illustration. In this way, we cover the maximal space of qubit states. Both sets have been
tested on IBM devices belem qubits 0, 4 (with qubits 1, 3 in the middle), lagos, perth, and
nairobi 0, 6 (with qubits 1, 3, 5 in the middle). The technical characteristics of the devices
are given in Appendix F.

In the case (b), we create the same Bell state as in the case (a), between next neighbor
qubits A and B, separated by one extra middle connector qubit, except that now |+〉 =
|0〉 and |–〉 = |1〉, by additional Z– and X = |0〉〈1| + |1〉〈0| (also native) gates at the end.
The separation makes the communication between the parties unlikely, as any reasonable
crosstalk, cannot affect the next neighbors. The 5 outcomes are formally represented by
fractions of projections Mj = (1 + �mj · �σ )/8 for the directions j = 1, 2, 3, 4 in vertices of the
rotated tetrahedron

�m1 = (
√

2/3, 0, –1/
√

3),

�m2 = (0,
√

2/3, 1/
√

3),

�m3 = (–
√

2/3, 0, –1/
√

3),

�m4 = (0, –
√

2/3, 1/
√

3), (10)

and M5 = 1/2 [56]. The actual implementation requires the following measurement proto-
col requiring 3 qubits at each party denoted by a0a1a2, b0b1b2 for the party A, B, respec-
tively, with the final results aj, bj = 0, 1 corresponding to the states |0〉, |1〉, respectively.
Let us focus now on one of the parties, say A, as the other party is analogous. The initially
entangled qubit of A is mapped by a CNOT gate to an auxiliary one, i.e.

α|00〉 + β|10〉 → α|00〉 + β|11〉. (11)

Now, we choose one of these two qubits to be a spectator qubit, a0, while the other qubit is
the working qubit a1. We apply rotation Z+ to the spectator qubits and subsequently S, to
measure them in the x basis i.e. (|0〉 ± |1〉)/√2. In this way, the probability p(a0) is always
1/2. For a0 = 0, 1, the working qubit is in the state α|0〉 + β|1〉 or α|0〉 – β|1〉, respectively.
Note that the latter state differs from the first one by Zπ rotation. We finally apply Q gate
to map the projections (10) of each working qubit onto the four states of the two qubits
a1a2 = 00, 10, 01, 11, corresponding to outcomes 1, 2, 3, 4, see details in Appendix E and
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Figure 4 The Q gate mapping the working state |φ〉
onto the 4 projections (10) for the measurements 00, 10,
01, 11. We used the angle η = acos

√
1/3

Figure 5 The test (b) using CNOT and Q gates (see Fig. 4) using 7 qubits, in two groups of 3 qubits, party A:
a0a1a2, party B: b0b1b2 , separated by an extra connector qubit

Fig. 4. Note that the Z rotation on Q projection simply reverses the bit a2. The original
set of 8 outcomes can be treated as 5 outcomes, depending on the spectator qubit, i.e. a
chosen value a0 defines 4 outcomes a0a1a2 and the rest (1 – a0) ∗ ∗ are treated as 5 (i.e. 4
other outcomes are in a single set). Out of all 64 probabilities pab, 16 of them are zero, for
a1 = b1 and a0 + a2 – b0 – b2 even. The remaining probabilities are each equal 1/48. The
complete scheme, using CNOT gate is depicted in Fig. 5.

Each test consists of a certain number of jobs, where each circuit (randomly shuf-
fled) is run a certain number of shots. Since the number of experiments is 16, each
one could be repeated to saturate the limit on circuits. The total number of trials is
N = #jobs#shots#repetitions. Due to calibration changes, every several hours, the proba-
bilities may drift, which can affect the witness being a nonlinear function of probabilities.
To take it into account, we have calculated the witness in two ways [34]: W and its er-
ror is obtained from total probabilities of all jobs together, W ′ and its error is obtained
by calculating W and the error for each job individually, and then averaging it over jobs.
It turns out that these values indeed differ but do not change the verdict about Schmidt
number.

