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Abstract
This study proposes a measurement property of graph states and applies it to design
a mediated multiparty quantum key distribution (M-MQKD) protocol for a
repeater-based quantum network in a restricted quantum environment. The protocol
enables remote classical users, who cannot directly transmit qubits, to securely
distribute a secret key with the assistance of potentially dishonest quantum repeaters.
Classical users only require two quantum capabilities, while quantum repeaters
handle entanglement transmission through single-photon measurements. The
one-way transmission approach eliminates the need for additional defenses against
quantum Trojan horse attacks, reducing maintenance costs compared to round-trip
or circular transmission methods. As a result, the M-MQKD protocol is lightweight and
easy to implement. The study also evaluates the security of the protocol and
demonstrates its practicality through quantum network simulations.

Keywords: Multiparty semi-quantum key distribution; Mediated multiparty
quantum key distribution; Quantum network; Quantum repeater; Quantum Trojan
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1 Introduction
Protecting transmitted messages on the internet against attacks is an important issue in
the information era. Encryption/decryption is a solution for achieving this goal. However,
the message sender and receiver must share a secret key to encrypt and decrypt the mes-
sages in advance. Sharing a secret key between a sender and receiver is critical in cryp-
tography. In current classical cryptography, the key distribution protocol can be imple-
mented using mathematical problems (e.g., prime factorization and discrete logarithms).
Although the existing classical key distribution protocols are widely applied in various
application scenarios, these protocols may be compromised when quantum computation
matures. Therefore, quantum cryptography, which uses the properties of quantum me-
chanics to protect information against attacks, has been proposed as a cybersecurity so-
lution in the era of quantum computers.

In 1984, Bennet and Brassard [1] proposed the first quantum cryptography protocol,
the quantum key distribution (QKD) protocol, using the no-cloning theorem of non-
orthogonal single photons. Since then, numerous studies have been conducted on quan-
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tum cryptography. The unconditional security of BB84 protocol was proven in [2–4], and
various QKD protocols [5–15] with different properties and quantum states have been
designed. In addition to key distribution, quantum cryptography has been adopted for
other applications. For example, the quantum secret sharing protocol (QSS) [16–19] en-
ables a dealer to distribute confidential information among agents. Quantum secure direct
communication [20–22] assists the sender and receiver in transmitting secret messages di-
rectly without preparing a private key, and quantum private computation [23–26] helps
many participants to achieve a specific computation on their secret messages without dis-
closing any information about any participant.

Although the abovementioned quantum cryptography protocols can implement their
goals securely, all participants in the protocol must be equipped with complete quantum
capabilities. In terms of the current quantum technology, the implementation of some
quantum devices or capabilities (e.g., storing qubits for a long time and transmitting qubits
over a long distance without disturbance) remains expensive and difficult to maintain.
Therefore, whether participants can use limited quantum capabilities to securely and effi-
ciently achieve a quantum cryptography protocol is a critical research issue for populariz-
ing quantum cryptography in Internet applications. To address this issue, Boyer et al. [27]
proposed a practical quantum environment, specifically, the semi-quantum environment,
having two types of users: quantum and classical users. According to the definition of the
semi-quantum environment, quantum users have complete quantum capabilities, whereas
classical users have limited quantum capabilities. Boyer et al. [27, 28] proposed the semi-
quantum key distribution (SQKD) protocol for the semi-quantum environment. Subse-
quently, numerous research teams have adopted various quantum states, properties, or
strategies to design SQKD protocols [29–33] and other semi-quantum cryptography pro-
tocols for various applications (e.g., semi-quantum secret sharing [34–36], semi-quantum
private computation [37–39], semi-quantum directly secure communication [40–42]). Re-
garding the quantum capabilities classical users possess, the semi-quantum environments
can be classified into two types, including: (1) measure-resend environment and (2) ran-
domization environment. In the measure-resend environment, classical users can only
generate Z-basis {|0〉 , | 1〉} qubits, perform Z-basis {|0〉 , | 1〉} measurement, and reflect
received particles without interference. In the randomization environment, classical users
are allowed to perform Z-basis {|0〉 , | 1〉} measurement on particles, reflect the received
particles without interference, and also permute qubits using delay fibers. Although the
abovementioned SQKD protocols enable a quantum user to share secret keys with an-
other classical user, how to distribute secret keys among classical users is another inter-
esting issue. To address this issue, Krawec [43] proposed a mediated framework that allows
classical users to execute the protocols with the assistance of a quantum third party (TP).
Some mediated semi-quantum key distribution (M-SQKD) protocols [44–46] have been
designed based on the mediated framework.

In some applications (e.g., broadcasting), a user must share a broadcasting key with
the partners. To achieve this task, Zhang et al. [47] proposed the first multiparty semi-
quantum key distribution (MSQKD) protocol that allows a quantum user to distribute a
secret key with n classical users in a series network environment (shown in Fig. 1). Zhou
et al. [48] used the property of the four-particle cluster state to propose an MSQKD pro-
tocol to improve the efficiency of the protocol proposed by Zhang et al. Tian et al. [49]
considered the qubit efficiency and adopted the hyperentangled Bell state (including spa-
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Figure 1 Series quantum network diagram

tial and polarization degrees of freedom) to design an MSQKD protocol. Additionally, Ye
et al. [50] proposed a mediated multiparty semi-quantum key distribution (M-MSQKD)
protocol that utilizes Bell states and circular transmission, enabling classical users to dis-
tribute secret keys among themselves. They demonstrated that the noise tolerance of the
proposed protocol approaches that of the BB84 protocol even in the worst-case scenario,
where TP is untrusted.

However, the above-mentioned MSQKD protocols present two challenges as follows:
(1) Cost overhead: classical users must be equipped with additional quantum

devices/capabilities to defend against quantum Trojan horse attacks owing to the
circular qubit transmission.

(2) Restricted applicability: the protocols can only operate in a specific network
environment, that is, the series network. Thus, these protocols cannot be used in
the general network environment where the distance between the neighboring
classical users may exceed the effective transmission range.

To address the first issue, Tsai et al. [51–53] proposed a new semi-quantum environ-
ment known as a restricted quantum environment, which also includes two categories
of participants: classical and quantum. Classical participants have only two quantum ca-
pabilities, (1) measuring qubits in the Z-basis {|0〉 , | 1〉}, and (2) performing single-qubit
operations. In contrast, quantum users are equipped with full quantum capabilities. Tsai
and Yang [51] proposed a mediate quantum key distribution protocol in a restricted quan-
tum environment. Because of the use of one-way qubit transmission, the protocol is free
from quantum Trojan horse attacks. Therefore, classical users are not equipped with any
defense devices against quantum Trojan horse attacks. However, this protocol allows only
two classical users to distribute the secret keys and does not consider the multiparty key
distribution situation and the general network application environment.

