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Abstract
In this paper we show how to measure in the setting of digital quantum simulations
the reflection and transmission amplitudes of the one-dimensional scattering of a
particle with a short-ranged potential. The main feature of the protocol is the
coupling between the particle and an ancillary spin-1/2 degree of freedom. This
allows us to reconstruct tomographically the scattering amplitudes, which are in
general complex numbers, from the readout of one qubit. Applications of our results
are discussed.
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1 Introduction
One of the most striking differences between classical and quantum mechanics is that a
particle – or generally a many-particle system – can tunnel through a potential barrier.
As such, even if classically a particle with an energy lower than the barrier can only be re-
flected by a localized potential, there is a nonzero probability of finding its quantum ana-
logue also transmitted [1]. This remarkable feature has both conceptual implications and
practical applications. On the one hand it permits the implementation of superconduct-
ing quantum bits [2] and quantum devices based on tunneling phenomena [3]: these are
nowadays routinely used for quantum sensing and several other applications [4]. On the
other, the determination of scattering amplitudes is a fundamental problem of quantum
field theory [5], not only for estimating cross-sections, but also for carrying on the eval-
uation of several other observables, from both a perturbative [6, 7] and non-perturbative
point of view [8].

The central role played by scattering amplitudes in this wide range of applications and
the potentialities of quantum computation have been stimulating communities from high-
energy physics [9, 10] to lattice gauge theory [11, 12]. There is hope for an interesting syn-
ergy: the possibility to extract quantities related to scattering from quantum simulations
[13, 14]. In an analog quantum simulation [15, 16], the goal is to use a physical platform,
such as ultracold atoms [17] or ion traps [18], to emulate the physical system of interest
and determine quantities, otherwise difficult to find with other approaches. On the other
hand, the platform of a digital quantum simulation is a quantum computer, which can
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be in principle programmed with a universal language of computation [19]. Through the
mapping of the original system to a system of interacting spin-1/2 (qubits), it is possible to
obtain estimates for the physical quantities of the original system from the readout of the
qubits. This latter approach has been used in [20] to provide a framework to determine
the scattering amplitudes of an interacting scalar field theory with quartic coupling. More
recently, an algorithm for theories with bound states has been proposed [21]. On the other
hand, there are other approaches aimed at determining scattering amplitudes through dif-
ferent strategies and methods, e.g. from correlation functions [22]. Our contribution to
this expanding field is an algorithm of quantum computation, including state preparation,
time evolution and readout process, for the determination of scattering properties of the
simplest possible model of quantum mechanics: a single non-relativistic particle scatter-
ing with a localized potential.

More specifically, in this paper we focus on the digital quantum simulation of the quan-
tum tunneling of a one-dimensional particle and on measurements of reflection (R) and
transmission (T ) amplitudes for an arbitrary localised barrier. As well known, the one-
dimensional scattering of a quantum particle features several remarkable qualities and can
be of guideline for the analysis of more complicated scenarios. First, it is a textbook exam-
ple [23, 24] in which one can solve exactly the scattering problem in many instances (e.g.,
for piecewise potentials). Moreover, for the case of parity symmetric potentials, it is possi-
ble to relate these scattering coefficients to the phase shifts one normally considers in the
scattering theory in higher dimensions – see [25] and Appendix A for details. Finally, one
can straightforwardly put in connection the scattering amplitudes for the non-relativistic
particle with the S-matrix of 1 + 1 interacting field theories [8] and in turn one can also
determine the S-matrix from 1 + 1 conformal field theories defined on the cylinder [26].
As we will argue, the digital quantum simulation of the one-dimensional scattering is al-
ready equipped with the structure of a more general protocol, which can be applied to
simulations of particle scattering in higher dimensions.

It is useful to underline that reflection and transmission coefficients do not correspond
to observables, i.e. they are not eigenvalues of Hermitean operators. However, they can
still be determined by repeating a physical process – in this case the scattering of a particle
with a localised potential – a statistically significant amount of times, as one would ideally
do in an experiment.