For the case (a), we run 247/404 jobs on belem with 20,000 shots and 6 repetitions for
sets I/II, while 20/15 jobs with 10,000 shots and 6 repetitions on lagos. An additional test
has been run on perth/nairobi (set II) with 259/550 jobs, 10,000 shots and 6 repetitions.
The statistics differ from the ideal ones because of the noise but agree qualitatively, see
Fig. 6 and 7. The final witness agrees with the null hypothesis for d = 2 within the statisti-
cal error, see Table 3. No-signaling has been confirmed as a sanity check. However, in the
test on perth, we found the desired value of the witness, but we also observed a moder-
ate violation of no-signaling at the level of 3.9 standard deviations, see Appendix D. Due
to 48 possible comparisons, the look-elsewhere-effect lowers the significance of this ob-
servation. Nevertheless, this difference suggests that our test may be useful in identifying
malfunctions of the devices in the future.

The test (b) has been performed on nairobi, qubits 0,1,2 (A) and 6,5,4 (B) connected
by 3, and brisbane, 2 groups, qubits 23,22,21 (A) and 25,26,27 (B), connected by 24, and
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Figure 6 Results of the tests (a) with probabilities pkj , for belem and lagos, compared to the ideal expectation

Figure 7 Results of the tests (a) with probabilities pkj , for perth and nairobi

Table 3 The values of the witnesses for the test (a) with errors depending on the device and set I/II.
HereW4,W ′

4, errors �W4, and �W ′
4 are in units 10–6

device W4 �W4 W ′
4 �W ′

4

belem I 0.199 1.267 0.135 1.294
lagos I 15.69 9.08 20.52 9.75
belem II –0.647 1.269 –3.749 1.338
lagos II –8.233 9.782 –7.402 9.992
perth II 1.664 2.132 1.551 2.139
nairobi II 2.184 1.448 2.293 1.483

118,117,116 (A) and 120,121,122 (B) connected by 119, as depicted in Fig. 8. For nairobi, we
have run 20 jobs, with 300 repetitions and 100,000 shots. For brisbane, we have run 20 jobs,
75 repetitions, and 20,000 shots. The results are presented in the Table 4. The results show
the failure of the order of 6, 7, and 8 standard deviations. To explain the nonzero value of
W by small corrections to probabilities of any origin, i.e. p → p + δp, one can estimate
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Figure 8 The tested groups of qubits on IBM Quantum brisbane. We have highlighted qubits in the test (b),
parties A (red), B (green), and middle connectors (yellow). Two-qubit Echoed Cross Resonance gates, used in
the test, connect the tested qubits, and the external ones

Table 4 Experimental results from the test (b) for nairobi and the two groups on brisbane, for all
combinations of spectator qubit values a0b0. HereW4,W ′

4, errors �W4, and �W ′
4 are in units 10–12

group a0b0 W4 �W4 W ′
4 �W ′

4

nairobi 00 46.9 7.5 56.1 8.2
0,1,2 (A) 01 –42.4 6.6 –50.3 7.2
6,5,4 (B) 10 –48.7 7.1 –54.5 7.6

11 42.6 6.3 50.7 6.7

brisbane 00 –69.9 8.7 –69.3 9.0
23,22,21 (A) 01 68.8 9.8 67.7 10.1
25,26,27 (B) 10 64.4 8.5 65.8 8.9

11 –62.0 9.4 –63.0 9.9

brisbane 00 –30.0 3.5 –32.4 3.8
118,117,116 (A) 01 29.5 3.4 –31.7 3.7
120,121,122 (B) 10 28.7 3.3 30.9 3.6

11 –29.1 3.4 –31.4 3.7

δW = TrAδp for the adjugate matrix A. The elements of the adjugate matrix are of the
order � 10–6 for nairobi and � 10–7 for brisbane, so the result of the order � 10–11 would
require the contribution from an extra state, beyond the assumed Hilbert space, of the
order 10–5 or 10–4. Taking into account that the entanglement is created by a single S gate
with error � 10–3 (includes leakage to higher excited states) and two CNOT/ECR gates
with errors ∼ 10–2 (the error includes known crosstalks), the total technical contribution
would be < 10–7 (product of error of S and two CNOT/ECRs to reach the parties A and B)
which is much below our observation. We have checked also that the values of the witness
for individual jobs are consistently nonzero and their average is close to the total values (4).
The diagnostic data are summarized in Appendix F and the raw data are available publicly
[57].