For the unresolved problem mentioned above, once classical users securely share entan-
gled states, they can execute quantum communication protocols using these entangled
states. Therefore, distributing multi-particle entanglement states among classical users
within a quantum network is a crucial focus of this study. To address this issue, this pa-
per introduces a measurement characteristic of quantum graph states [54] to distribute
GHZ-like states among classical users within a general repeater-based quantum network.
These entangled states are then used to design the first mediated multiparty quantum key
distribution (M-MQKD) protocol in a restricted quantum environment. In the M-MQKD
protocol, a classical user, Alice, can distribute secret keys among n remote classical users
(Alice and these users cannot transmit the qubits to each other directly) in a general net-
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Figure 2 A general network environment with quantum repeaters

work environment (shown in Fig. 2) with the help of dishonest quantum repeaters in the
quantum network. Unlike common repeater-based quantum networks that utilize entan-
glement swapping [55–57] —which requires performing a Bell measurement or a combi-
nation of CNOT operation, Hadamard operation, and two single-photon measurements
to transmit entanglement—the repeaters in our approach transfer the entanglement use
only a single-photon measurement. In addition, the proposed M-MQKD protocol is free
from quantum Trojan horse attacks and reduces the transmission cost of qubits owing to
one-way qubit transmission. Therefore, the proposed M-MQKD method is lightweight
and easy to implement. Finally, a security evaluation is conducted to demonstrate that the
proposed M-MQKD protocol is free from collective and quantum Trojan horse attacks,
and then the experiments conducted with the quantum network simulator were carried
out to illustrate the viability of the proposed M-MQKD protocol.

The remainder of this paper is organized as follows: Sect. 2 reviews the current research
on quantum graph state. Sect. 3 addresses the character of the graph state with a 1D+star
type, which is used to propose our protocol. The processes of the proposed M-MQKD
protocol are described in Sect. 4. Security analyses and simulation results of the proposed
protocol are described in Sect. 5. Finally, Sect. 6 outlines the concluding remarks and rec-
ommendations for further investigation.

2 Properties of graph state
This section first describes the general formula of the graph state. Then, the properties of
the graph state, including the local complementation and measurement properties in the
Z-, Y-, and X-bases, are described.

2.1 Graph state
A common quantum graph state can be expressed as G = (V , E) (Eq. (1)), in which V
(vertices) and E (edges) denote a set of qubits and entanglement relationships, respectively.

|G〉 =
∏

(a,b)∈E

CZ{a,b} |+〉⊗n , (1)
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Figure 3 Examples of 1D+star graph states

where |+〉 = 1√
2 (|0〉+ | 1〉) and CZ{a,b} means executing a CZ operation (Eq. (2)) on the

qubit pairs (a, b).

CZ{a,b} =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 –1

⎤

⎥⎥⎥⎦ =| 00〉〈00 | + | 01〉〈01 | + | 10〉〈10 | – | 11〉〈11 | (2)

It merits attention that the 2-qubit 1D graph state, |D〉12 = 1√
2 (|0+〉 + |1–〉)12, and the

star graph state with n qubits |S〉12...n = 1√
2 (|0 + · · ·+〉 + |1 – · · ·–〉)12...n (Fig. 3) can be trans-

formed into Bell and GHZ states by using Local Operation and Classical Communication
(LOCC). In other words, if the Hadamard operation H (Eq. (3)) is performed on the 2nd
qubit (2nd to nth qubits) of the 1D (star) graph state, the quantum system undergoes a
transformation into the Bell (GHZ) state.

H =
1√
2

[
1 1
1 –1

]
=

1√
2

(| 0〉+ | 1〉) 〈0 | +
1√
2

(|0〉– | 1〉) 〈1 | (3)

The other common properties of the graph states are introduced below.

2.2 Local complementation
A series of specific unitary operations can be implemented to achieve local complementa-
tion of a graph state. To perform local complementation (denoted as LCi (G)) on a graph
state G with the i-th qubit as the center vertex, we apply rotation operations Rx

(
π
2
)

to
the i-th qubit and Rz

(–π
2
)

to the qubits neighboring with the i-th qubit. These rotation
operations, defined by Eqs. (4) and (5) respectively, ensure the desired transformation.

Rx

(π

2

)
= e–i π

4 X =

[
cos π

4 –i sin π
4

–i sin π
4 cos π

4

]
(4)

Rz

(–π

2

)
= ei π

4 Z =

[
ei π

4 0
0 e–i π

4

]
(5)

2.3 Measurement in Z-basis
The measurement outcome of the i-th qubit of a graph state in the Z-basis {|0〉 , | 1〉} yields
the following expression for the quantum system:

Mi
z |G〉 =

1√
2
(|0〉i ⊗ Ui

0 |G – i〉 + |1〉i ⊗ Ui
1 |G – i〉) , (6)
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Figure 4 An example of measurement property in Z-basis

where Ui
0 = INi , Ui

1 = σ
Ni
z , and |G – i〉 denote the quantum system without the i-th qubit

and its associated entanglement relationships. INi and σ
Ni
z mean performing the identity

operation I and σz (Eq. (7)) on the neighboring qubits of the i-th qubit.

σz =

[
1 0
0 –1

]
=| 0〉〈0 | – |1〉 〈1| (7)

From examining Eq. (6), it becomes clear that to measure the i-th qubit of a graph state
in the Z-basis, one must eliminate the i-th qubit along with its entangled connections, and
then carry out the necessary operation on its adjacent qubits, dependent on the outcome
of the measurement. The measurement property of the Z-basis is also illustrated by a
simple graph, as shown in Fig. 4. Specifically, if the 2nd qubit is measured in the Z-basis,
its entanglements will be eliminated.

2.4 Measurement in Y-basis
If performing Y-basis

{∣∣+y
〉

= 1√
2 (|0〉 + i | 1〉) ,

∣∣–y
〉

= 1√
2 (|0〉 – i | 1〉)

}
measurement on the

i-th qubit of a graph state, the quantum system can be represented as Eq. (8).

Mi
y |G〉 =

1√
2

(∣∣+y
〉
i ⊗ Ui

+y |LCi (G) – i〉 +
∣∣–y
〉
i ⊗ Ui

–y |LCi (G) – i〉
)

, (8)

where Ui
+y = Rz

(
π
2
)Ni , Ui

–y = Rz
(–π

2
)Ni , and LCi (G) denote the execution of the local com-

plementation on the i-th qubit, and |LCi (G) – i〉 denotes LCi (G) without the i-th qubit
and its associated entanglement relationships. Rz

(±π
2
)Ni means performing the rotation

operation Rz
(±π

2
)

(Eq. (9)) on the qubits neighboring with the i-th qubit.

Rz

(±π

2

)
= e∓i π

4 Z =

[
e∓i π

4 0
0 e±i π

4

]
(9)

Based on Eq. (8), it is evident that measuring the i-th qubit in the Y-basis entails perform-
ing LCi (G). This involves canceling the i-th qubit along with its associated entanglement.
Subsequently, a rotation operation Rz is performed on the neighboring qubits of the i-th
qubit, with the degree of rotation determined by the measurement outcome The measure-
ment property of the Y-basis is further explained by a simple graph, as depicted in Fig. 5.
Specifically, measuring the 2nd qubit in the Y-basis is equivalent to applying LC2 (G), fol-
lowed by measuring the 2nd qubit in the Z-basis.
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Figure 5 An example of measurement property in Y-basis

2.5 Measurement in X-basis
When performing X-basis

{
|+〉 = 1√

2 (|0〉 + |1〉) , |–〉 = 1√
2 (|0〉 – |1〉)

}
measurement on the

i-th qubit of a graph state, the operations required are more intricate compared to mea-
surements in Z- or Y-bases. To represent the resulting quantum system, we must designate
an arbitrary neighboring qubit of the i-th qubit (referred to as the j-th qubit) as the auxil-
iary qubit, as follows:

Mi
x |G〉

=
1√
2
(|+〉i ⊗ Ui

+
∣∣LCj

(
LCi
(
LCj (G)

)
– i
)〉

+ |–〉i ⊗ Ui
–
∣∣LCj

(
LCi
(
LCj (G)

)
– i
)〉)

,
(10)

where Ui
+ = Ry

(–π
2
)j

σ
Ni–

(
Nj∪j

)

z , Ui
– = Ry

(
π
2
)j

σ
Nj–(Ni∪i)
z , and Ni –

(
Nj ∪ j

)
(Nj – (Ni ∪ i)) de-

notes the difference set of Ni (Nj) and Nj ∪ j (Ni ∪ i). Here, Ry
(±π

2
)j means performing

the rotation operation Ry
(±π

2
)

(Eq. (11)) on the assistant qubit, that is, the j-th qubit;

σ
Ni–

(
Nj∪j

)

z and σ
Nj–(Ni∪i)
z indicate that σz is performed on the qubit in the sets Ni –

(
Nj ∪ j

)

and Nj – (Ni ∪ i), respectively.