The key idea we will pursue here is firstly to encode the information about the particle
scattering in the components of an ancillary spin-1/2 degree of freedom and secondly to
perform a quantum tomography of this state. Indeed, a pure spin-1/2 state can be fully
reconstructed by the averages of the measurements of the three components of the spin.
Interestingly enough, as discussed below, this protocol can be also implemented in a very
natural way as a digital quantum simulation, i.e. as an algorithm of quantum computation,
in which the particle state involved in the scattering is encoded in many interacting qubits.

Another novel result of this work concerns the readout process of the simulation. Indeed
standard treatments of this problem [19, 27, 28] usually limit themselves to reconstructing
the probability density of the particle from the measurement of all qubits. More recently,
the simulation of one-dimensional dynamics in a well of infinite height has been stud-
ied [29], for which no tunneling effect can happen and therefore cannot be compared to
our work, which instead seeks to study the scattering properties in presence of localized
potentials. Moreover, we are not interested here in the whole wave-function, but only in
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Figure 1 A generic localised potential barrier V(x), bounded from
below and nonzero only in a region of length a

the values of scattering amplitudes. Therefore one expects that the measurement proto-
col should admit a more optimized version, i.e. the possibility to make less iterations of
the algorithm in order to obtain meaningful answers. Indeed, this is true since it turns
out that reflection and transmission coefficients can be obtained from the values of only
one of the qubits, namely the one associated to the sign of the physical momentum of the
particle.

In the following we consider the one-dimensional scattering of a non-relativistic particle
of mass m and momentum p = �κ on a potential barrier V (x) centered around the origin.
The information about this scattering is encoded in the initial and conserved energy of the
particle E = �

2κ2/2m and in the shape of the potential barrier. We assume the potential
barrier V (x) to be a non-negative function, with the only important qualitative property
to be localised and different from zero only in a region of length a around the origin, see
Fig. 1. Apart from these requirements, we assume that the shape of V (x) is arbitrary. Our
protocol, in absence of known analytic expressions for the reflection and transmission
amplitudes of an arbitrary potential, sets up a digital quantum scheme which allows us to
compute them.

The finite range a of the potential V (x) implies that any eigenfunction of the Schrödinger
equation is asymptotically a superposition of plane waves. For an incident particle from
the left, we define as usual [23, 24] the reflection and transmission amplitudes according
to the asymptotic behavior of the wave-function:

ϕκ (x) =

⎧
⎨

⎩

eiκx + Rκe–iκx, x � –a/2,

Tκeiκx, x � a/2.
(1)

For an incident particle from the right, analogous results hold if one considers a solution of
opposite momentum. They coincide if the potential is a symmetric function with respect
to the origin.

The conservation of probability currents, i.e. the unitarity condition of the scattering
process, implies

|Rκ |2 + |Tκ |2 = 1. (2)

In view of this equality, we can regard Rκ and Tκ as the – generically complex – compo-
nents of a spin-1/2 degree of freedom:

|ϕ〉 = Rκ |–κ〉 + Tκ |+κ〉 . (3)

This turns out to be a crucial observation for the measurement of reflection and transmis-
sion amplitudes and in the following we will elaborate on it.
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Figure 2 Pictorial representation of the state |ϕ〉 on the Bloch sphere. By
repeated measurements of the spin polarization, see Eq. (5), it is possible
to fix the angles θ and α to arbitrary precision and therefore to
reconstruct the spin state |ϕ〉

The content of the paper is organised as follows. We first recall in Sect. 2 how to re-
construct the amplitudes of a spin-1/2 through measurements of polarization. Then we
present in Sect. 3 a protocol to encode reflection and transmission amplitudes into an
ancillary spin-1/2. A natural implementation of this protocol as a digital quantum simula-
tion algorithm is discussed in Sect. 4. Our conclusive remarks are gathered in Sect. 5. The
paper has also two appendices. The first one, Appendix A, frames reflection and transmis-
sion amplitudes within the general scattering theory formalism [23, 25]. In this appendix
we also show how to compute them numerically through the sampling of the potential
with δ-functions. In Appendix B we discuss the implementation of the gates useful in the
quantum simulation.

