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Abstract
Previous research has consistently demonstrated that students often possess an
inadequate understanding of fundamental quantum optics concepts, even after
formal instruction. Findings from physics education research suggest that introducing
a mathematical formalism to describe quantum optical phenomena may enhance
students’ conceptual understanding of quantum optics. This paper investigates
whether using formal descriptions of quantum optics phenomena – such as photon
anticorrelation at a beamsplitter or single-photon interference in a Michelson
interferometer – expressed in Dirac notation, can support secondary school students
in developing functional thinking about photons. To investigate this, we conducted a
clusterrandomized field study, comparing the improvement in functional thinking
between 67 students in the intervention group, who were taught using both
qualitative and quantitative reasoning, and 66 students in the control group, who
were taught using only qualitative reasoning. The results indicate that mathematical
formalism can indeed promote functional thinking about photons. However, the
comparison between the intervention and control groups revealed that the control
group exhibited a greater increase in functional thinking than the intervention group.
In response to these findings, we conducted a follow-up study aimed at gaining a
deeper understanding of the cognitive load associated with both approaches.
Specifically, we compared the intrinsic and extraneous cognitive load of 71 students
in the intervention group with those of 65 students in the control group. The data
analysis revealed that the two groups had statistically significant differences in
intrinsic cognitive load while the extraneous cognitive load did not difer statistically
significant, indicating a higher mental effort associated to the quantitative reasoning.
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1 Introduction
Quantum physics (QP) is currently incorporated into the educational curricula of numer-
ous countries [1] and it often falls upon physics teachers to plan the way they approach QP
in upper secondary school education. To do so, they can rely on research-based teaching
concepts from quantum eduation research [2–12]. Additionally, quantum education re-
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search has provided a comprehensive overview of misconceptions that students encounter
when being confronted with quantum topics: For instance, students have been found to
think about electrons as tiny spherical entities [13] or understand electron spin as a rota-
tion of a tiny spherical entities [14], or photons as light particles moving along sinusodial-
trajectories [15]. Most of these learning difficulties can be traced back to students’ hav-
ing not developed a sufficiently sophisticated understanding of the underlying (quantum)
models [16].

Despite great teaching approaches, learners frequently develop misconceptions about
quantum objects because a single quantum object cannot be described and also visualised
by a continuous temporal and spatial way.

To gain a deeper understanding of these misconceptions, previous research has de-
veloped a range of theoretical frameworks to describe cognitive processes and mental
models [17, 18] (for further insight, see Sect. 2.1). Ubben and Heusler investigated stu-
dents’ conceptions about the atomic shell, and identified a two-dimensional structure of
the mental models held by students and designated these two dimensions as “Fidelity of
Gestalt” and “Functional Fidelity” [19]. Subsequent studies have evidenced that this two-
dimensional structure can be used to describe learners’ mental models of the photon [17],
and that there is a correlation between the conceptual understanding of QP and the de-
gree of Functional Fidelity in students’ thinking about photons [20]. In consideration of
these observations, it can be deduced that the enhancing of the Functional Fidelity in the
thinking of the students should be regarded as a principal aim of QP instruction. How-
ever, physics education research has to investigate the implementation of teaching prac-
tices that effectively promote the degree of Functional Fidelity in students thinking about
the photon. According to Ubben et al. [12, 20] promoting the degree of functional fidelity
in the learner’s thinking is accompanied by various abstraction processes. Since mathe-
matics intrinsically aims at describing scientific concepts in an abstract manner it seems
suitable that an introduction of a formalistic description rather than only using qualitative
arguments may be a beneficial for developing mental models that exhibit higher degrees
of functionality. This topic has been largely unstudied in the field of physics education re-
search (see Sect. 2.2), as the fundamental principles of mathematical formalisms used to
describe quantum phenomena extend beyond the scope of traditional school mathemat-
ics.

This conflict constitutes the starting point of our research as we investigate whether and
to what extent the introduction of a mathematical formalism facilitates the transition from
a mental model with a predominant degree of gestalt thinking to a mental model with a
predominant degree of Functional Fidelity. To this end, Hennig et al. [2] developed a learn-
ing sequence with a formalistic approach to QP at its core in prior research [2]. It extends
the qualitative treatment of single-photon experiments, such as anticoincident measure-
ment results at a beam splitter or single-photon interference in a Michelson interferome-
ter, with a mathematical description using Dirac notation. This approach does not require
concepts of vector calculus or complex numbers [2]. Subsequently, the learning sequence
was piloted using an acceptance survey with n = 14 learners, indicating that the majority
of the instructional elements were well accepted [21]. In (quantum-)physics instruction,
learners should be supported in abandoning such misconceptions. As already described,
the introduction of a mathematical formalism might increase the degree of Functional Fi-
delity in the learner’s mental model of the photon (see Sect. 2.1 and Sect. 2.2) and may
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be fruitfull to overcome such misconceptions. To investigate this research desideratum,
we are conducting a field study utilizing the piloted learning sequence. Our paper con-
tributes to addressing the question of whether learners develop a mental model with a
higher degree of Functional Fidelity with the help of mathematical formalism. Therefore
we present the results of a clusterrandomized field study with seconary school students,
in which an experimental group was introduced to a mathematical formalism in addition
to the qualitative instructions in a QP class, while the control group received only a qual-
itative reasoning.