Ry

(±π

2

)
= e∓i π

4 Y =

[
± cos π

4 ∓ sin π
4

±sin π
4 ± cos π

4

]
(11)

By examining Eq. (10), we can conclude that performing X-basis measurement on the
i-th qubit and designating the j-th qubit as the auxiliary qubit is tantamount to conducting
local complementation on the j-th qubit, subsequently performing Y-basis measurement
on the i-th qubit, and ultimately performing local complementation on the j-th qubit once
more. The measurement property of the X-basis is further represented by a simple graph,
as depicted in Fig. 6. Specifically, measuring the 2nd qubit in X-basis and selecting the 1st
qubit as the assistant qubit is equivalent to applying LC1 (G), then measuring 2nd qubit in
Y-basis, and applying LC1 (G) again.

3 Proposed measurement property of 1D+star graph state
This section expresses a 1D + Star graph state and proposes the measurement characteris-
tic of this graph state. The 1D+Star graph state is composed of a 1D graph and a star graph
state. Fig. 7 shows a 1D+star graph state with n qubits, in which the 1st to (k – 1)-th qubits
belong to the 1D graph state, and the k-th to n-th qubits belong to the star graph state.
In this study, the graph state’s properties were used to extend an innovative character to
a 1D+star graph state in the X-basis measurement. If we perform X-basis {|+〉 , | –〉} mea-
surement on the 2nd to the k-th qubits and always take the 1st qubit as the assistant qubit,
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Figure 6 An example of measurement property in X-basis

Figure 7 Schematic diagram of a 1D+star graph state

the remaining quantum system will be a graph state with a star type after performing the
corresponding operation UR. The remaining quantum state system is expressed as

UR · |S〉1,k+1,..,n =
1√
2

(|0 + + · · ·+〉 + |1 – – · · ·–〉)1,k+1,..,n , (12)

where UR = R1
y (θ)⊗UN1

v , R1
y (θ) means performing Ry (θ) on the 1st qubit, and UN1

v means
performing Uv on the neighbors of the 1st qubit (i.e., the (k +1)-th to n-th qubits). Here, θ =
∑k

i=2

(
(–1)

MRi⊕i–1
j=2MRj π

2

)
, v = ⊕i–1

j=2MRj, U0 = I , and U1 = σZ , where MRj means the result
of the j-th qubit obtaining from measurement, and MRj denotes the complement number
of MRj. In this study, the measurement results | +〉 and | –〉 were encoded as the classical
bits 0 and 1, respectively.

Furthermore, the operation Ry (θ) was analyzed in this study. The global phase is the
only difference between Ry (θ) and Ry (θ + 2xπ), where x ∈ Z. Because the measurement
results are not influenced by the global phase, Ry (θ) is equivalent to Ry (θ + 2xπ). Based
on the above reasoning, Eqs. (13) and (14) were used to express θ and Ry (θ), respectively.

θ =
k∑

i=2

(
(–1)

MRi⊕i–1
j=2MRj π

2

)
= 2xπ + r, (13)

where x ∈ Z and r ∈ {0, 1
2π ,π , 3

2π
}

.

Ry (θ) = (–1)x Ry (r) = (–1)x Rt , (14)
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Figure 8 Schematic of the proposed measurement character of a 1D+star state with 5 qubits

where t = 2r
π

, R0 = I =

[
1 0
0 1

]
, R1 = Hσz = 1√

2

[
1 –1
1 1

]
, R2 = iσy =

[
0 1

–1 0

]
, and R3 =

σzH = 1√
2

[
1 1

–1 1

]
. From Eqs. (12) and (14), it is obvious that the accomplishment of UR

needs only the two Pauli operations (i.e., σz and iσy) and H operation. Notice that iσy can
be expressed using H and σz , i.e., iσy = σzHσzH . Thus, only two operations (H and σz.)
are needed to transform a 1D+star graph state into a star graph state after performing the
X-basis measurement.

We illustrate the proposed property using a 5-qubit 1D+star graph state as an exam-
ple, as depicted in Fig. 8 and Eq. (15). Initially, we perform the X-basis {|+〉 , | –〉} mea-
surement on the 2nd qubit, with the 1st qubit selected as the auxiliary qubit. This mea-
surement operation is equivalent to executing local complementation on the 1st qubit
(LC1), followed by performing the Y-basis {|+i〉 , |–i〉} measurement on the 2nd qubit (M2

z ),
and ultimately conducting local complementation on the 1st qubit again. Because Y-basis
measurement is also equivalent to executing the local complementation on the qubit and
then measuring the qubit in Z-basis {|0〉 , | 1〉}, the foregoing processes can be expressed
as LC1 −→ LC2 −→ M2

z −→ LC1 (also shown in Phase 1 of Fig. 8). After performing the X-
basis {|+〉 , | –〉} measurement on the 2nd qubit, the original qubit state undergoes a reduc-
tion to a 1D+star graph state with 4 qubits. Subsequently, we measure the 3rd qubit in the
X-basis {|+〉 , | –〉}. In other words, the operation sequence LC1 −→ LC3 −→ M3

z −→ LC1

is applied to the 4-qubit quantum state, as illustrated in Phase 2 of Fig. 8. Following
this operation, the state of the remaining quantum system is transformed into a 3-qubit
graph state with a star type after the remaining qubits are executed by the inverse op-
eration URec = R1

y (θ) ⊗ UN1
v . The operations corresponding to the proposed properties

and Eq. (16) are listed in Table 1. Assume the measurement results of the 2nd and 3rd
qubits are | +–〉; the corresponding operations for the 1st, 4th, and 5th qubits are iσy,
σZ , and σZ , respectively. After executing these operations, the resulting quantum system
will be a star graph state | S〉145 = 1√

2 (|0 + +〉 + |1 – –〉)145. Because the star graph state
can be transformed to the GHZ state by LOCC, it can be transferred to a GHZ-like state
(i.e., | �〉 = 1√

2 (|+ + +〉 + |– – –〉) = 1
2 (|000〉 + |011〉 + |101〉 + |110〉)) after performing the
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Table 1 Operations corresponding to the measurement results

Measurement results θ Rt for 1st qubit v Uv for 4th and 5th qubits

| ++〉 0 R0 = I 0 I
| +–〉 180 R2 = iσy 1 σZ

| –+〉 0 R0 = I 1 σZ

| ––〉 180 R2 = iσy 0 I

Figure 9 Environment of the proposed protocol in the grid repeater-based quantum network

H operation on the 1st qubit.

|G〉12345 =
√

2
4

(
|0 + + + +〉 + |0 + – + +〉 + |0 – + – –〉 + |0 – – – –〉
+ |1 + + – –〉 – |1 + – – –〉 + |1 – + + +〉 + |1 – – + +〉

)

12345

(15)

=
1
2

⎛

⎜⎜⎜⎝

|++〉23 ⊗ (|0 + +〉 + |1 – –〉)145

+ |+–〉23 ⊗ (|0 + +〉 – |1 – –〉)145

+ |–+〉23 ⊗ (|0 – –〉 + |1 + +〉)145

+ |––〉23 ⊗ (– |0 – –〉 + |1 + +〉)145

⎞

⎟⎟⎟⎠ (16)

4 Proposed M-MQKD protocol
This section first describes the execution environment and then introduces the M-MQKD
protocol within this quantum environment.