5 Conclusions
We have demonstrated the extreme usefulness of null tests of the Schmidt number for
the bipartite states, which should help in the diagnostics of quantum devices. It is com-
plementary to the violation of a Bell-type inequality while based on similar assumptions.
Combining it with no-signaling verification and Bell-type violations in a single test can
serve as a powerful quality criterion of multiqubit networks. We stress that our null hy-
pothesis tests remain robust against most common disturbances, as long as they are local,
with known mechanisms. Due to the extreme accuracy of the test, we were able to di-
agnose IBM Quantum devices, far beyond standard technical specifications. The results
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showed consistency with the Schmidt number d = 2 in the case of independent measure-
ments but the test with many outcomes failed to confirm it. The deviation is significant
and exceeds possible common origins due to gate errors. The failure requires an urgent
technical explanation. Otherwise, the results may be a signature of an exotic picture, in-
volving e.g. many worlds/copies [58, 59] (N copies of the same system formally boost the
dimension and Schmidt number from d to dN ). We refrain from giving an exact model, as
the collected data are insufficient to draw stronger conclusions.

Appendix A: Details of the proof of the bound on Wn in the classical and
quantum case

Here we present the proof of the bound on Wn over possible states and measurements.
In the classical case (a), the maximization relies on basic linear algebra and the Cauchy-
Binet formula for the determinant of a product of rectangular matrices. Taking two el-
ements of ρ in a single column/row, e.g. (1,±) and shifting ρ1± → ρ1± ± � results in
pij → pij +

∑
± pij(±)Ai1B±j�. It implies adding linearly dependent columns/rows, so by

decomposing linearly columns in the new determinant to the old p and � entries, only
terms linear in � are added. It means that the determinant is linear in terms of � and
its maximum is at extremal �, so that one of ρ1± must be 0. Repeating this reason-
ing we end up with the diagonal ρ , shortening ρz ≡ ρzz. From linearity with respect to
rows/columns, the maximum of det p occurs when the entries of matrices A and B are ei-
ther 0 or 1.

From the Cauchy-Binet formula

det p =
∑

M

det AM det BM
∏

z∈M

ρz ≤
∑

M

(
det A2

M + det B2
M

) ∏

z∈M

ρz/2, (A1)

where M is a subset of indices to restrict columns in A and rows in B, and we use the
Cauchy inequality at the end. Therefore to maximize det p we should replace A with BT

or vice versa, to obtain p = AρAT . Then we end up with a symmetric matrix p. Let us now
multiply the all rows of A except the zeroth one by 2, which makes det p multiplied by
4n. Now subtract it from all other rows, which does not change det p but the new matrix
A consists of ±1 entries. The diagonal elements are then 1 from normalization, so Tr p =
n + 1. For the symmetric matrix the Tr p =

∑
i λi, for eigenvalues λi, and det p =

∏
i λi. From

inequality between arithmetic and geometric means, the determinant is maximal is when
all eigenvalues are equal 1, giving here 1, and finally 4–n for the original determinant. The
maximum is obtained when the rows of the new A are orthogonal. It suffices to have 2n

states in ρ (columns of A) and fill the first n rows in each column by its binary digits. Then
our auxiliary matrix A with ±1 entires has mutually orthogonal rows, giving the diagonal
p, proportional to identity, with ρi = 2–n. In fact, the number of required states is the size
of the nearest Hadamard matrix (i.e. ±1 matrix of orthogonal rows), which has a size often
much smaller than 2n.

To find the quantum maximum in both cases, let us begin with the pure state with
Schmidt decomposition,

|ψ〉 =
∑

k

ψk|kk〉 (A2)
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for real ψk ≥ 0, with
∑

k ψ2
k = 1.

Now, we decompose A = AD + AR + iAI with real diagonal AD, and off-diagonal AR and
AI (AI = 0 in the quantum real case), and similarly B. From Hermicity AR is symmetric and
AI is antisymmetric. The matrix p can be expressed

pij =
∑

kl

ψkψl(Ai)kl(Bj)kl =
∑

k

ψ2
k ADkBDk +

∑

k<l

ψkψl(ARklBRkl – AIklBIkl). (A3)

Now, we can use Cauchy-Binet formula analogous to (A1), with z running over Dk, Rkl,
and Ikl, just like in the classical case. We also maximize the determinant by replacing either
A by BT = B∗ or vice versa, noting the minus sign at I product.