2 Research background
2.1 Mental models
An individual’s mental model can be understood as a cognitive representation of an ob-
ject that is used to understand the functionality of complex systems [22]. It can therefore
be seen as an individual interpretation that is assigned to a phenomenon or concept [23].
Once an individual is unable to explain a phenomenon using an existing mental model,
the model is modified to accommodate the new information [24]. A variety of theoreti-
cal frameworks have been developed with the purpose of describing mental models and
the manner in which they are constructed (e.g. [18, 19]). One of these frameworks has
been developed within the context of QP [19]. In their research, Ubben and Heusler iden-
tified a two-dimensional structure that underlies learners’ mental models of the atomic
shell [19]. The authors called one dimension the Fidelity of Gestalt, which describes “how
far the mental models [...] were understood as exact visual representations of phenomena
of exact depictions of how things look” [19, p. 1356]. The other dimension is regarded
as Functional Fidelity and indicates “how far the mental models [...] were thought of as
appropriate descriptions of how phenomena work – what abstract concepts underly the
corresponding models” [19, p.1356]. While these dimensions were originally discovered
in the context of the atomic hull, previous research further revealed that this two-factor
model is also applicable in the context of learners’ mental models of the quantum ob-
ject photon [17]. In a subsequent study, the authors found a positive correlation between
the degree of Functional Fidelity in learners’ mental models and their conceptual under-
standing of quantum optical concepts [20]. This positive correlation was then leveraged to
propose the existence of a hierarchy, whereby four distinct types of mental models can be
identified, representing varying degrees of Functional Fidelity or Fidelity of Gestalt [19]:

1. If both the Fidelity of Gestalt and the Functional Fidelity of a mental model are
deemed to be low, it is regarded as an undeveloped type.

2. If the degree of Functional Fidelity of a mental model is low and the degree of Fidelity
of Gestalt is high, the mental model is perceived as an exact representation of the
underlying reality. This type of mental model is called architectural.

3. If both the Functional Fidelity and the Fidelity of Gestalt of a mental model are high,
it is regarded as the dual type.

4. If the degree of Fidelity of Gestalt is low and the degree Functional Fidelity of the
mental model is high, the mental model is assigned to the functional type.

The combination of the four aforementioned types in a coordinate system results in a
diagrammatic representation (see Fig. 1).

A distinctive feature of this process is that a student is not required to go through all
types when developing a mental model [20]. In other words, even though the presented
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Figure 1 The combination of the four aforementioned types in a coordinate system [20, p.6]

structure is of hierarchical nature, learners do not need to move consecutively throughout
all four types. However, as propsed by Ubben and Bitzenbauer the increase in the degree of
Functional Fidelity is associated with a process of abstraction [20]. Mathematics, with its
triad of definition, theorem, and proof, is a discipline that functions independently of any
reality. Therefore mathematics can be used to describe the underlying reality in an abstract
manner, which is why the introduction of mathematical notation might be conducive to
increasing the degree of Functional Fidelity in learners’ mental model.

2.2 Mathematics and its role in (quantum-)physics education
Mathematics plays a unique and integral role in the field of physics [25]. When investigat-
ing a physical phenomenon, a physicist may choose to rely on empirical observations or
utilize mathematical models in order to gain insight into the underlying reality [26]. The
latter is referred mathematical sense making, which entails the combination of conceptual
understanding with the utilization and interpretation of a formal symbolic language [27].
In the categorial sense making framework, Gifford and Finkelstein propose four reason-
ing structures that describe how mathematical or physical contents are accessed [28]. An
overview and a description of the abbreviations of those reasoning structures is provided
in Fig. 2. All structures have in common that mathematical tools or physical models (e.g.
photon model of light) serve as a mediator to enable learners to access the mathematical
or physical object under investigation [28].

The categorial sense making framework furthermore describes two fundamental pro-
cesses for knowledge acquisition: Firstly, the process of utilizing an already understood ob-
ject as a foundation for understanding a subsequent object is referred to as chaining [28].
This connection is visualized with an green arrow in Fig. 3. Secondly, the concept of coor-
dination refers to the interconnection between two reasoning structures that investigate
the same object [28]. A visualization of both processes is provided in Fig. 3.

In instances where mathematical tools are employed during physics lessons, mostly “a
mathematical formalism is leveraged to understand the behavior of a physical system” [28,
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Figure 2 A visual illustration of the reasoning structures [28, p.4]. The following abbreviations are used:
Msm-M: Mathematical sense making on a mathematical object; Msm-P: Mathematical sense making on a
physical object; Psm-M: Physical sense making on a mathematical object; Psm-P: Physical sense making on a
physical object;

Figure 3 Connection of reasoning structures

p. 5]. A mathematical formalism is an indispensable tool in the field of QP, as a visualiza-
tion of a single quantum object is inadequate for comprehending the underlying principles
of quantum phenomena: “The interplay between mathematics and physics plays a special
role in quantum physics. While in classical physics, mathematical formalism is usually de-
rived from other types of representations (diagrammatical, pictorial), in quantum physics,
the mathematics takes on the conceptual role” [29, p.88]. A multitude of distinct formu-
lations of QP have been proposed, all of which are mathematically equivalent [30]. In the
case of secondary school, many approaches to the mathematical formulation of QP em-
ploy Dirac notation [31], which may have an positive impact on the formal description
of QP [32]. The great advantage of the Dirac notation is that instead of focusing on the
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mathematical representation of states (e.g., representing them by vectors or functions), it
aims to capture the experimental depth of quantum physics using only some basic algebra
[33]. In Dirac notation, quantum states are represented by abstract mathematical objects,
so-called “kets” and quantum states can be expressed as a linear combination of “kets”.
Since “kets provide an elemental representation of basic states” [34], and the probability
amplitudes are readily ascertainable, “in Dirac notations, it [the notation itself ] became
clear and meaningful” [35, p. 7].

Nevertheless, a considerable number of students continue to experience challenges with
Dirac notation, even after receiving instruction [36–38]. Among the challenges identified
were difficulties in applying scalar products to determine probabilities [38] and the trans-
formation of a ket vector into the associated wave function [36, 37]. An approach that
possibly circumvents these learning difficulties is provided by the use of a reduced Dirac
notation. In a reduced Dirac notation, the scalar products are not calculated and therefore
bra vectors must not be introduced.

The ket vectors function as a symbolic representation of a basis state [2, 31, 39]. In ad-
dition, a reduced Dirac notation enables the description of two-state systems [2, 39–41],
which provide a foundation for understanding the essential concepts of quantum tech-
nologies in physics education [41–44]. This approach is exemplified by Scholz et al., whose
instruction on quantum optics concentrates on quantum optical effects that are not ade-
quately explained by models of either light beams or light waves – rather, they can be un-
derstood exclusively within the context of the photon model for light [39]. In this instruc-
tional sequence, the authors present a reduced Dirac notation that accurately describes the
results of QP experiments with single photons used in their instructional sequence [39].
However, the fact that matrix multplication is not adressed in school mathematics renders
this formalism unsuitable for use in secondary schools.