4.1 Description of execution environment
Assume that a classical user Alice wants to distribute a secret key to n remote classical
users Bob1–Bobn. Classical users cannot transmit qubits directly owing to the limitation
on the transmission distance; therefore, they require the help of a repeater-based quan-
tum network to achieve key distribution. Here, a grid repeater-based quantum network is
used for the application environment, as shown in Fig. 9. In the application environment,
the classical users (i.e., Alice, Bob1, Bob2, . . . , Bobn) have limited quantum capabilities,
namely, (1) Z-basis measurement and (2) single-qubit operations. A quantum repeater in
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a quantum network is a quantum user with all quantum capabilities. Moreover, quantum
repeaters perform only single-photon measurements rather than the entanglement swap-
ping to transfer the entanglement in the proposed protocol. In order to align a realistic
scenario, quantum repeaters are assumed to be dishonest, meaning they are malicious en-
tities capable of carrying out various attacks. This includes collusion with other dishonest
repeaters to pilfer information regarding the participants’ secret keys.

However, none of the participants conspires with any malicious repeater. In addition,
this study assumed that each classical user is connected with at least one quantum re-
peater through a one-way quantum channel (from the repeater to the classical user), and
authenticated classical channels exist between the classical users, and the messages trans-
mitted through the authenticated channels can be eavesdropped but cannot be modified.

This study focused on the design of a quantum cryptography protocol and did not con-
sider network routing issues. Therefore, this study assumed that quantum repeaters can
determine an optimal routing path and establish the 1D+star graph state among Alice
and other protocol participants, where the repeaters can use the routing algorithm of the
quantum network [58, 59] to determine the optimal path and then use the intuitive relay
method, graph state distribution [60, 61], or other methods to establish the 1D+star graph
state. A small grid network with nine quantum repeaters and three protocol participants
(Fig. 10) was used as an example to prove the feasibility of establishing 1D+star graph
states. In this example, a classical user Alice wants to distribute a secret key to two clas-
sical users Bob1 and Bob2. Assume that {R3, R6, R9, R8, R7} is chosen as the routing path,
and the quantum repeaters in this routing path assist the three participants in establishing
the 1D+star graph states used to achieve the goal of key distribution.

R3 generates a graph state with 3 qubits | G〉A12. It keeps the first two qubits (labeled as
A and 1) and sends the final qubit (labeled as 2) to R6. R6 generates a qubit in | +〉 (labeled
as 3) and then performs a control-Z operation on Nos. 2 and 3 qubits, where No. 2 is the
control bit and the other is the target bit. Then, R6 sends qubit No. 3 to R9. Finally, R7, R8,
and R9 use similar methods to establish the graph state (shown in Fig. 11 (a)). Subsequently,
R7 and R8 measure qubits 5 and 4 in Y-basis. The entanglement relations of the remaining
qubits are shown in Fig. 11 (b) and (c), respectively. R3, R7, and R9 send qubit Nos. A, B1,
and B2 to Alice, Bob1, and Bob2, respectively (Fig. 11 (d)). Thus, a 1D+star graph state is
established among the repeaters and protocol participants.

Figure 10 Example of establishment of 1D+star graph states
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Figure 11 Establishment of graph state among routing repeaters and protocol participants

4.2 Proposed protocol
Let’s imagine a scenario where a classical user named Alice needs to share a secret key
among several classical users, named Bob1, Bob2 through to Bobn, utilizing quantum re-
peaters within a quantum network. The suggested method unfolds as follows:

Step 1. An optimal routing path is determined for the key distribution task. We assume
that k quantum repeaters exist along the routing path. These quantum repeaters use a
graph state distribution or other methods to establish the 1D+star graph state among
the protocol participants and quantum repeaters. After distributing the graph state,
a repeater Rj measures the qubit in hand in X-basis {|+〉 , | –〉} and announces the
measurement result MRj to the protocol participants, where j ∈ {1, 2, . . . , k}.

Step 2. When receiving the qubits, Alice and the other participants perform the corre-
sponding operations to transfer the quantum state to the GHZ-like state based on the
measurement results announced by the quantum repeaters; thus, Alice and the other
participants perform H ·Ry (θ) and Uv on their qubits, respectively (the details have
been explained in Sect. 2-2). After performing these operations, the quantum system
shared between Alice and the other participants becomes a GHZ-like state (Eq. (17)).
Alice and each participant then choose the Share or Check mode randomly. The op-
erations of these two modes are listed in Table 2. Alice and the other participants
Bob1, Bob2, . . . , Bobn store the measurement results mri

A, mri
B1

, mri
B2

, . . . , mri
Bn , re-

spectively. Here, the measurement results | 0〉 (| 1〉) is encoded as the classical bits 0
(1).

|�〉A,B1,...,Bn =
1√
2

(|+ + · · ·+〉 + |– – · · ·–〉)A,B1,...,Bn (17)
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Table 2 Operations in the two modes

Mode Operations

Share • Performing H operation on the qubit.
• Performing Z-basis measurement on the qubits.

Check • Performing Z-basis measurement on the qubits.

Steps 1 and 2 are iteratively performed multiple times until Alice and the participants
accumulate enough measurement outcomes to successfully detect any potential eaves-
dropping and to distribute the key effectively.

Step 3. Alice and the other participants disclose their chosen modes from Step 2 over an
authenticated classical channel. During each iteration, if Alice and the participants
pick the Share mode (or Check mode), they utilize their measurement outcomes as
raw key bits (check bits), denoted as rki

A, rki
B1

, . . . , rki
Bn (cbi

A, cbi
B1

, . . . , cbi
Bn ); otherwise,

they discard the measurement results.
Step 4. To determine if an attack has been initiated by malicious outsiders or repeaters,

Alice selects l bits at random from the raw key bits, employing all the check bits as dis-
cussion bits for disclosure. She then announces the locations of these discussion bits
and requests all participants to reveal their bits at these specified positions through
an authenticated classical channel. If a discussion bit belongs to the raw key bits, Al-
ice verifies whether the bit announced by all participants are the same as her bit (i.e.,
rki

A = rki
B1

= · · · = rki
Bn ); otherwise, she verifies whether ⊕n

j=1cbi
Bj

⊕ cbi
A = 0, where

⊕n
j=1cbi

Bj
means cbi

B1
⊕ cbi

B2
⊕· · ·⊕ cbi

Bn . From the public discussion, Alice calculates
the error rate. Should the error rate exceed the pre-established noise threshold ε (set
by default to the quantum channel’s inherent noise rate), the participants involved in
the protocol will terminate the current session and initiate the protocol anew. If the
error rate remains below this threshold, they proceed with the subsequent stages of
the suggested protocol.

Step 5. The remaining raw keys, i.e., RKA =
{

rk1
A, rk2

A, . . . , rkm
A
}

, RKB1 =
{

rk1
B1

, rk2
B1

, . . . ,
rkm

B1

}
, . . . , and RKBn =

{
rk1

Bn , rk2
Bn , . . . , rkm

Bn

}
, are used to share the secret key by Alice

and the other participants. Alice uses the error rate obtained from the previous step
to perform post-processing procedures [62] (including error correction and privacy
amplification) along with the other participants to obtain the final secret key.