The quantum maximum cannot exceed the classical one in the case (a). We can consider
only projections Ai as the Cauchy-Binet formula is quadratic and convex with respect to
each individual Ai, a linear combination of projections, and so the maximum requires
extremal arguments. Now subtracting half of the last row and column from the other ones,
and then multiplying each row and column except by 2 the last one, we replace projections
A by 2A – 1, which are observables with outcomes ±1. The matrix is symmetric since we
have a Schmidt-type entangled state and A = B∗ while each diagonal term is nonnegative
and bounded by 1. Analogously as in the classical case, the bound on the determinant is
1, divided finally by 4n because of doubling the values of rows and columns.

In the case (b), the maximum is classical for d > n. Otherwise, we can construct the di-
agonal matrix � = diag(

√
ψ1, . . . ,

√
ψd). so that pij = Tr A′

iA′T
j for A′

i = �Ai� . Let ai = Tr A′
i,

and A′
i = aiĀi, so that Tr Āi = 1. Then

∑
i ai =

∑
i ψi = c. Under this constraint, by convex-

ity of Cauchy-Binet expansion with respect to A′ we retrieve the maximal result when
Āi are single-dimensional projections. Moreover, writing p̄ij = Tr ĀiĀT

j we have det p =
det p̄

∏
i a2

i . From the arithmetic and geometric mean inequality, the maximum occurs
when ai = c/n. The problem of maximal det p̄ reduces now to our previous result [55],
i.e. the maximum of det p̄ is (n + 1)n+1(d – 1)n/dn+1nn. Finally we find the maximal c = d1/2

when all ψi = d–1/2 from the inequality between quadratic and arithmetic means, which
completes the final bound.

Appendix B: Determination of classical and quantum maxima in particular
cases

To find the respective maxima, we have used a hybrid approach similar to [32]. Setting the
space of parameters of measurements and states, we find first the maximum numerically.
Then we try to find a symmetry to represent the case using fewer parameters.

B.1 Case (a) n independent measurements
Case n = 1. W = 0 for d = 1 (classical, quantum real or complex). For d = 2 we reach the
classical maximum for ρj = 1/2 and (omitting the last row of 1)

A =
(

1 0
)

, (B1)

giving W = 1/4.
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Case n = 2. W = 0 for d = 1, 2 classical while 1/33 for d = 3, with ρj = 1/3,

A =

(
1 0 0
0 1 0

)
. (B2)

The absolute maximum (from Sect. 2) is for d = 4, ρj = 1/4 and

A =

(
1 1 0 0
1 0 1 0

)
. (B3)

Case n = 3. W = 0 for d = 1, 2, 3 classical. The absolute maximum is for d = 4, ρj = 1/4,
and

A =

⎛

⎜⎝
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎟⎠ . (B4)

Case n = 4. W = 0 for d ≤ 4 classical. For d = 5, ρj = 1/5, and

A =

⎛

⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎞

⎟⎟⎟⎠ , (B5)

we get W = 9/55.
For d = 6,

A =

⎛

⎜⎜⎜⎝

1 1 0 0 0 1
1 0 1 0 0 1
0 0 0 0 1 1
0 1 1 0 0 1

⎞

⎟⎟⎟⎠ , (B6)

and ρ = diag(x, x, x, z, y, y) with z = 1 – 3x – 2y, gives W = 0.002954143422708182, x =
0.19585843826556898, y = 0.18219100818175962.

For d = 7,

A =

⎛

⎜⎜⎜⎝

0 0 0 0 0 1 1
0 0 0 1 1 1 0
0 0 1 1 0 0 1
0 1 0 0 1 0 1

⎞

⎟⎟⎟⎠ , (B7)

with ρ = diag(w, x, x, y, y, z, z) and w = 1 – 2x – 2y – 2z. The numerical maximum is
W = 0.0030764392399879 for x = 0.06135153414853146, y = 0.1710023907787869, z =
0.19069830365543322.
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The absolute maximum occurs for d = 8 and

A =

⎛

⎜⎜⎜⎝

0 1 0 1 1 0 0 1
0 0 0 1 0 1 1 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1