An alternative approach is proposed by Hennig et al. [2], whose instructions are based
on those of Scholz et al. [39] mentioned above. In the instructional elements, experi-
ments with single photons, presented via interactive screen experiments [45], as well as
GeoGebra-animations, are employed as an instructional tool. In addition to a qualitative
description and interpretation of the experiments, from which the characteristics of a sin-
gle photon can be derived, Hennig et al. [2] introduce a reduced Dirac notation. In this
notation, the phases of the basic states are represented with the help of arrows, and the
probabilities are derived from the ratio of the magnitude squares of the individual arrow
lengths [2]. This reduced Dirac notation does not require knowledge of either the ele-
ments of vector calculus or complex numbers. Consequently, it is accessible to learners
with a less solid foundation in mathematics [2]. For a more detailed description, we refer
the reader to our earlier work [2], as well as to Sect. 4.2. The fundamental idea of the learn-
ing path is that the sensemaking of the properties of a single photon occurs in accordance
with the process illustrated in Fig. 4.

Various studies have been conducted to investigate the ways in which students learn the
challenging topics of QP through the use of mathematics, as well as the difficulties they en-
counter in doing so [36, 37, 46, 47]. Indeed, there is empirical evidence that such teaching
approaches, which suggest supplementing the qualitative treatment of QP concepts with a
formalistic description of the corresponding phenomena appropriate to the target group,
can be particularly conducive to learning. For example, Justice et al. [48] conducted a field
study in which the experimental group, which received a hybrid instruction consisting of
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Figure 4 The figure depicts the sense making process that occurs throughout the learning path. The
characteristics of photons can be deduced qualitatively (purple) or enhanced through quantitative reasoning
(blue). In the initial qualitativ step, the behavior is determined with the assistance of a physical experiment. In
the context of mathematical sensemaking, it is essential to first establish a reduced Dirac notation. In both the
qualitative and formalistic reasoning paths, the findings result in the formulation of novel explanations for
observable phenomena. Subsequently, the two reasoning structures can be coordinated. The objective of this
course of study is to gain an understanding of the characteristics of individual photons

a qualitative and a formalistic part, demonstrated superior performance on a concept test
relative to the control group, which solely received a qualitative instruction. However, a
second experimental group exhibited inferior performance relative to the control group.
In light of these findings, it remains uncertain whether the introduction of a mathematical
formalism enhances the functionality of mental models. Consequently, additional inves-
tigation into this matter is required. Furthermore, it would be beneficial to examine the
impact of employing a mathematical formalism on the working memory of learners, given
that they are simultaneously engaged in learning physics and utilizing a mathematical tool.
In physics instruction, the process of mathematical sense making with regard to a given
physical system is often challenging [28]. It is not always the case that the behaviour of a
physical system can be discerned directly with the aid of a mathematical model; in some
instances the sense making process is “requiring Msm-M type [see Fig. 2] reasoning to un-
derstand the formalism before it can be used to understand physical behavior” [28, p.5].
Even if a formalism is deemed to be comprehended by a learner, it will nevertheless occupy
cognitive resources when applied to a quantum physical situation to elucidate the under-
lying concepts, thereby precluding the limited working memory of a human from being
available for other tasks [49–51]. It can be reasonably inferred that working memory is
likely to be more heavily loaded in a setting in which a qualitative treatment is extended
by a formalistic description. This leads to the question of whether learning is in fact more
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effective at the formalistic level, or whether the corresponding formalistic arguments have
the effect of impeding the development of concepts in learners.

2.3 Cognitive load
The cognitive load theory by Sweller et al. [49, 52] assumes a limited working memory,
which is influenced by a cognitiv load. In a modern view, there are two types of cognitive
load which are determined by the structure of the learning environment or the learning
tasks [52, 53]:

1. The intrinsic cognitive load “is concerned with the natural complexity of information
that must be understood and material that must be learned, unencumbered by
instructional issues such as how the information should be presented or in what
activities learners should engage to maximise learning” [53, p.124].

2. The extraneous cognitive load (EL) is caused by “nonoptimal instructional
procedures” [53, p.125].

In order to ascertain the degree of the various types of cognitive load experienced by
learners, a series of test instruments have been developed [54, 55] and employed [56–58].
To quantify cognitive load the individual types – intrinsic load (IL) and extinsic load (EL) –
were measured separately.

In the existing literature, there has been a limited focus on the cognitive load (CL) of
students engaged in learning QP through the lens of mathematical representations (for an
example, see [59]). In this paper, we revisit the research desiderata identified in Sect. 2.2
and Sect. 2.3 and conduct a clusterrandomized field studies to investigate the extent to
which the reduced Dirac notation described by Hennig et al. [2] supports students in pro-
moting Functional Fidelity in their thinking about photons with respect to the cognitive
load they experienced.

3 Research questions
As mathematical descriptions of physics are often far less amenable to gestalt-like inter-
pretations, it has been suggested in the literature that mathematical formalism could prove
an influential factor in the advancement of functional understanding in the field of QP [20].
Concurrently, the implementation of a mathematical formalism may present two poten-
tial challenges. Firstly, learners may demonstrate proficiency in problem-solving but lack
a comprehensive understanding of the underlying concepts [60]. Secondly, learners may
experience cognitive overload, which could impede the promotion of Functional Fidelity
in the thinking of students. This clusterrandomized study employs the teaching concept
on the QP of the photon at the secondary level to empirically examine the extent to which
a mathematical description can facilitate Functional Fidelity in the thinking of students
and elucidate the role of cognitive load in this process. This gives rise to the following
research questions (RQs):

RQ 1 To what extent can the introduction of a mathematical formalism of QP making
use of Dirac notation help students develop a functional understanding of
photons?