2 Measurement of spin-1/2 amplitudes
A general spin-1/2 state can be parameterized on the Bloch sphere (Fig. 2) as

|ϕ〉 = sin(α/2)|–s〉 + cos(α/2)eiθ |+s〉. (4)

On this state, the expectation values of spin along the three axes can be reconstructed by
repeated measurements of the three components of the spin [30]. If P are their probabil-
ities, e.g. P+

z for measuring +1 on σ̂z and so on, they satisfy

P+
x – P–

x = sinα cos θ , P–
y – P+

y = sinα sin θ and P+
z – P–

z = cosα. (5)

These equations show that it is possible to perform a full tomography of an arbitrary spin-
1/2 state.

3 Protocol
The outcome of the scattering of a quantum particle with a localized potential consists
of a nonzero probability of finding its wave-function both transmitted and reflected. For
definiteness, consider the potential V (x) to be non-zero only in a region –a/2 ≤ x ≤ a/2
and the initial particle to be of positive momentum p = �κ , well-localized around a point
–x0 � –a/2. Such approximation holds if x0 is much greater than the de Broglie wave-
length λdB = h/p. In this section we provide a description of the ideal protocol, discussing
the physical interpretation and the details of the digital quantum simulation in the next
section.

We prepare the initial state

|φ0〉 = |+κ〉 ⊗ |+s〉 (6)
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Figure 3 In the semi-classical picture, the magnetic
moment of the particle is aligned with the direction of
the reflected and transmitted waves by switching on a
magnetic field in opposite directions to the left and
right of the potential. The interaction is the usual
spin-orbit one: H = –μ · B, where μ is the magnetic
moment and B = Bsign(x)z the magnetic field

with its ancillary spin-1/2 S along the positive z-direction – if the particle is, for instance,
an electron, the ancilla coincides with the actual electron spin. This state can be prepared
at asymptotic times by a series of measurements, which finally filter the desired state. First,
we imagine that there is a device capable of producing a particle with positive and negative
momentum with arbitrary spin. Since the whole point of this protocol is not to measure
the momentum, we can turn on an interaction

ĤP,S = –g
(
sign(̂P)̂σz – 1

)
, (7)

for g > 0 and then measure the energy of the state, selecting only the ground state of this
Hamiltonian. After this step, we measure the spin of the particle and select |+s〉. We then
switch on the potential V (x), a procedure that turns out to be useful also in the study
of scattering of properties of the non-linear Schr̈odinger equation where the reflection
and transmission coefficients cannot be defined as above due to the non-linearity of the
equation [31].

At time t = 0, we then let the particle scatter with the potential, keeping in mind that the
interaction with the potential barrier does not involve the spin degree of freedom

ĤP =
P̂2

2m
+ V (X̂). (8)

Estimating the proper time scales of tunneling is an issue under debate – see e.g. [32]
for a review. For the purposes of the present discussion, only a time-scale able to gauge
whether if the outgoing wave is asymptotically free is needed. A conservative estimate is
given by the semi-classical motion of the peak of the packet, which defines a time-scale
ts ≈ 2x0m/p, corresponding to the state

|φts〉 = (Rκ |–κ〉 + Tκ |+κ〉) ⊗ |+s〉 . (9)

In a semi-classical way to describe such a scattering, after the time interval ts we may
regard the state of the system as made up of two outgoing waves propagating with opposite
velocities: the reflected wave to the left of the potential and the transmitted one to its right.
Crucially, after the time scale ts these waves are minimally overlapping in the potential
region and therefore they are propagating freely. In order to align spin and momentum in
this setting one can switch on a magnetic field having opposite direction to the left and
right of the potential, see Fig. 3.
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On a quantum mechanical level, we can obtain the same result by means of a unitary
evolution. Since in the region to the left of the potential it is most probable to find the
reflected packet, we apply the interaction

ĤS =
g ′

2
σ̂x, for x < 0 (10)

and for a time δt = π/g ′. To the region to the right of the potential, no interaction be-
tween the ancillary spin and momenta is applied. The unitary operation obtained through
exponentiation is equivalent in the quantum computing language to the application of a
controlled operation – in this case the C-NOT – and allows us to find the desired final
state, i.e. one in which the information about the scattering is encoded into the ancillary
spin degree of freedom:

|φ>〉 = –iRκ |–κ , –s〉 + Tκ |+κ , +s〉 . (11)

Then, by performing measurements of spin as in Sect. 2, we can extract not only the
values of the modulus of Rκ and Tκ , but also of their relative phase.