⎞

⎟⎟⎟⎠ , (B8)

with ρj = 1/8.
Case n = 5. For d = 6 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0
0 1 1 1 0 1
1 1 0 0 0 1
1 0 0 1 0 1
0 0 1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
, (B9)

and ρj = 1/6 we get W = 52/66.
For d = 7 we get W = 12–3 for

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1
0 1 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (B10)

and ρ = diag(1/6, 1/6, 1/6, 1/8, 1/8, 1/8, 1/8).
The absolute maximum occurs for d = 8, ρj = 1/8 and

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 1
0 0 1 1 0 1 1 0
0 1 1 0 1 0 1 0
1 0 1 0 0 0 1 1
1 0 1 0 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (B11)

Quantum case n = 2, d = 2. Bell state |ψ〉 = (|12〉 – |21〉)/√2 with Aj = Bj = |vj〉〈vj| and
|v1〉 = |1〉, v2〉 = (|1〉 + |2〉)/√2 gives the absolute maximum.

Quantum case n = 3, d = 2, zero in the real case. Complex: the same Bell state but adding
|v3〉 = (|1〉 + i|2〉)/√2 gives the absolute maximum up to a sign, depending on ordering.

Quantum case n = d = 3 (real). The state reads

|ψ〉 = p|11〉 + q
(|22〉 + |33〉), (B12)

with Aj = Bj = |vj〉〈vj|, and

|vj〉 = s|1〉 + w
(
cos(2jπ/3)

∣∣2〉 + sin(2jπ/3)
∣∣3〉), (B13)

constrained by p2 +2q2 = s2 +w2 = 1 which gives the maximal W = 0.013208219549514474
for q = 0.5080857929626221, s = 0.7236153449503123.
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Quantum case n = 4, d = 3 real. We take

|ψ〉 =
(
2|11〉 +

√
3
(|22〉 + |33〉))/

√
10, (B14)

and Aj = Bj = |vj〉〈vj|, with

v1,2 = s1|1〉 ± w1|2〉, v3,4 = s2|1〉 ± w2|3〉, (B15)

and s2
1,2 = (9 ± √

17)/16, w2
1,2 = (7 ± √

17)/16, giving W = 27/12,500. In the complex case

|ψ〉 = p|11〉 + q|22〉 + r|33〉, (B16)

and

|vj〉 = a
∣∣1〉 + xωj∣∣2〉 + yωj|3〉, (B17)

for j = 1, 2, 3 and ω = e2π i/3 = (i
√

3 – 1)/2 while |v4〉 = b|2〉 + c|3〉. Maximizing with con-
straints p2 + q2 + r2 = a2 + x2 + y2 = b2 + c2 = 1 we get W = 0.003065301182016068
for x = –0.20660676061609246, y = 0.8141407994847997, b = 0.5366502440643837, c =
0.8438048656782298, q = 0.45755959305674204, r = 0.6898510489488422.

Quantum case n = 5, d = 3 real. Then |ψ〉 = (|11〉 + |22〉 + |33〉)/√3 and

|vj〉 = a
(
cos(2π j/5)

∣∣1〉 + sin(2π j/5)
∣∣2〉) + b|3〉

with a2 + b2 = 1. We get the maximum

W = (2437 + 340
√

10)/(2 · 314) � 0.0003671542094938571

for a2 = (10 +
√

10)/15.
Complex case. We take |ψ〉 = p|11〉 + q|22〉 + r|33〉 and |vj〉 = xζ j|1〉 + y|2〉 + zζ –j|3〉

with ζ = e2π i/5. Maximizing with constraints p2 + q2 + r2 = x2 + y2 + z2 = 1 we get
W = 0.000674047929103352, x = 0.7998181925131095, z = –0.4434461617437569, p =
0.6838826680323404, r = 0.5298910387696789.

Quantum n = 6, d = 3 complex. The state |ψ〉 =
√

2/7(|11〉 + |22〉) +
√

3/7|33〉 and |vj〉 =
(|1〉 + ωj|3〉)/√2, |vj+3〉 = (|2〉 +

√
2ωj|3〉)/√3 returns W = 4 · 27/77.