RQ 2 How does the (intrinsic and extrensic) cognitive load that students have to bear
when they are introduced to formalistic descriptions of the outcomes of quantum
experiments using the reduced Dirac notation compare to that of students who
are introduced only to qualitative explanations of the respective experiments?
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Figure 5 Overview of the study design. The instruction took a total of five school lessons (à 45 mins) and a
detailed description of the interventions can be found in 4.2

Table 1 In the table is a summary of the study samples provided

Total Sample Intervention Group Control Group

Students 133 67 66
Teachers 2 1 1
Classes 7 3 4

Two studies were conducted to address the research questions. The findings of the first
study, which contributes to RQ 1, are presented in Sect. 4. Based on the results of this
initial study, a follow-up study contributing to a clarification of RQ2 was conducted and
the results of this study are reported in Sect. 5.

4 Study 1: clusterrandomized field study
4.1 Study design and sample
We conducted a clusterrandomized study with an intervention group (IC) and a control
group (CG) in a pre-post test format, to examine the first RQ. The study was implemented
in the field, i.e., in the classroom setting and during the regular physics lessons of the
participating classes. An overview of the sample is given in Table 1 and an overview of
the study design is provided in Fig. 5. The IC received instructions in strict accordance
with the teaching-learning sequence presented in Ref. [2], wherein a qualitative treatment
of single-photon experiments is enhanced by a formalistic description of single-photon
states based on a reduced Dirac notation. The control group underwent the same instruc-
tions, but without the formalistic (i.e., only quantitative reasoning was used) description
of the quantum-physical phenomena. The instructions for the IC and the CG each com-
prised five lessons.

The study was conducted with a sample of students aged between 15 and 17 years, with
a total sample size of ntot = 133.

4.2 Interventions
This section presents a description of the learning sequence experienced by the interven-
tion group. The Table 3 at the end of the section provides a comparative summary of the
learning sequences. The GeoGebra animations and worksheets utilized in this study can
be accessed on the website.1

1https://fiztan.phd.elte.hu/letolt/erlangen-qm/.

https://fiztan.phd.elte.hu/letolt/erlangen-qm/
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Figure 6 Interactive screen experiment on the anticorelation of the measurementresults of single-photon
states at a beam splitter [45]

In the first lesson, selected topics regarding electromagnetic waves are repeated. This
lesson therefore made it possible to bring the prior knowledge of the two groups (IG and
CG) to a similar level. The students are instructed on the function of the beam splitter
as an optical component and observe the behaviour of laser light at a 50:50 beam splitter
in a demonstration experiment. Moreover, selected properties of electromagnetic waves,
such as phase and interference, are examined in detail. Learners are presented with a con-
ceptual link between the distinct phases of electromagnetic waves and the phenomenon
of wave interference. During the lesson a GeoGebra animation, accessible via the link in
the footnotes,2 is employed to illustrate the phase shift that occurs during reflection at
the beam splitter [61]. In the following lesson, the behavior of a single photon at the beam
splitter will be investigated through the use of an interactive screen experiment (see Fig. 6)
by Bronner et al. [45]. In the experimental setup, the lamps on the black boxes are illumi-
nated when the detector in the box detects a single photon. The red (or green) lamp lights
up when a single photon is found in the spatial position corresponding to the transmission
(or reflection) at the beam splitter, respectively.

During the lesson, students can observe that both lamps never remain illumination at
the same time. This experiment demonstrates the anti-correlation of a repeated measure-
ments of a single photon. Three properties of photons can be derived from the observa-
tions made in the experiment.

1. Photons are indivisible and indistinguishable energy portions of light. Since the
photons are completely identical (and do not interact with each other), a repeated
measurement with a single photon prepared in the same state is completely identical
to a single measurement of an ensemble consisting of many photons prepared in the
same state.

2. A single photon is measured either by the detector DT or by the detector DR.

2https://www.geogebra.org/m/jmxhck52.

https://www.geogebra.org/m/jmxhck52
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3. It is not possible to make any predictions regarding a single measurement results. But
“statistical predictions (for many repetitions) are possible” [62, p. 3].

In accordance with the framework proposed by Gifford and Finkelstein [28], the ex-
periment is utilized as a tool to comprehend the characteristics of photons. Given that a
physical experiment was selected as the conduit for this knowledge process, the reasoning
structure is from the type Psm-P (see Fig. 2).

Observations are necessary for the conceptualization of quantization and probabilistic
nature of a single quantum measurement. These allow the introduction of the concept of
superposition as a reason for probabilities. Probabilities must be used because the possible
states of photons are not only the measured states (transmission or reflection), but also
the so-called superposition states too (linear combination of them) [10]. It is not possible
to make any predictions regarding a single measurement result, as a single photon is in a
“superposition of transmitted or reflected” [62, p.4].

Following an initial overview of the concept of a state in classical mechanics, the sub-
sequent section turns to an investigation of the quantum physical state and its distinctive
characteristics. The QP allows the preparation of superposition states. In this learning
sequence, we utilized a reduced Dirac notation to describe quantum states. This repre-
sentation expressed the state of a quantum object using a so-called “Ket”, for example the
state of a photon is written as |ψ〉. In the experimental setup illustrated in Fig. 6, the state
of a single photon can be represented as |ψ〉 = ϕ0◦ |S〉. The ket |S〉 indicates that the photon
has been emitted. The symbol ϕ0◦ represents the phase coefficient of the quantum state,
which is similar to the phase of an electromagnetic wave. The phase coefficient can be
represented by an arrow whose tip is oriented away from the coordinate origin. This inter-
pretation of the probability amplitudes circumvents the necessity of introducing complex
numbers and the necessity of calculating scalar products for normalization purposes.

Due to the placed beam splitter, the state of the photons must be considered as a su-
perposition: |ψ〉 = ϕ90◦ |R〉 + ϕ0◦ |T〉. At this point in the learning path, students revisit the
preceding results. The notation does not imply that a single photon is simultaneously in
the states |R〉 and |T〉, because a single photon is “undividable”. Rather, it is in a distinct
state, known as a superposition state. Furthermore, a phase shift of 90◦ is observed during
reflection at the beam splitter. At this point, the students can feel that the phenomenology
of QP is difficult to visualize, whereas mathematics offers a simple tool to describe the
experiments that are consistent with the measurements outcomes.

At last, the frequencies of the individual detections are elucidated in detail. If the in-
teractive screen experiment is conducted for a sufficient duration, the quotient Nref

Ntrans
will

approaches 1. The statistical determinism [63] leads to the conclusion that

Nref /N
Ntrans/N

→ p(R)

p(T)
= 1.