4 Digital quantum simulation
The first step to set up the digital quantum simulation of particle scattering is to define
the proper dimensionless quantities for numerical computation. To this aim is convenient
to consider the usual Schrödinger equation for a particle of mass m, potential V (x) and
initial wave-function ψ(x)

i�∂tψ(x, t) =
[

–
�

2

2m
∂2

x + V (x)

]

ψ(x, t). (12)

In any computation only a finite amount of points can be sampled. Hence, let L be the
interval range which contains the relevant physics of the problem, with L � a and chosen
as follows: given a threshold ε, we choose L such that

�L :=
∫ ∞

–∞
dx

∣
∣ψ(x)

∣
∣2 –

∫ L
2

– L
2

dx
∣
∣ψ(x)

∣
∣2 ≤ ε. (13)

The wave-function ψ(x) can then be safely truncated without compromising the physical
properties of the system:

ψε(x) :=

⎧
⎨

⎩

1√
1–ε

ψ(x), if – L/2 ≤ x ≤ L/2,

0, otherwise.
(14)

At this point, we introduce length and time scales and express all quantities in dimension-
less units. For convenience, we resize the system in the unit interval ξ = x/L ∈ [–1/2, 1/2]

and define the dimensionless time τ = t/T , where T is some unit of time. If we are sim-
ulating a wave packet from the very beginning, we can choose T as the time ts of Sect. 3
–see also Sect. 4.4.
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Figure 4 The basis {|j〉} is related to its conjugate {|k〉} by the
qFT F Eq. (17). From the circuit it is evident that while the two
basis have distinct interpretations, they are equivalent as far as
the implementation of unitaries is concerned

The (dimensionless) wave-function is then f (ξ ) =
√

Lψ(x), the potential u(ξ ) = 2mL2

�2 V (x)

and the mass is expressed in terms of the parameter γ = �

2m
T
L2 . With such definitions, the

Schrödinger equation reads

i∂τ f (ξ , τ ) = γ
[
–∂2

ξ + u(ξ )
]
f (ξ , τ ). (15)

The digital quantum simulation involves a register of n qubits {|ji〉}, each associated to
binary variables ji = {0, 1}. As usual we choose to write any number j = {0, 1, . . . , 2n – 1} as

j = j1j2 . . . jn = j12n–1 + j22n–2 + · · · + jn. (16)

This notation also applies to any state |j〉 of the simulation. The original basis {|j〉} admits
a conjugate basis {|k〉}, defined through the “quantum Fourier Transform” (qFT) F

F̂ |j〉 =
1

2n/2

2n–1∑

k=0

e–2π ijk/2n |k〉 , (17)

which requires O(n2) gates to implement [19]. Crucially, the states in the conjugate basis
are associated to the integers

k = k1k2 . . . kn = k12n–1 + k22n–2 + · · · + kn, (18)

which are in the same number as the j’s (see Fig. 4).
Since we ultimately want also to connect the k’s to physical momenta, we discretize

position as follows:

ξj = j2–n –
1
2

. (19)

The sampled wave-function has points

fj =
1√
N

f (ξj), N =
2n–1∑

j=0

∣
∣f (ξj)

∣
∣2

δξ , (20)

and it is immediately seen from the application of the Euler-McLaurin formula that the
error in such approximation is |1 – N | = O(2–n). Analogously, we sample the potential as
uj = u(ξj).

4.1 Overview of the algorithm
In the following, the algorithm is presented in a form suitable to simulation: all n-qubit
operations are written in terms of single-qubit and CNOT operations. In Sect. 4.2 is dis-
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cussed how to prepare the initial state. In Sect. 4.3 the time evolution protocol is pre-
sented, with its algorithmic step given by Eq. (31). Finally, the readout to extract reflection
and transmission amplitudes is discussed in Sect. 4.4.