Quantum n = 7, d = 3 complex. We take |ψ〉 =
√

5(|11〉 + |22〉)/4 +
√

6|33〉/4+ and
|vj+3m〉 = xm|1〉 + ym|2〉 + zmωj|3〉 for j = 1, 2, 3, m = 0, 1 and |v7〉 = |1〉 Then the numeri-
cal maximum with constraints x2

m + y2
m + z2

m = 1 is W = 0.0000215113826.
Quantum n = 8, d = 3 complex. |ψ〉 = (|11〉 + |22〉 + |33〉)/√3 with |vj〉 =

√
10|1〉/6 ±

i|2〉/√6 +
√

5ωj|3〉/3 for j = 1 . . . 6 while |v7,8〉 =
√

5/6|1〉 ± |2〉/√6 which gives W =
510/326.

B.2 Case (b) single measurement with n + 1 outcomes
It is convenient to consider positive Hermitian matrices A′

i =
√

Z�Ai� , which are not
normalized, giving p′

ij = Tr A′
iA′

j and normalize probability by p = p′/Z with Z = Tr A2 for
A =

∑
i A′

i. The state is then reconstructed as �2 = A/
√

Z in its diagonal basis. Similarly
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as in [55] we focus on matrices of rank ≤ d/2. Otherwise, the overlapping projection is
free to shift between the matrices with the linear change of the determinant. In the case
n = 4, d = 3 we could reduce i < 5 to rank 1. The last matrix i = 5 could have rank 2, but
our numerical analysis showed that the optimal case is also of rank 1. The result in the real
case A′

j = |vj〉〈vj| with

|v1,2〉 = x|1〉 ± y|2〉,
|v3,4〉 = a|1〉 ± b|3〉,
|v5〉 = z|2〉, (B18)

with a4 = 1/160, b4 = 1/120, y = 3b, x = 4a, z = 12b giving W = 1.6875 · 10–5 (exact).
In the complex case, A′

j = |vj〉〈vj|/Z with

|vj〉 = a|j〉, j = 1, 2,

|vj〉 = qωj∣∣1〉 + qω2j∣∣2〉 + r|3〉, j = 3, 4, 5, (B19)

with ω = e2π i/3 = (
√

3i – 1)/2, a2 = 3q2(q2 + 2r2)/(q2 + r2) and Z = 9(2q4(2q2 + 3r2)2 + r4(q2 +
r2)2)/(q2 + r2). As the determinant is a homogenous function of q and r, setting q = 1 and
r2 = x we end up with

W =
x2(1 + x)6(1 + 2x)6)

27(x2(1 + x)2 + 2(2 + 3x)2)5 , (B20)

reaching its maximum 1.874577768244 · 10–5 for x being the largest root of

x4 + 2x3 – 11x2 – 11x – 2 = 0, (B21)

i.e. x = 2.98813453198126056781.

Appendix C: Counterexample to prepare and measure scenario
In [33], one considers W7 = det p for the matrix p with entries pij = p(i|2j) – p(i|2j + 1) for
p(k|i) for i = 0 . . . 6, and j = 0 . . . 13 being the probability of 1 the ith dichotomic measure-
ment on the state k [30]. It is claimed that W7 = 0 in the case of a bipartite state consisting
of two independent qubits. We shall present a counterexample to this claim.

Let us take a state in the Pauli basis |�a〉 = ((1 + az)|0〉 + (ax + iay)|1〉)/2 so that the prob-
ability of the p(a|c) = |〈�c|�a〉|2 = (1 + �a · �c)/2. Generalizing it to two independent qubits,
we have p(a, b|c, d) = (1 + �a · �c)(1 + �b · �d)/4. We take the states and measurements as fol-
lows

�c0,1,2 = (1, 0, 0), �c3,4,5 = (0, 1, 0), �c6 = (0, 0, 1),

�d0,3,6 = (1, 0, 0), �d1,4 = (0, 1, 0), �d2,5 = (0, 0, 1),

�a0,2,4 = (1, 0, 0) = –�a1,3,5 = (–1, 0, 0),

�a6,8,10 = (0, 1, 0) = –�a7,9,11,
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�a8,10,12 = (0, 0, 1) = –�a9,11,13,

�b0,6,12 = (1, 0, 0), �b2,8 = (0, 1, 0), �b4,10 = (0, 0, 1), (C1)

with �b1,3,5 = –�b0,2,4 and �b7,9,11,13 = �b6,8,10,12. Then

W (i, j) = p(i, 2j) – p(i, 2j + 1) =

⎧
⎨

⎩
(�ci · �a2j + �di · �b2j)/2 for j < 3,

�ci · �a2j(1 + �di · �b2j)/2 for j ≥ 3.
(C2)

The matrix p reads

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1/2 1/2 0 0 0 0
1/2 1 1/2 0 0 0 0
1/2 1/2 1 0 0 0 0
1/2 0 0 1 1/2 1/2 0
0 1/2 0 1/2 1 1/2 0
0 0 1/2 1/2 1/2 1 0

1/2 0 0 1/2 0 0 1/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

whose determinant is 1/8. It means that W7 
= 0 contrary to the general claim of [33]. We
suspect that equality W7 = 0 requires additional assumptions on preparations and mea-
surements.