Given that the equation p(R) + p(T) = 1 is also a necessary condition, it can be concluded
that p(R) = p(T) = 0.5 is the only solution of the equation system. Since we used arrows to
represent the probability amplitudes in our notation, we found the ratio-equation p(R)

p(T) =
|ϕ90◦ |2
|ϕ0◦ |2 . This enabled us to connect the phase coefficients and the detection probabilities.

It is important to note that the quantum states are not normalized in this reduced Dirac
notation, since the scalar product of states are not introduced at all. According to the
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Figure 7 Interactive screen experiment on the phenomenon of single-photon interference in a Michelson
interferometer [45]

framework of Gifford and Finkelstein [28] the sensemaking structure of the lesson is a
Psm-M reasoning structure (see Fig. 2), whereby a mathematical formalism is rendered
plausible through the aid of a physical model. To gain further insights into the character-
istics of a single photon, an interactive screen experiment (see Fig. 7) by Bronner et al. [45]
on single-photon interference in a Michelson interferometer is used in the fourth lesson.

Students can observe that in this interactive screen experiment, the detection rate,
which is defined as the number of photons measured per second, is dependent on the
position of the movable mirror of the Michelson interferometer. It is impossible to ex-
plain these experiences in the classical particle picture. The observation of single-photon
interference can be attributed to the principles of delocalization and superposition. In con-
junction with the students, a reflection on the observations yielded from the two screen
experiments will be conducted through the reading of an excerpt from a research paper
by Grangier et al. [64]. The authors of this article conclude that the experiments “illustrate
the wave-particle duality of light. Indeed, if we want to use classical concepts, or pictures,
to interpret these experiments, we must use a particle picture for the first one (‘the pho-
tons are not split on a beam splitter’) [...]. On the contrary, we are compelled to use a
wave picture (‘the electromagnetic field is coherently split on a beam splitter’) to interpret
the second (interference) experiment” [64, p. 178]. Based on this text excerpt, it is obvious
that photons can neither be an electromagnetic wave nor a classical particle, and therefore
single-photons are so-called quantum objects that obey the laws of QP.

Within the framework proposed by Gifford and Finkelstein [28], this connection of rea-
soning structures is called chaining (see Fig. 3), whereby further characteristics of a single
photon can be accessed using the already known characteristics of them. The reasoning is
from the type Psm-P, because we use a physical model to comprehend the single-photon
interference (see Fig. 2).

In the last lesson, we use the reduced Dirac notation to describe single-photon interfer-
ence in a formalistic way (see Table 2). For a comprehensive presentation of the argumen-
tation, we refer the reader to the work of Hennig et al. [2]. According to the framework
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Table 2 Heuristic reasoning for the formalistic description of single-photon states in a Michelson
interferometer. This part of the teaching-learning sequence enables the “coordination” between the
mathematical reasoning and its physical interpretation concerning single-photon interference in a
Michelson interferometer

Description Description of single-photon states and Calculations

A single photon is emitted from the
single-photon source.

|ψ〉 = ϕ0◦ |S〉

The quantum state of a single photon was
changed by the beam splitter.

|ψ〉 = ϕ90◦ |R〉 + ϕ0◦ |T〉

The effect of the mirrors on the quantum
state.

|ψ〉 = ϕ90◦ |R〉 + ϕx◦ |T〉

The state of a single photon was changed by
the beam splitter.

|ψ〉 = ϕ90◦ |D〉 + ϕ180◦ |S〉 + ϕ90+x◦ |D〉 + ϕx◦ |S〉

Output state |ψ〉 = (ϕ90◦ + ϕ90+x◦ )|D〉 + (ϕ180◦ + ϕx◦ )|S〉
Application of p(A)

p(B) =
|α|2
|β|2

p(S)
p(D) =

|ϕ180◦+ϕx◦ |2
|ϕ90◦+ϕ90+x◦ |2

Pythagorean theorem & trig. identities |ϕ180◦ + ϕx◦ |2 = 4 sin2
( x
2

)
and

|ϕ90◦ + ϕ90+x◦ |2 = 4cos2
( x
2

)

Condition p(A) + p(B) = 1 p(D) = cos2
( x
2

)
and p(S) = sin2

( x
2

)

Using x = 360◦·2�L
λ p(D) = cos2

(
360◦·�L

λ

)
and p(S) = sin2

(
360◦·�L

λ

)

Table 3 Comparison of the learning pathways for the intervention group (left) and the control group
(right)

Lesson Intervention group Control group Teaching Materials

1 Repetition on em-waves Repetition on em-waves GeoGebra Animations,
Worksheets

2 Anticorrelation of photons at
the beamsplitter

Anticorrelation of photons at
the beamsplitter

Interactive screen experiment,
Worksheet 1

3 Introduction of a reduced Dirac
notation and reflection on
preparation and measurement
of quantum states

Qualitative reflection on
preparation and measurement
of quantum states

Worksheet 2

4 Single-photon interference in a
Michelson interferometer

Single-photon interference in a
Michelson interferometer

Interactive screen experiment,
Worksheet 3

5 Reflection on the formalistic
description of single-photon
interference using the reduced
Dirac notation

Qualitative reflection on
single-photon interference

Worksheet 4

by Gifford and Finkelstein [28], in this lesson the so-called chaning is used to connect two
reasoning structures 3. Furthermore, a Msm-P resoning structure is conducted in the les-
son, whereby a mathematical formalism is used to comprehend further characteristics of
a single photon (see Fig. 2).

In the lessons 3 and 5, in which the IC faces with the reduced Dirac notation, the CG
engages in a qualitative reflection on the topics of quantum measurement and preparation
of quantum states. A comparison of the two learning pathways for the IC and the CG is
presented in Table 3.