5 Security analysis, simulation, and comparison
In this section, security analyses are presented to prove that the proposed M-MQKD pro-
tocol is robust under a collective attack situation and immune to quantum Trojan horse
attacks. The findings from simulations are analyzed to demonstrate that the proposed pro-
tocol is practical and effective for a quantum network incorporating n quantum repeaters.
Finally, a comparison is provided to demonstrate that the proposed protocol is more prac-
tical than existing MSQKD protocols designed only for a series quantum network.

5.1 Security analysis
This subsection details the security assessments conducted to establish the robustness
of the proposed M-MQKD protocol against various attack strategies in quantum com-
munications. These strategies include individual, collective, and coherent attacks. Among
these, an individual attack has the greatest limitations on the attacker, rendering it the least
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powerful. In contrast, a coherent attack offers an attacker more freedom, making it poten-
tially more dangerous. However, no research has highlighted the increased benefits that
an attacker gains from using a coherent attack as opposed to a collective attack. This study
delves into the collective and quantum Trojan horse attacks and validates the robustness
of the proposed protocol against these threats through security analyses.

5.1.1 Collective attack
Within the framework of quantum networks utilizing repeaters, these repeaters hold a
crucial advantage over potential internal or external adversaries because they control es-
sential operations such as quantum state creation and transmission. This study showcases
the robustness of the proposed protocol against this attack from repeaters, where “ro-
bustness” is defined according to the framework established by Boyer et al. [27, 28]. This
definition implies that legitimate participants can detect all forms of attacks via a secu-
rity verification process with a probability greater than zero of identifying such attacks. In
addition, because the neighboring repeaters of Alice and the other participants have the
greatest advantage in attacking the proposed protocol (e.g., R3 and R9 in Fig. 8), this study
assumes that these repeaters will conspire with each other to steal the secret keys.

Theorem 1 Suppose a scenario where malicious repeaters launch a collective attack on
the qubits sent to Alice and the other participants. To execute this attack, these nefarious
repeaters deviate from the prescribed steps of the proposed protocol, specifically, bypassing
the established procedures for generating the 1D+star graph states. In their attack strategy,
these malicious repeaters distribute the GHZ-like states (as described in Eq. (17)) through
the application of a unitary operation denoted as Ue to embed a probe | E〉 within the GHZ-
like state. Then, repeaters can potentially extract secret key information by measuring the
ancillary qubits. It is important to recognize that Ue must comply with the fundamental
principles of quantum mechanics. However, in the scenario of a collective attack, no unitary
operation that allows malicious repeaters to covertly acquire knowledge about the secret
keys exists. This means that participants always have a chance to be aware of any attempts
by malicious repeaters to compromise security.

Proof An attack operation, Ue, is applied by the malicious repeater to insert the probe | E〉
into the GHZ-like state. The malicious repeater keeps the probe in its memory, and it sends
the 1st qubit of the GHZ-like state to Alice and the other qubits to the other participants
to allow the protocol participant to execute the proposed M-MQKD protocol. Based on
the principles of quantum mechanics, once the unitary operation Ue is applied, the state
of the quantum system transforms according to the equation that follows:

Ue (|�〉12...n ⊗ | E〉) = a0 |00..0〉 |e0〉 + a1 |00 . . . 1〉 |e1〉 + · · · + a2n–1 |11 . . . 1〉 |e2n–1〉

=
2n–1∑

j=0

aj
∣∣ j(2)

〉
12...n

∣∣ej
〉

, (18)

where j(2) denotes the binary format of j,
∑2n–1

j=0
∣∣aj
∣∣2 = 1. For all j belonging to the set

{0, 1, . . . , 2n – 1}, | ej
〉

can be differentiated by the malicious repeater, as the states | ex〉 and
| ey
〉

are orthogonal to each other when x �= y. To successfully pass through the discussion
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phase in Step 4 of the proposed M-MQKD protocol, the malicious repeater is required to
modify Ue. This adjustment ensures that the quantum state, as depicted in Eq. (18), aligns
with the dual measurement characteristics inherent to the GHZ-like state:(1) the outcome
of executing XOR operations on all measurement results should be 0 when the designated
discussion bit is chosen from the verification bits, and (2) all participants have identical
measurement results when the discussion bit is selected from the raw key bits.

Therefore, for the 1st measurement property, the malicious repeater adjusts Ue to ensure
that the following equation holds:

aj
∣∣ ej
〉

=
−→
0 , if wt

(
j
)

is odd, (19)

where wt
(
j
)

denotes the Hamming weight of j.
Next, considering the 2nd measurement property, because the protocol participants

perform H operations on their qubits, the state shown in Eq. (18) can be modified as fol-
lows:

H⊗n · Ue (|�〉12...n ⊗ | E〉)

=
1√
2n

2n–1∑

k=0

∣∣k(2)

〉
12...n ⊗

2n–1∑

j=0

(–1)wt
(
j(2)&k(2)

)
aj
∣∣ej
〉
, (20)

where k(2) denotes the binary format of k and & denotes the bitwise AND operation. To
pass the public discussion on the 2nd measurement property, the malicious repeater must
set
∑2n–1

j=0 (–1)wt
(
j&k(2)

)
aj
∣∣ej
〉

=
−→
0 if 0 < k < 2n–1. Therefore, the states expressed in Eq. (20)

are transformed into the following equation.

H⊗n · Ue (|�〉12...n ⊗ | E〉)

=
∣∣0(2)

〉
12...n ⊗

2n–1∑

j=0

(–1)wt
(
j(2)&0(2)

)
aj
∣∣ej
〉
+
∣∣∣
(
2n – 1

)
(2)

〉

12...n

⊗
2n–1∑

j=0

(–1)
wt
(

j(2)&
(
2n–1

)
(2)

)

aj
∣∣ej
〉

(21)

To pass the public discussion on the 1st and 2nd measurement properties, the malicious
repeater must let Ue conform to Eqs. (19) and (21), respectively. From the base property
of the bitwise AND operation, we can infer that wt

(
j(2)&0(2)

)
= 0 and wt

(
j(2)&2n–1

(2)

)
=

wt
(
j(2)

)
. Then, wt

(
j(2)

)
must be even depending on the setting of Eq. (19). Therefore, the

states in Eq. (21) can be expressed as follows:

H⊗n · Ue (|�〉12...n ⊗ | E〉) =
∣∣0(2)

〉
12...n ⊗

2n–1∑

j=0

aj
∣∣ej
〉
+
∣∣∣
(
2n – 1

)
(2)

〉

12...n
⊗

2n–1∑

j=0

aj
∣∣ej
〉

=
1√
2

(∣∣0(2)

〉
+
∣∣∣
(
2n – 1

)
(2)

〉)

12...n
⊗

2n–1∑

j=0

aj
∣∣ej
〉

(22)
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If we remove the effect of H⊗n in Eq. (22), the following equation is obtained.