Appendix D: No-signaling
The crucial assumption of the test (a) is locality. One can only verify a consequence of
locality, namely no-signaling. It means that the probability pi0 and p0j can be found in
any (i, j) pair of measurements as pi0,j or p0j,i, but does not depend on the other party,
i.e.

pi0,j = pi0, p0j,i = p0j. (D1)

In our demonstration, we could determine each pi0,j and p0j,i, i.e. 2 × 4 × 4 num-
bers. The results are presented in Figs. 9, 10, 11, 12, 13, 14. In the case of belem,
lagos, and nairobi, no-signaling is satisfied within the statistical error. However, for
perth, p20,1 differs from p20,2 by 3.9 standard deviations, corresponding to p-value 10–4.

Figure 9 No-signaling test for belem I, for (top) pi0 (i on the horizontal axis) depending on j (inset), and
(bottom) p0j depending on i
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Figure 10 No-signaling test for lagos I, notation as in Fig. 9

Figure 11 No-signaling test for belem II, notation as in Fig. 9

Figure 12 No-signaling test for lagos II, notation as in Fig. 9

Figure 13 No-signaling test for perth II, notation as in Fig. 9

The actual significance is lower because of 48 possible comparisons, due to the look-
elsewhere effect. Nevertheless, we suggest caution and repeating this test with different
resources.



Batle et al. EPJ Quantum Technology           (2024) 11:62 Page 19 of 25

Figure 14 No-signaling test for nairobi II, notation as in Fig. 9

Figure 15 The notation of the ECR gate in the convention ECR↓|ab〉

Appendix E: Relation between CNOT and ECR gates
The IBM Quantum devices (brisbane) use a native two-qubit gate Echoed Cross Reso-
nance (ECR) instead of CNOT . However, one can transpile the latter by the former, adding
single qubits gates. We shall use Pauli matrices in the basis |0〉, |1〉,

X =

(
0 1
1 0

)
, Y =

(
0 –i
i 0

)
, Z =

(
1 0
0 –1

)
, I =

(
1 0
0 1

)
. (E1)

We also denote two-qubits gates by ↓ and ↑, which mean the direction of the gate (it is
not symmetric), i.e. 〈a′b′|G↑|ab〉 = 〈b′a′|G↓|ba〉.

The ECR gate acts on the states |ab〉 as (Fig. 15)

ECR↓ = (XI – YX)/
√

2 = CR–(XI)CR+ =

(
0 X–

X+ 0

)
=

⎛

⎜⎜⎜⎝

0 0 1 i
0 0 i 1
1 –i 0 0
–i 1 0 0

⎞

⎟⎟⎟⎠ /
√

2, (E2)

in the basis |00〉, |01〉, |10〉, |11〉 where the native gate is

S =
√

–iX = X+ = Xπ/2 = (I – iX)/
√

2 =

(
1 –i
–i 1

)
/
√

2, (E3)

and X– = X–π/2 = ZX+Z, with

CR± = (ZX)±π/4, (E4)

using the convention Vθ = exp(–iθV /2) = cos(θ/2) – iV sin(θ/2) if V 2 = I or II . The gate is
its inverse, i.e. ECR↓ECR↓ = II .