4.2 State preparation
Our simulation starts with the following initial state

|f0〉 =
1√
N

2n–1∑

j=0

fj |j〉 . (21)

Before discussing how to initialize this state from |0〉, let us analyze the relation between
the protocol of discretization and the physical variables, i.e. position and momentum. First
of all, let’s notice that the qFT on the initial state induces a discrete Fourier Transform in
the space of k’s

F̂ |f0〉 = |F0〉 =
1√
N

2n–1∑

k=0

Fk |k〉 , (22)

where indeed

Fk =
1

2n/2

2n–1∑

j=0

e–2π ijk2–n
fj. (23)

On the other hand, physical momenta are defined in continuous space. Sampling the wave-
function into N points f (J/N), where J = {–N/2, . . . , N/2–1} makes the momenta K = pL/h
discrete in the range in K = {–N/2, . . . , N/2 – 1}. The wave-function in momentum space
reads

F̃K =
1√
N

N/2–1∑

J=–N/2

e–2π iKJ/N f (J/N). (24)

Connecting it with Eq. (23), we obtain

F̃K e–iπK =

⎧
⎨

⎩

FK+2n , if K = {–2n–1, . . . , –1},
FK , if K = {0, . . . , 2n–1 – 1}.

(25)

The last equation gives rise to a mapping between the discretization k and the physical
momenta K :

K =

⎧
⎨

⎩

k, if k = {0, . . . , 2n–1 – 1},
k – 2n, if k = {2n–1, . . . , 2n – 1}.

(26)

A visual interpretation of the latter equation is given in Fig. 5. Notice also that the bit k1

is associated to the sign of momentum: positive if k1 = 0 and negative if k1 = 1.
In the context of this digital quantum simulation, we have then successfully associated

j to the position and k to the momentum. The initialization of the initial state Eq. (21) is
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Figure 5 Relation between the physical momenta and the positive integers k, according to Eq. (26)

complete if we provide a unitary transformation such that Ûin |0〉 = |f0〉. Unfortunately, if
the input is the most generic sampled wave-function, the number of gates scales necessar-
ily as O(2n). The reason of this comes from the generic statement that a unitary U(2n) can
be decomposed into a string of C-NOTs and single-qubit gates [33]. In the case at hand
up to (2n – 1) SU(2) matrices of the form

U(fj) =

[√
1 – |fj|2 –f ∗

j

fj
√

1 – |fj|2
]

(27)

must be implemented, if no special requirements about f (ξ ) are made. They initialize
Eq. (21) from |0〉 up to global phase, corresponding to that of one of the remaining point
of the wave-function which is fixed by the normalization of the column vector.

However, a physically reasonable initial wave-function should be localized in an interval
far away from the boundary and the potential, in order to minimize finite-size effects and
to represent an asymptotic free particle, as in Sect. 3. In this case, less gates are required.
Also, the more the packet is peaked, the less is the contribution coming from the tails;
so that the wave-function can be easily truncated on a number of points which is much
smaller than 2n.

Let us pause here to comment more on this point. Often, one starts from some mo-
mentum wave-functions F̃K , which are related to the Fk ’s through Eq. (25). The Fk ’s will
therefore contain information about the peak in position space, which we assume to be to
the left of the potential, and the width of the distribution σp – as one may get convinced by
studying the Gaussian case. If the peak velocity is p0 > 0 and the distribution sufficiently
narrow, the state with highest probability is |k0〉 with k1 = 0, according to Eq. (26). Not
sensible to the computation are the values of the Fk which fall below the machine preci-
sion; these will be interpreted as 0’s. Reasonably, the packet will only have contributions
from right-moving waves, so it is fair to assume that states with nonzero probability are
found within the interval containing a minimum k– and a maximum k+, both positive with
k1 = 0. Therefore the range (k+ – k–) will not cover all the n bits, but in practice a much
smaller number, say �– for the range to the left of k0 and �+ to its right, such that �± � n.
Therefore, much less gates are required to initialize the wave-function of this problem, in
momenta space. Then, if we want to obtain the wave-function in position space, it is only
necessary to apply a qFT to the state.

As an example, let us consider the simplest case, which is also useful to fix the concept
of the line of reasoning, i.e. that of a wave of momentum p0 > 0 and peak position x0 < 0 –
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however delocalized in space. In continuous space, we can write the initial state as

|ψ〉 = e2π ip0x0/h |p〉 =
∫ ∞

–∞
dxe2π ip0(x–x0)/h |x〉 . (28)

If we were to implement naively the wave-function directly in position space, at most 2n –1
sampled points would be required, while in momentum space we only need to implement

|0〉 → e2π ik0j0 |k0〉 , (29)

which requires one phase shift and a SWAP operation. Actually, in Appendix B we show
that for the case of such transformations, which add a phase linear in j, we can work di-
rectly in position space and only n phase-shift gates are required.