Ue (|�〉12...n ⊗ | E〉) = H⊗n ⊗ I

⎛

⎝ 1√
2
(∣∣0(2)

〉
+
∣∣2n–1

(2)

〉)
12...n ⊗

2n–1∑

j=0

aj
∣∣ej
〉
⎞

⎠

=
1√
2n–1

2n–1∑

j=0

∣∣j(2)

〉
12...n ⊗

2n–1∑

j=0

aj
∣∣ej
〉
, wherewt

(
j
)

is even

=
1√
2

(|+ + · · ·+〉 + |– – · · ·–〉)12...n ⊗
2n–1∑

j=0

aj
∣∣ej
〉

(23)

Therefore, to pass the participants’ public discussions, a malicious repeater must adjust
Ue to conform to Eq. (23). It is evident that Eq. (23) represents the product state of the
GHZ-like and ancillary qubits. Consequently, a malicious repeater cannot infer the secret
key bit of any participant. If the malicious repeater attempts to extract the information
about the secret keys, Alice and the other participants have a probability, above zero, of
identifying the attacker’s actions. Therefore, the proposed M-MQKD protocol has robust-
ness under collective attacks. �

5.1.2 Collusion attack
To demonstrate that the proposed M-MQKD protocol is robust against various attacks,
this study examines a worst-case scenario: a collusion attack, discussed in this section. In
this attack scenario, we assume that all quantum repeaters are malicious and collaborate
to steal information about the participants’ secret keys. Since all the repeaters are acting
maliciously, we can treat them as a single attacker, referred to as Eve, who assists the pro-
tocol participants in distributing a GHZ-like state. Eve does not follow the processes of
the proposed protocol to distribute GHZ-like states. Instead, she attempts to obtain the
participants’ measurement results by distributing alternative quantum states. To achieve
this, she can distribute two types of states: (1) GHZ-like states with probes and (2) product
states.

If Eve distributes GHZ-like states embedded with probes to all participants and attempts
to measure these probes to extract the participants’ measurement results, her attack will
inevitably be detected. This is because her strategy is the same as the collective attack,
which participants can detect. When Eve tries to steal the participants’ measurement re-
sults by using the product state, she needs to generate specific product states which can
pass the check of Step 4 in the proposed M-MQKD protocol. For the check of Share mode,
she can generate | +〉⊗n+1 or | –〉⊗n+1. Alternatively, for the Check mode, she can generate
⊗n+1

i=1 | vi〉 in Z-basis, where ⊕n+1
i=1 vi = 0 and vi ∈ {0, 1}.

Since the participants randomly chose between Share and Check modes, Eve cannot de-
termine which mode was selected in any session. If she distributes ⊗n+1

i=1 |vi〉 to the partici-
pants, and all of them choose the Sharing mode during a session, her attack behavior can go
undetected with a probability of

( 3
4
)n. That is because each participant’s measurement re-

sult must match Alice’s, and the probability of Bobi’s measurement result matching Alice’s
is 3

4 , where i = {1, 2, . . . , n}. Therefore, the probability that Eve’s attack remains undetected
in a single check session is

( 3
4
)n. Since the participants use l raw key bits for checking,

the overall probability that Eve’s attack goes undetected over the entire check session of
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Figure 12 Detection rate analysis of collusion attack

is
( 3

4
)ln. On the other hand, she distributes either | +〉⊗n+1 or | –〉⊗n+1 to the participants,

and all of them choose the Check mode during a session. If the XOR result of all Bobi’s
measurement results (i.e., ⊕n

j=1cbi
Bj

) is equal to Alice’s measurement result (i.e., cbi
A), the

participants will not detect Eve’s attack behavior. Because the probability that the mea-
surement result of each Bobi and Alice being 0 or 1 is 1

2 , the probability of ⊕n
j=1cbi

Bj
= cbi

A
is 1

2 . Assume there are k check bits consumed by each participant, the overall probability
that Eve’s attack goes undetected over the entire check session of is

( 1
2
)k .

Because the participants choose Sharing or Check mode with the payability of 1
2 , the

final probability of detecting Eve’s attack is 1 – 1
2

(( 3
4
)ln +

( 1
2
)k). To clearly illustrate the

analysis results of the collusion attack, Fig. 12 presents the detection rates under various
values of l and k with three participants fixed (i.e., n = 3). According to the detection rate
analysis, there is an approximate 100% probability that the participants can detect Eve’s
attack when l and k are greater than a certain value (e.g. l ≥ 5 and k ≥ 10 or l ≥ 6 and
k ≥ 8). This demonstrates that the proposed M-MQKD protocol remains robust against
collusion attacks.

5.1.3 Trojan horse attack
Quantum Trojan horse assaults, as referenced in [63, 64], represent a category of attacks
contingent upon specific implementations, whereby an attacker employs strategies like us-
ing undetectable or deferred photons to stealthily acquire confidential information from
participants unnoticed. Because the attacker can only extract the information regarding
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participant operations when retrieving Trojan horse photons, these attacks are most ef-
fective during two-way or circular quantum transmissions. In contrast, one-way quantum
communication, in which the qubits are not returned, prevents attackers from retrieving
the secret information because they cannot reclaim the attack qubits.

While protocols that utilize two-way or circular quantum communication methods can
address these attacks by incorporating extra quantum devices or strategies, like the use
of the specific technique addressed by Boyer et al. [65], the proposed M-MQKD protocol
inherently counters quantum Trojan horse attacks through its adoption of one-way com-
munication. This one-way method not only circumvents the complexities associated with
such attacks but also facilitates a reduced transmission distance for qubits compared to
those required in two-way or circular communication schemes. Consequently, this leads
to lower qubit transmission costs relative to the expenses associated with protocols that
depend on circular quantum communication.

5.2 Comparison and simulation
To illustrate the practical superiority of the proposed M-MQKD protocol over the ex-
isting MSQKD [47–50] protocol in a general quantum network environment, this study
compared the types of quantum resources, quantum capability of the protocol partici-
pants, quantum communication methods, limitation on transmission distance, additional
devices/mechanisms for Trojan horse attacks, and application network of these protocols.
A comparison of the results is shown in Table 3.

Although the proposed protocol adopts a graph state for the design, the main cost of gen-
erating and distributing the graph state is borne by the quantum repeaters with sufficient
quantum capabilities and resources. In addition, with the assistance of quantum repeaters,
the proposed protocol can overcome the limitations of quantum communication distance
and allow the participants to achieve the goal of key distribution in a general quantum net-
work. Notably, Zhang et al.’s protocol [47] is more practical in terms of implementation

Table 3 Comparison between proposed protocol and existing MSQKD protocols

This study Zhang et al. [47] Zhou et al. [48] Tian et al. [49] Ye et al. [50]

Quantum resource Graph state Single photon Cluster state Hyperentangled
Bell state

Bell state

Quantum capability of
classical participants

1. Performing Pauli
and H operations
2. Measuring
qubits in Z-basis

1. Generating qubits in Z-basis
2. Reflecting qubits without disturbance
3. Measuring qubits in Z-basis

Quantum
communication method

One-way
communication

Circular communication

Limitation of
transmission distance

No Yes

Additional
devices/mechanisms for
Trojan horse attacks

No Yes

Application network
situation

General network
environment

Series network environment

Routing algorithm Need No need

Qubit efficiency 1
2nn+r

1
2n (n+1)

1

2

⌊
n
2

⌋
+1

(n+3)

1
2n+1(n+3)

1
2n (n+4)
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compared to protocols using entanglement states (i.e., ours and other MSQKD protocols),
as it only requires single photons in two complementary bases. Therefore, designing an
MSQKD protocol that uses single photons within a general network environment remains
an unresolved challenge. In terms of quantum capabilities, the proposed protocol is more
lightweight than existing protocols since classical users only need two quantum capabili-
ties instead of the three required in other protocols. While other MSQKD protocols with
circular communication can incorporate additional devices or mechanisms to resist quan-
tum Trojan horse attacks, the proposed protocol is inherently immune to such attacks.
Additionally, although our protocol does not impose any limitations on transmission dis-
tance, it does require an additional quantum network routing algorithm. Compared to
other MSQKD protocols designed for series network environments, this algorithm adds
an extra cost. However, this cost is necessary for applications in a general quantum net-
work environment.