Note that Zθ = exp(–iθZ/2) = diag(e–iθ/2, eiθ/2) is a virtual gate adding essentially the
phase shift to next gates. ECR gates can be reversed, i.e., for a ↔ b, (Fig. 16)

ECR↑ = (IX – XY )/
√

2 = (HH)ECR↓(Y+Y–), (E5)
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Figure 16 The ECR↑ gate expressed by ECR↓

Figure 17 The CNOT↓ gate expressed by ECR↓

Figure 18 The CNOT↑ gate expressed by ECR↓

denoting V± = V±π/2, and Hadamard gate,

H = (Z + X)/
√

2 = Z+SZ+ =

(
1 1
1 –1

)
/
√

2, (E6)

and Z±SZ∓ = Y±, with Y+ = HZ and Y– = ZH .
The CNOT gate can be expressed by ECR (Fig. 17)

CNOT↓ = (II + ZI + IX – ZX)/2 =

(
I 0
0 X

)
=

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎟⎠ = (Z+I)ECR↓(XS), (E7)

while its reverse reads (Fig. 18)

CNOT↑ = (II + IZ + XI – XZ)/2 =

⎛

⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎟⎠

= (HH)CNOT↓(HH) = (HH)ECR↓(SS)(Z–H). (E8)

Appendix F: Experimental data
The technical characteristics of the relevant qubits and two-qubit connecting gates are
shown in Table 5 and 6. the actual maps of probabilities in the case of test (b) are shown
in Fig. 19. The results of the witness in the case (b) for individual jobs are presented in
Fig. 20.
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Table 5 The characteristics of the single qubits used in the demonstration, frequency between 0
and 1 level, anharmonicity (frequency between 1 and 2 levels above 0-1 transition), error of the gate
S =

√
–iX used in the tests. The duration of the single gate pulse is always 35 ns, except brisbane with

60 ns

device/qubit freq. (GHz) anh. (GHz) S error [10–4]

belem 0 5.09 –0.34 1.8
belem 1 5.25 –0.32 6
belem 3 5.17 –0.33 2.3
belem 4 5.26 –0.33 2.3
lagos 0 5.24 –0.34 3
lagos 1 5.10 –0.34 1.8
lagos 3 4.99 –0.345 2.3
lagos 5 5.18 –0.34 1.9
lagos 6 5.06 –0.34 1.9
perth 0 5.16 –0.34 3
perth 1 5.03 –0.34 2.5
perth 3 5.13 –0.345 2.2
perth 5 4.98 –0.34 2.8
perth 6 5.16 –0.34 2.9
nairobi 0 5.26 –0.34 2.8
nairobi 1 5.17 –0.34 3.4
nairobi 2 5.27 –0.34 3.8
nairobi 3 5.03 –0.34 4.2
nairobi 4 5.18 –0.34 2.5
nairobi 5 5.29 –0.34 3.9
nairobi 6 5.13 –0.34 1.6
brisbane 21 4.97 0.31 2.1
brisbane 22 5.04 0.31 3.9
brisbane 23 4.84 0.31 2.1
brisbane 24 5.01 0.31 2.7
brisbane 25 4.95 0.31 3.5
brisbane 26 4.85 0.31 2.7
brisbane 27 4.75 0.31 1.4
brisbane 116 4.91 0.31 1.3
brisbane 117 4.83 0.31 4.0
brisbane 118 4.73 0.31 1.4
brisbane 119 4.80 0.31 2.7
brisbane 120 4.84 0.31 3.1
brisbane 121 4.97 0.31 3.6
brisbane 122 4.94 0.31 3.0

Table 6 The errors of the two-qubit gates used in the demonstration, CNOT for nairobi and ECR for
brisbane

device connection CNOT/ECR error [10–3]

nairobi 0-1 9.2
nairobi 1-3 6.5
nairobi 1-2 8.5
nairobi 3-5 16.1
nairobi 4-5 4.8
nairobi 5-6 6.1
brisbane 21-22 5.2
brisbane 22-23 7.1
brisbane 24-23 6.6
brisbane 25-24 7.1
brisbane 26-25 10.1
brisbane 27-26 6.1
brisbane 116-117 6.1
brisbane 117-118 5.7
brisbane 118-119 11.5
brisbane 120-119 20.5
brisbane 121-120 7.3
brisbane 122-121 10.4



Batle et al. EPJ Quantum Technology           (2024) 11:62 Page 22 of 25

Figure 19 The probabilities for the test (b) for each combination of spectator qubits a0b0, see main text, with
the middle qubit 3 (nairobi), 24 and 119 (brisbane), compared to the ideal theoretical expectation

Figure 20 The results of the witness calculated for individual jobs in the test (b) for each combination of
chosen spectator qubits values a0b0, see main text, with the middle qubit 3 (nairobi), 24, and 119 (brisbane)
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