4.3 Time evolution
Given the initial state Eq. (21), the time evolution with respect to the Hamiltonian Ĥ =
γ [(2π)2K̂2 + u(̂ξ )] can be approximated with the Trotter-Suzuki formula with step δτ =
τ /Nτ [34]

Ûτ = e–iĤτ = [K̂δτ V̂δτ ]Nτ + O(δτ ), (30)

where K̂δτ = e–iγ (2π )2K̂2δτ and V̂δτ = e–iγ u(ξ̂ )δτ . The potential and the kinetic operators are
separately diagonal in the basis of position and momentum, respectively. In the digital
simulation, one can switch between them by applying the qFT. As such, the circuit ap-
proximating Ûτ up to O(δτ ) is

(31)

In Appendix B it is shown how K̂δτ is realized in terms of O(n2) gates. As far as the
potential is concerned, in the worst case scenario 2n–1 different controlled phase-shift are
required, for the problem is equivalent to the implementation of a unitary transformation
Ĝ which assigns a phase g(j) to each |j〉

|ψ〉 =
2n–1∑

j=0

cj |j〉 → Ĝ |ψ〉 =
2n–1∑

j=0

cjeig(j) |j〉 . (32)

In general, 2n–1 controlled phase-shift operations of the form

Gm =

[
eig(2m–2) 0

0 eig(2m–1)

]

, (33)

for m = {1, 2, . . . , 2n–1}, must be performed. However, in the case of localized potentials the
gate requirement can be significantly downsized. Assuming them to be centered around
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Figure 6 Circuit performing the time evolution for a
potential barrier of height u, centered in j = 2n–1 and of
range 22� , as in Eq. (35)

the origin j = 2n–1, we require them to occupy at most a range 22�, where � � n is the
number of bits in which the potential is effectively nonzero. This condition, together with
the assumption for the preparation of the initial state, are consistent with the requirement
of an asymptotic free particle. Assuming in generality that the potential is not symmetric,
we define two samplings, corresponding to the regions to the left and right of the origin:

uj =

⎧
⎨

⎩

u(>)
j if j = {2n–1, 2n–1+� – 1},

u(<)
j if j = {2n–1–�, 2n–1 – 1}.

(34)

Both u(>)
j and u(<)

j can be implemented with at most 2�–1 controlled phase-shift gates,
acting only on � qubits. As an example of such line of reasoning, in Fig. 6 is given the
implementation of a potential barrier of height u centered in j = 2n–1 and of range 22�,
corresponding to the sampling

uj =

⎧
⎨

⎩

u, if 2n–1–� ≤ j ≤ 2n–1+� – 1,

0, otherwise.
(35)

Moreover, a sequence of barriers of increasing height and decreasing width can be uti-
lized to approach a δ-potential. For both the former and the latter potentials, the analytic
form of reflection and transmission amplitudes are well-known. In Appendix A we pro-
vide derivations in the general case and for the more specific δ-potential, and also remind
how to approximate a generic potential by δ-pulses.

Notice that in absence of the controlled operations in Fig. 6, one would initialize a saw-
tooth potential spanning all the range, therefore invalidating the hypothesis of an asymp-
totically free particle at the beginning and end of the simulation.

As far as the gate requirement is concerned, for one iteration of the time-evolution al-
gorithm, if Nf and Nu are the operations necessary to initialize the initial state and to
construct Vδτ , O(max(Nf , Nτ max(n2, Nu))) perfect gates are needed. The final state |fτ 〉
of the simulation Eq. (31) approximates Uτ |f0〉 within O(δτ ), henceforth the continuous
wave-function as O(

√
2–2n + δ2

τ ).