To analyze the performance of our protocol and existing MSQKD protocols, this study
calculates the qubit efficiency η using the following equation. The calculation results are
summarized in Table 3.

η =
m

The number of qubits consumed to share m secrets
, (24)

where n is the number of participants and m is the length of the secret key. Since the num-
ber of repeaters is not fixed in practical scenarios, we use a variable r to denote the number
of quantum repeaters in the comparison. Based on the results of this metric, the qubit ef-
ficiency of our protocol is less efficient than that of existing MSQKD protocols in network
environments with a large number of repeaters. However, our protocol can be applied in
general quantum networks, whereas the existing MSQKD protocols cannot. Although di-
rectly comparing qubit efficiency may be unfair due to the differing quantum topologies
between our protocol and the existing MSQKD protocols, these results nonetheless of-
fer valuable insights into the performance differences between the two quantum network
topologies.

In addition to comparing with existing MSQKD protocols, this study further examines
the differences between using the 1D+star graph state measurement properties and using
entanglement swapping to achieve entanglement distribution. Simple examples (as shown
in Fig. 13) are provided to analyze the cost of entanglement distribution between the two
methods, where a repeater Rj aims to distribute an entanglement state to another repeater
Ri. This study assumes that the repeaters can generate qubits in the initial state | 0〉 and use
controlled gates (i.e., CNOT and CZ) to generate the entangled states. When the repeaters
adopt the 1D+star graph state measurement properties, Rj generates a qubit (labeled as i),
performs an H operation on this qubit, applies a CZ operation between qubits j and i, and
then sends qubit i to Ri (as shown in Figs. 13a and 13b) Finally, Rj measures the qubit j in
X-basis which requires one H operation followed by one Z-basis measurement to achieve
the entanglement distribution (as shown in Fig. 13c). Alternatively, if the repeaters use the
entanglement swapping to distribute entanglement states, Rj will generate a Bell state (la-
beled as i and i+1), send the qubit i to Ri, and then perform a Bell measurement between
qubits i + 1 and j (as shown in Figs. 13d and 13e) to complete the entanglement distri-
bution (as shown in Fig. 13f ). Generating a Bell state requires generation of 2 qubits, one
H operation, and one CNOT operation, and performing Bell measurement requires one
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Figure 13 Examples of entanglement distribution using our method and entanglement swapping

Table 4 Cost comparison between our method and entanglement swapping

Method Number of generating qubits Controlled gate Hadamard operation Z-basis measurement

Our method 1 1 2 1
Entanglement
Swapping

2 2 2 2

CNOT operation, one H operation and two Z-basis measurement. The costs of entangle-
ment distribution are summarized in Table 4. From the cost comparisons, we can see that
our proposed method reduces the number of qubits generated, eliminates the need for
one controlled gate, and requires one less Z-basis measurement. Importantly, compared
to single-photon gates, implementing controlled gates is more resource-intensive. There-
fore, using the measurement properties of the 1D+star graph state to distribute entangled
states is more efficient than entanglement swapping in the context of our protocol.

The proposed protocol was implemented via simulation software to verify the proposed
characteristics of the graph states with the 1D+star type and analyze the realizability of the
proposed M-MQKD protocol. To design a protocol tailored to quantum communication,
this study used NetSquid [66], a dedicated simulation tool for quantum networks. This
choice was made due to NetSquid’s specific applicability to quantum networking scenar-
ios.

During the simulation trials, the proposed M-MQKD protocol was executed under two
distinct scenarios: (1) a quantum network with a fixed number of participants and vary-
ing numbers of repeaters, and (2) a quantum network with a varying number of partici-
pants but a fixed number of repeaters. Additionally, two types of noise—depolarizing and
dephasing—were analyzed in both experimental scenarios to assess their effects on the
success rate of establishing graph states.

In the first scenario, the study assumes the presence of three participants (Alice, Bob1,
and Bob2) who aim to distribute secret keys. Due to limited computer resources available
for the experiment, a quantum network environment with a maximum of 20 repeaters was
simulated. Thus, environments with 1 to 20 repeaters were explored. In each scenario, re-
peaters helped participants establish 1024 graph states, and the average of these results
was used to calculate success rates. The results for depolarizing and dephasing noise en-
vironments are presented in Fig. 14 and summarized in Tables 5 and 6, respectively. The
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Figure 14 Simulation results for the quantum network with various numbers of repeaters

Table 5 Experiment results in the quantum network with various numbers of repeaters for
depolarizing noise

% of
noise

# of repeaters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.86 0.81 0.77 0.75 0.71 0.70 0.67 0.65 0.60 0.61 0.59 0.58 0.57 0.56 0.54 0.54 0.53 0.51 0.52 0.51
0.2 0.73 0.66 0.63 0.58 0.54 0.51 0.50 0.47 0.46 0.45 0.44 0.43 0.43 0.42 0.42 0.42 0.40 0.41 0.43 0.43
0.3 0.63 0.54 0.51 0.45 0.42 0.41 0.41 0.39 0.37 0.38 0.37 0.38 0.38 0.37 0.38 0.39 0.38 0.37 0.37 0.38
0.4 0.53 0.45 0.41 0.38 0.37 0.35 0.35 0.34 0.35 0.34 0.35 0.35 0.33 0.34 0.33 0.33 0.35 0.34 0.34 0.33
0.5 0.43 0.38 0.34 0.34 0.33 0.32 0.31 0.31 0.32 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31
0.6 0.36 0.33 0.30 0.29 0.30 0.30 0.30 0.29 0.30 0.29 0.29 0.29 0.30 0.30 0.29 0.30 0.28 0.29 0.28 0.29
0.7 0.32 0.29 0.28 0.28 0.27 0.28 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.28 0.28 0.20 0.28 0.20 0.26 0.28
0.8 0.29 0.27 0.26 0.26 0.26 0.26 0.26 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.27 0.26
0.9 0.25 0.25 0.26 0.24 0.25 0.26 0.25 0.26 0.25 0.25 0.26 0.26 0.25 0.24 0.25 0.26 0.26 0.25 0.25 0.26
1.0 0.26 0.25 0.20 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.25 0.25 0.24 0.24 0.24 0.24 0.25

Table 6 Experiment results in the quantum network with various numbers of repeaters for
dephasing noise

% of
noise

# of repeaters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.81 0.73 0.73 0.66 0.66 0.62 0.62 0.57 0.57 0.54 0.54 0.51 0.51 0.49 0.50 0.48 0.47 0.46 0.46 0.44
0.2 0.63 0.52 0.52 0.44 0.44 0.40 0.40 0.38 0.37 0.37 0.30 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.34
0.3 0.49 0.37 0.37 0.32 0.32 0.31 0.30 0.29 0.30 0.29 0.28 0.29 0.30 0.29 0.29 0.30 0.29 0.29 0.28 0.29
0.4 0.36 0.28 0.28 0.27 0.26 0.26 0.27 0.26 0.27 0.26 0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.26 0.26 0.26
0.5 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.24 0.24 0.25 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.6 0.16 0.28 0.28 0.26 0.26 0.26 0.26 0.26 0.25 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25
0.7 0.09 0.37 0.37 0.26 0.27 0.30 0.30 0.29 0.28 0.30 0.30 0.29 0.29 0.29 0.29 0.28 0.29 0.29 0.29 0.20
0.8 0.04 0.52 0.52 0.23 0.24 0.40 0.40 0.31 0.30 0.37 0.36 0.33 0.33 0.36 0.35 0.34 0.34 0.34 0.35 0.34
0.9 0.01 0.73 0.73 0.15 0.15 0.62 0.62 0.25 0.25 0.54 0.54 0.30 0.31 0.50 0.49 0.34 0.34 0.47 0.46 0.37
1.0 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00

simulations reveal that a 100% success rate in establishing graph states is possible with the
help of various numbers of repeaters in an ideal quantum channel (with a 0% noise rate),
demonstrating the feasibility of designing the proposed M-MQKD protocol for a quantum
network with any number of repeaters. In depolarizing noise environments (Fig. 14a), an
increase in noise rate leads to a decrease in success rate, especially when more repeaters
are used, showing a more pronounced decline. It is worth noting that in dephasing noise
environments (Fig. 14b), an unexpected phenomenon occurs at certain numbers of re-
peaters (e.g., 3, 7, 11,. . . ), where the success rate actually improves as the noise rate in-
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Figure 15 Simulation results for the quantum network with various numbers of participants