4.3 Assessment of functional fidelity and fidelity of gestalt in students’ mental
models

To assess the degree of Functional Fidelity in learners’ thinking about photons a scale (re-
ferred to as FF scale in the following) comprising seven 5-point rating-scale items was
used and students had to rate the level of agreement with the statements provided (where
1 means “I do not agree at all” and 5 means “I completely agree”). The items were partly
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adopted from previous research [20], and three items were newly developed for this study.
The list of all seven items can be found in Table 4). For the FF scale, Chronbach’s alpha
as an estimator for the scale’s internal consistency was found to be α = 0.69, which can be
considered acceptable due to the shortness of the scale.

4.4 Data analysis
In order to investigate RQ 1, we determined the mean value and standard deviation (SD)
for the Functional Fidelity scale. To investigate the differences in the degree of Functional
Fidelity in the thinking of learners in the groups, a Mann-Whitney-U test was employed
due to the non-normal distribution of the data. The Mann-Whitney-U test statistics are
presented as follows: U(nIC, nCG) = (U , z, p; r) where U represents the test statistic, n de-
notes the number of observations in each group, and p is the associated p-value. Further-
more z is the standardized test statistic. In addition, for statistically significant results we
report the rank-biserial correlation

r = 1 –
2U

nIG · nCG

as a measure of effect size. For further details, we refer readers to refernce [65]. Statistical
significance is defined as a p-value less than 0.05, while a p-value below 0.01 indicates a
highly significant result. Following Kerby [66], we classify effect sizes with 0.2 < r < 0.4
as medium and those with r ≥ 0.40 as large. Furthermore, a Wilcoxon test was employed
to examine whether there is a statistically significant increase in the degree of Functional
Fidelity of the students’ thinking. The Willcoxon test statistics are presented as (z, p).

4.5 Results of study 1
This section presents the individual results of the Functional Fidelity Scale for both the
experimental and control group. In particular, the median, mean, and standard deviation
(SD) of student ratings for each item at both the pre-test and post-test points in time were
presented in tabular form (see Table 4). Furthermore the median, mean, and standard de-
viation (SD) of the overall student ratings on the Functional Fidelity scale were presented
for both the pre-test and post-test point in time (see Table 5).

The data indicated that, prior to the intervention, no statistically significant differences
in the degree of Functional Fidelity in learners’ thinking could be identified (U(67) =
1948, z = –1.19, p = 0.24). A Wilcoxon test revealed a statistically significant difference
in the degree of functional thinking prior and post instruction in both the IC (z = 4.67, p <
0.01) and CG (z = 7.06, p < 0.01). Moreover, the degree of Functional Fidelity in the
thinking of students from both groups differs significantly (U(67) = 1542, z = –3.02, p <
0.01; r = 0.30), and students in the CG demonstrated a stronger tendency towards func-
tional thinking than those in the IC.

4.6 Discussion of RQ 1
On the one hand, we positively evaluate that the learning path presented in the study by
Hennig et al. [2] significantly improves the functional thinking about photons. Our results
highlight that teaching QP in high schools via the teaching-learning path suggested by
Hennig et al. [2] is indeed worthwhile.
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Table 4 Overview of the descriptive statistics regarding the rating-scale items from the functional
fidelty scale. The questions were related to two (thought) experimental situations. In the first one, a
single photon is emitted onto a beam splitter, in the second one, a single photon was considered in a
Michelson interferometer. The students’ answers were coded as follows: 1 = I do not agree at all, 2 = I
rather do not agree, 3 = I am not sure, 4 = I rather agree, 5 = I completely agree

Item Mean SD

Pre Post Pre Post

IC CG IG CG IG CG IG CG

For the next statements, consider an experiment in which a single photon is emitted onto a beam splitter and
two detectors are placed behind it according to the transmission and the reflection.
1. The two detectors never sign simultaneously
because a single photon cannot be divided.

3.24 2.81 4.52 4.95 1.28 1.06 0.98 0.21

2. It is not possible to predict with certainty which
detector will find them.

3.16 2.73 4.03 4.42 1.22 1.02 1.24 1.03

3. The accurate position of a single photon at any
given time between the beam splitter and the
detectors cannot be determined in principle.

2.81 2.81 3.69 4.38 1.01 0.89 1.22 0.93

4. It is feasible for a single photon to have no
classically well-defined position.

3.13 3.14 3.79 4.55 0.94 1.06 1.09 0.86

For the next statements, consider a single photon in a Michelson interferometer. A single-photon source is used,
so only a single photon is emitted in a given time.
5. The beam splitter does not make a single photon
split; however, a single photon has no certain
trajectory between the beam splitter and detector.

2.84 2.71 3.82 4.28 1.00 1.01 1.15 0.90

6. A single photon cannot be split by the beam
splitter, but an interference pattern can be seen when
the position of the mirrorMT is constantly changing.

3.19 3.47 4.01 3.86 1.12 0.89 1.09 0.97

7. Using the interference pattern, we could not
calculate the certain trajectory of a single photon.

2.84 2.94 3.61 3.92 1.06 0.87 1.33 1.02

Table 5 Descriptive statistics on pre-test and post-test scores for the Functional Fidelity scale for
each group

Group Median Mean SD Mann-Whitney-U p r

Pre- CG 2.93 2.95 0.43 U(67) = 1948 0.24
test IC 3.14 3.03 0.54 z = –1.19

Post- CG 4.43 4.34 0.46 U(67) = 1542 < 0.01 0.30
test IG 4.00 3.96 0.72 z = –3.02

Before the teaching experiment, the functionality of the mental models in both groups
was at a similar level (see Fig. 8) no statistically significant difference was measured, and
even most individual questions showed similar values (see Table 4). However, the post-test
results yielded that the Intervention Group (IG), which was supplemented with mathemat-
ical formalism of QP, exhibited a highly statistically significant underperformance com-
pared to the Control Group (CG). There was only one question (item number 6, i.e., in
the context of a single-photon Michelson interferometer “A single photon cannot be split
by the beam splitter, but an interference pattern can be seen when the position of the mir-
ror MT is constantly changing.”), in which the IG outperformed the CG (MIG = 4.01 and
MCG = 3.86), despite the fact that the CG had better pre-test score. The quantum interfer-
ence of a single photon is visually unobservable, and therefore, qualitative explanations are
necessarily imprecise; only the mathematical formalism can provide an accurate descrip-
tion of the phenomenon. The fact that the IG outperformed the CG in this purely quantum
phenomenon indicates that the mathematical description was particularly useful in this
context. Our results indicate that the learning path supplemented with a mathematical
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Figure 8 Change in average Functional Fidelity score FF within intervention group (IG) and the control group
(CG). The error bars indicate the 95% confidence interval

formalism is less effective than the purely qualitative discussion in the development of
the students’ functional mental models, and that the formalism provided help only in the
question related to quantum interference. It is important to note that both groups spent
the same amount of time learning the presented material. Therefore, the mathematical
formalism appeared as an additional element during the lessons for the IG.

Our findings, therefore, contextualize the research results of Pospiech et al. [32], which
reported on the potential positive impact of incorporating Dirac notation into the mathe-
matical formalism of QP on the learning process of high school students. It appears, how-
ever, that the pedagogical application of mathematical formalism in QP is not always the
best choice. This is consistent with the findings of Justice et al. [48], who found that while
the mathematical formalism facilitates the learning process for upper-level undergradu-
ate students, mixed results were observed among graduate students. They attempted to
explain their results by attributing them to the cognitive overload experienced by students
due to the formal descriptions.

Our answer to the first research question (RQ1) is therefore: Under the learning condi-
tions outlined above, although the mathematics formalism in QP using the reduced Dirac
notation helps students’ functional understanding of photons, students who did not gain
insight into the mathematical formalism still performed better in functional understand-
ing. Since quantum formalism is fundamentally expected to play a clarifying role, we feel
it is important to supplement our research with an examination of the cognitive load im-
posed by the mathematical formalism on the students. Our hypothesis is that the math-
ematical formalism may have presented an additional burden during the lessons, thereby
hindering the students’ proper learning process. Thus, in the next chapter, we present a
follow-up study focusing on cognitive load.

5 Study 2: a follow-up
The results of the preceding study substantiated the hypothesis that the introduction of a
mathematical formalism enhances the degree of Functional Fidelity of learners’ thinking.
It has been observed that CG students tend more to functional thinking than the students
of the IC, which gives rise to the question of what the potential causes of this result may be.
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Table 6 In the table is a summary of the study samples provided

Total Sample Intervention Group Control Group

Students 136 71 65
Teachers 2 1 1
Classes 7 4 3

Figure 9 Overview of the study design

As learning processes are associated with a cognitive load (see Sect. 2.2), an investigation
of the cognitive load may provide a rationale for the findings of Study 1.

5.1 Study design and sample
To examine the cognitive load, a clusterrandomized field study was conducted with a sam-
ple of ntot = 136 students from seven german classes. Four classes, comprising a total of
nIC = 71 students, received the same instruction as the IC from study 1 (see Sect. 4.2). The
three remaining classes, with a total of nCG = 65 students, underwent the same learning
sequence as the CG from study 1. The Table 6 provide an overview of the sample of the
study.

In order to circumvent the measurement of the CL during the processing of the FF scale,
we chose not to repeat a measurement of the degree of the Functional Fidelity in learners’
thinking. Therefore the study was conducted as shown in Fig. 9.

5.2 Assessment of cognitive load
The CL is constituted of two distinct types, namely the intrinsic cognitive load (IL) and
extraneous cognitive load (EL) [53]. To assess both IL and EL, we employed scales that have
been previously developed and utilized in research by Leppink et al. [55]. The 11-level
rating scale items were translated into german and underwent a contextual adaptation
where necessary. Chronbach’s alpha as a measure of internal consistency is α = 0.83 for the
IL scale and α = 0.82 for the EL scale, and therefore the individual scales are considered
as reliable.

5.3 Data analysis
In order to investigate RQ 2, we determined the mean value and standard deviation (SD)
for each scale. As in the previous study, we used Mann-Whitney-U tests to examine dif-
ferences in the IL and the EL between the two comparison groups for statistical signifi-
cance. Analogeous to Sect. 4.5 the Mann-Whitney-U test statistics was presented as fol-
lows: U(nIG, nCG) = (U , z, p; r).
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Table 7 Overview of the descriptive statistics regarding the rating-scale items from the IL and the EL
scale [55]. The students’ answers were coded as follows: 0 = not at all the case,. . . , 10 = completely
the case

Type Item MedianMean SD

IG CG IG CG IG CG

IL The topics covered in the activity were very complex. 8 6 7.25 6.24 2.25 1.66
IL The activity covered formulas that I perceived as very complex. 5 8 7.69 5.46 2.02 2.25
IL The activity covered concepts and definitions that I perceived as very complex. 8 6 7.32 5.86 2.01 1.75
EL The instructions and explanations during the activity were very unclear. 6 5 6.09 5.45 2.40 2.53
EL The instructions and explanations were, in terms of learning, very ineffective. 4 5 4.46 4.80 2.30 2.21
EL The instructions and/or explanations were full of unclear language. 4 4 4.71 4.07 2.68 2.30

Table 8 Descriptive statistics on intrinsic and extraneous scores for IC and CG

Group Median Mean SD Mann-Whitney-U p r

Intrinsic load CG 5.67 5.85 1.57 U(71) = 1164 < 0.01 0.50
IC 7.67 7.42 1.86 z = –4.98

Extraneous load CG 4.67 4.77 2.02 U(71) = 2121 0.417
IG 4.67 5.09 2.09 z = –0.81

Figure 10 Boxplots for the intrinsic (left) and extraneous (right) cognitive loads within the intervention group
(IG) and the control group (CG). The three asterisks highlight high statistical significance (p < 0.01) with regards
to the Mann-Whitney-U test comparing both cohorts. The associated effect sizes r are displayed as well

5.4 Results of study 2
In this section we present the individual results of the IL and EL scales for the IC and
the CG (see Table 7 and Fig. 10) as well as the results of the Mann-Whitney-U tests (see
Table 8). The Table 7 summarizes the median, mean, and standard deviation (SD) of the
two scales.