Table 7 Experiment results in the protocol with various numbers of participants for depolarizing
noise

% of
noise

# of participants

2 3 4 5 6 7 8 9 10 11 12 13

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.83 0.78 0.76 0.69 0.67 0.62 0.61 0.57 0.54 0.51 0.50 0.46
0.2 0.69 0.61 0.55 0.50 0.45 0.40 0.36 0.32 0.30 0.26 0.24 0.21
0.3 0.62 0.49 0.42 0.34 0.30 0.25 0.22 0.18 0.16 0.13 0.11 0.09
0.4 0.56 0.41 0.32 0.25 0.20 0.16 0.12 0.11 0.08 0.07 0.05 0.04
0.5 0.53 0.35 0.24 0.17 0.13 0.10 0.08 0.05 0.04 0.03 0.02 0.02
0.6 0.52 0.30 0.18 0.13 0.09 0.06 0.05 0.03 0.02 0.01 0.01 0.01
0.7 0.51 0.27 0.16 0.09 0.06 0.04 0.02 0.02 0.01 0.01 0.00 0.00
0.8 0.50 0.27 0.14 0.08 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00
0.9 0.50 0.26 0.13 0.07 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00
1.0 0.50 0.25 0.12 0.06 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00

creases. This counterintuitive result arises because a 1D+star graph state with a specific
number of qubits is immune to collective dephasing noise. Collective noise refers to quan-
tum noise that affects multiple qubits simultaneously in a correlated manner, with collec-
tive dephasing noise being one such example. In the presence of collective noise, certain
special quantum states, known as “free states,” can resist this type of disturbance. Due to
the dephasing-free property of certain 1D+star graph states, the success rate improves
once the noise rate exceeds 0.5. Remarkably, the success rate reaches 1.0 when the noise
rate is 100%, indicating a fully collective noise environment. Based on these simulation re-
sults, we conclude that these 1D+star graph states are dephasing-free states, making them
suitable for designing other dephasing-tolerant quantum communication protocols.

In the second scenario, the study includes three repeaters aiding various participants
(e.g., Alice, Bob1, Bob2, . . . , Bobn) in establishing graph states. Again, due to the limitation
of computer resources, a quantum network environment with up to 13 participants was
simulated. The results for depolarizing and dephasing noise environments are presented
in Fig. 15 and summarized in Tables 7 and 8, respectively. Similar to the first scenario, it’s
evident that graph states can be perfectly established with various numbers of participants
in an ideal quantum channel. Furthermore, the number of participants significantly im-
pacts the success rate in different depolarizing noise conditions (Fig. 15a). Similar to the
analysis of the previous scenario, the 1D+star graph state can also withstand collective de-
phasing noise when the 1D part contains 4 qubits, as demonstrated by the results under
dephasing noise conditions (Fig. 15b). This finding further reinforces the potential of the
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Table 8 Experiment results in the protocol with various numbers of participants for dephasing noise

% of
noise

# of participants

2 3 4 5 6 7 8 9 10 11 12 13

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.83 0.73 0.66 0.60 0.53 0.48 0.43 0.39 0.36 0.31 0.28 0.25
0.2 0.68 0.52 0.41 0.32 0.27 0.20 0.17 0.14 0.11 0.09 0.07 0.05
0.3 0.58 0.36 0.25 0.17 0.12 0.08 0.06 0.04 0.03 0.02 0.01 0.01
0.4 0.52 0.28 0.16 0.09 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00
0.5 0.50 0.25 0.13 0.07 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.6 0.53 0.28 0.15 0.09 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00
0.7 0.58 0.37 0.24 0.17 0.12 0.08 0.06 0.04 0.03 0.02 0.02 0.01
0.8 0.68 0.51 0.42 0.33 0.26 0.21 0.16 0.13 0.11 0.08 0.07 0.06
0.9 0.81 0.73 0.65 0.60 0.53 0.48 0.43 0.38 0.34 0.32 0.28 0.26
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1D+star graph state for future developments in dephasing-tolerant quantum communi-
cation protocols.

Finally, this research meticulously compiles and discusses the outcomes derived from
conducting two distinct simulation experiments aimed at exploring quantum networking.
In a noisy quantum network environment, the number of qubits significantly influences
the success rate of establishing entanglement. Since the number of participants in real
applications is fixed, reducing the number of repeaters in the routing path emerges as a
solution to mitigate the impact of noise. Thus, employing fewer repeaters (i.e., creating
shorter routing paths) for key distribution is crucial for enhancing qubit efficiency.

Additionally, there are certain types of noise that were not considered or discussed in
the simulations of this study. These noises—such as photon loss, relaxation, gate errors,
dark counts in measurement devices, and others—could pose potential limitations to the
proposed entanglement distribution method and M-MQKD protocol. For example, they
could affect the communication distances and success rates of the proposed protocol. An-
alyzing the complexities of quantum network environments requires a separate, compre-
hensive research effort, which is beyond the scope of this work. Therefore, we consider
these analyses as future work.

6 Conclusion
The existing MSQKD and M-MSQKD protocols have two challenges: (1) the need for ad-
ditional devices to defend against quantum Trojan horse attacks and (2) conformance to
a specific network environment, namely, the series network. Therefore, this study pro-
poses a property of 1D+star graph state and then uses this property to distribute GHZ-
like states among classical participants within a general repeater-based quantum network.
These GHZ-like states are then used to propose an M-MQKD protocol, specifically de-
signed for a restricted quantum environment. In the proposed M-MQKD protocol, the
classical participants have only two quantum capabilities—single-qubit operation (i.e.,
σZ and H) and Z-basis measurement—and they do not need an additional quantum de-
vice/mechanism to protect against quantum Trojan horse attacks. Moreover, unlike the
existing repeater-based quantum network, repeaters use single-qubit measurement (i.e.,
X-basis measurement) rather than the entanglement swapping to transmit the entangle-
ment. Therefore, the proposed M-MQKD protocol is more practical and lightweight than
the existing MSQKD and M-MSQKD protocols. Security analyses and simulation exper-
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iments were conducted to prove that the proposed M-MQKD protocol is secure and fea-
sible.

Our future research could explore leveraging the proposed measurement properties of
the 1D+star graph state to develop additional lightweight and practical quantum commu-
nication protocols within quantum networks (e.g., quantum secret sharing). Furthermore,
designing a routing algorithm for efficiently distributing the graph state among protocol
participants is another promising direction. However, there are potential limitations and
challenges for our method in larger quantum networks with complex noise environments.
For instance, what is the maximum distance in our proposed protocol that can securely
distribute keys in a noisy network? Therefore, the unresolved issues include analyzing
the key rate bound in complex noisy quantum networks, mitigating decoherence, extend-
ing the storage time of entangled states, and designing efficient quantum error correction
codes and purification techniques.
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