The data indicate that the IL resulting from the learning object is significantly higher
in the IG than in the CG (U(71) = 1164, z = –4.98, p < 0.01; r = 0.50). This suggests that
the IG experiencing a greater degree of IL relative to the CG, which can be attributed to
the learning content. We will discuss this in more detail in Sect. 5.5. In contrast, the EL,
which is influenced by external factors, does not exhibit a statistically significant difference
between the two comparison groups (U(71) = 2121, z = –0, 81, p = 0.42).
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5.5 Discussion of RQ 2
Through statistical analysis we can give an answer to our second reseach question (RQ2).
We confirmed our initial hypothesis that the mathematical formalism using the reduced
Dirac notation statistically significantly demands more working memory (intrinsic load,
IL), imposing a cognitive burden on students. This discrepancy was solely attributed to
the mathematical formalism, as no statistically significant differences were found in the
levels of extraneous cognitive load (EL) between the two groups [53]. Our research results
are worth comparing with the relationship between mathematics and physics discussed in
Sect. 2.2). It is possible that the higher IL in the intervention group (IG) was caused by the
fact that some of the students were stuck in one of the learning processes. For example, an
earlier manuscript [21] investigated the learning difficulties of students in the teaching-
learning sequence proposed by Hennig et al. [2] and found that there were difficulties in
some part of formal description, such as the physical interpretation of the mathematical
object quantum phase or the formal description of quantum interference. Consequently,
we infer four conclusions:

1. Based on Sect. 4, it would be helpful to look at the material from Hennig et al. [2] to
see where the students got tripped up. For example, it is possible that some of the
students were not able to grasp certain mathematical parts in sufficient depth.

2. Although mathematical formalism in QP facilitates the development of a functional
QP mental model, attention must be given to students’ levels of abstraction and
mathematical background. The introduction of such formalism may result in a high
intristic cognitive load, which could be less beneficial to the learning process.

3. For certain student groups, it may be beneficial to allocate more time for the
introduction of mathematical formalism in QM, thereby reducing the intristic
cognitive load.

4. It is also worth considering presenting the formalism in a simpler way to the students.
We therefore concur with the suggestion of Justice et al. [48] that the effectiveness of in-
troducing quantum formalism in the learning process is highly dependent on the charac-
teristics of the students group and the used material itself.

6 Limitations
We believe it is important to highlight the limitations of our research. The presented study
is a clusterrandomized design, which inherently lacks randomization at the individual
level. This limitation may lead to systematic differences between cohorts, particularly con-
cerning variables not accounted for in this research. To address this, future experimental
studies should include additional control variables, especially affective ones, to enhance
the robustness of the findings.

The instrument used to measure Functional Fidelity was constrained by the time limita-
tions of a real classroom setting, resulting in a brief scale. However, the Cronbach’s Alpha
value was relatively low (see Sect. 4.3), indicating that the questionnaire items could be
operationalized more effectively. Improvements in the scale’s design and the inclusion of
more comprehensive items are recommended for future studies.

Regarding the study design, the division into two phases was a consequence of the initial
phase’s results (Study 1 in Sect. 4 and Study 2 in Sect. 5). Nevertheless, we were unable
to collect linked data on Functional Fidelity scores and individual cognitive load for each
student. Future research should replicate this study, utilizing ANCOVA with cognitive
load variables as covariates in the data analysis to better account for these factors.
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Lastly, this study focused solely on the impact of introducing a reduced Dirac nota-
tion on secondary school students’ functional thinking about photons. While the results
showed that these students were outperformed by those who only received qualitative in-
struction (Sect. 4.6) — likely due to the increased cognitive load associated with the math-
ematical content (Sect. 5.5) — it is important to consider that the formalistic approach
to quantum phenomena may benefit other aspects of learning, such as students’ percep-
tions of the nature of (quantum) science. Future research should explore these potential
benefits. It is noteworthy that the participating students were 15-17 years old and did not
attend classes specializing in physics; moreover, they were not particularly strong in math-
ematics. Additionally, both groups spent the same amount of time learning the presented
material, so the quantum formalism appeared as an extension during the lessons (see Ta-
ble 3). It is possible that with a group more experienced in physics and mathematics, we
would have obtained the opposite result, that is, it is conceivable that the quantum formal-
ism could much better facilitate the development of students’ functional mental models.
Furthermore, it is also possible that an extra learning time is required when the formalism
is introduced or maybe there is a better way to introduce formalism.

Our study highlights a very important principle in curriculum design that teachers
should take into account. In the teaching and learning of QP, students should have a prior
knowledge of the mathematical foundations, and in addition, adequate time should be
devoted to experimental and conceptual foundations in the classroom. Only then should
mathematical description be introduced to prepared groups, allowing them sufficient time
to digest it. Particular care should be taken to keep mathematical description as simple as
possible, and to find a balance for our group of learners where their thinking benefits as
much as possible from formal description, while intrinsic cognitive load remains moder-
ate. In all of this, it is worth listening to and heeding the advice on the relationship between
mathematics and physics given in the [28] study (Sect. 2.2).

7 Conclusion
This paper presents the findings of a clusterrandomized field study, which demonstrates
that the implementation of a reduced Dirac notation can lead to a statistically significant
enhancement of the degree of Functional Fidelity in learners’ thinking about photons. This
study, hence, provides important first insights into the potential efficacy of introducing a
reduced Dirac notation to improve the degree of Functional Fidelity in learners’ thinking
about photons. Nevertheless, several research questions remain unresolved, warranting
further investigation. Foremost, we suggest to conduct a replication of the study presented
in this article ensuring to collect conceptual data and cogntive load data linked to each
individual learner prior and post instruction such that the impact of cognitive load on
student learning can better be accounted for. Also, collecting data on further covariates,
such as the affective variables beyond cognitive load, seems valuable and would yield a
more holistic understanding of the learning process facilitated by introducing a quantum
formalism tailored to the secondary school level.

Furthermore, beyond quantitative data, further research is required to gain insight into
(a) how and (b) the extent to which learners utilize the reduced Dirac notation when solv-
ing quantum physics problems. To this end, an exploratory study administering open-
ended questions to learners post instruction seems a sensible approach.

Additionally, incorporating educators’ perspectives could yield valuable insights into the
feasibility and potential adoption of reduced Dirac notation in instructional practices. This
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would also provide an understanding of the methods and extent to which educators might
integrate this notation into their teaching.
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