4.4 Readout of reflection and transmission amplitudes
Once the time evolution has been performed and the state |fτ 〉 has been obtained, one has
direct access to the information about reflection and transmission amplitudes. They are
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Figure 7 Alignment of the particle momentum with the ancillary
spin-1/2. Here |Fτ 〉 is defined in Eq. (37) and the final state is defined in
Eq. (38)

read out from the values of the wave-function in momentum space at asymptotic times,
which are of the order τa = ta/T , where ta has been introduced in Sect. 3 and can be ob-
tained by the peak value of position ξ 0 = x0/L and momentum K0 of the initial wave-
function:

τa =
γ

2π

ξ 0

K0 . (36)

To obtain the final state corresponding to the wave-function in momentum space from
|fτ 〉, two operations are necessary: a qFT to map the j’s to the k’s and a phase shift for odd
momenta, as in Eq. (25); in other words we obtain the state |Fτ 〉 through

(37)

At this point, we can reproduce the ideal experiment of Sect. 3. This is done by introducing
an ancillary qubit initialized to the fiducial value |0a〉 and, recalling that k1 is associated to
the sign of momentum, by applying a C-NOT operation (Fig. 7). The final state |a; Fτ 〉 can
be written in the following way:

|a; Fτ 〉 =
∑

k2,...,kn

F (p≥0)
τ |0a; 0k1〉 ⊗ |k2 . . . kn〉 +

∑

k2,...,kn

F (p<0)
τ |1a; 1k1〉 ⊗ |k2 . . . kn〉 . (38)

It is evident that the ancilla and k1 are aligned. We can then measure the ancilla in the
computational basis to reconstruct the values of reflection and transmission amplitudes.
However, since any measurement in the computational basis at the end of a circuit on only
one qubit implies the measurement of all of them, we immediately realize that, as far as
the readout is concerned, the ancillary qubit is redundant, since the information about
scattering amplitudes is also encoded in |k1〉. In this particular simulation, it corresponds
to the sign of momentum, discriminating reflected and transmitted packets, and is by itself
a spin-1/2.

More precisely, the moduli of the reflection and transmission amplitudes can be ob-
tained by computing, after a sensible amount of iterations of the algorightm, the average
value 〈Zk1〉, as in Eq. (5). As for the relative phase, one needs 〈Xk1〉, which is read after
applying the Hadamard gate on k1, which maps the eigenbasis of Zk1 to that of Xk1 .

As suggested by Eq. (38), the time evolution will give information about the somehow
“integrated” scattering amplitudes. However, by initializing wave-functions with reason-
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Figure 8 By partitioning the sphere in uniform patches, it is possible
to associate an ancilla to each individual patch, allowing for the
determination of the scattering probability in a three-dimensional
scattering

ably small variance around the desired value of momentum, it is possible to obtain good
estimates.

We conclude this section by discussing a possible generalization of this protocol to
higher dimensions. It is well-known that the one-dimensional scattering is inherently dif-
ferent from the higher-dimensional counterpart, since in one dimension a particle can
only move to the left or right, while in three dimensions it can scatter on a solid angle.
It is anyway possible to reformulate the one-dimensional scattering problem in a three-
dimensional form, as clearly discussed in [25] and reviewed in Appendix A. This paral-
lelism hints at a possible generalization of our protocol to higher dimensions. While it is
not the purpose of this paper to devise an optimized protocol for the three-dimensional
scattering, we can point out a simple protocol which applies neatly to this case. We observe
that one can couple the system to an ancillary qubit to a particular direction. Indeed, in
one dimension there is only one direction and therefore only one qubit is needed. Gener-
alizing to the three-dimesnional case, we can tessellate the sphere (Fig. 8) and associate to
each patch an ancillary qubit. By measuring all the ancillas we can produce an histogram,
containing the probability of detecting a particle within a unit of solid angle. This allows
for the reconstruction of the full scattering amplitude. While this protocol may be not op-
timal in terms of resources, it shows the flexibility of our approach and points out to an
interesting direction for future investigations.

5 Conclusions
Motivated by the current effort in computing scattering amplitudes using digital quantum
simulation, in this paper we considered the scattering of a one-dimensional particle with
a localized potential. We have shown how to reconstruct the values of scattering ampli-
tudes, i.e. reflection and transmission coefficients Rk and Tk , through the coupling of the
particle with an ancillary spin-1/2. Due to the unitarity of the scattering process, we were
able to successfully encode the values of reflection and transmission amplitudes in the an-
cillary qubit through a properly fine-tuned interaction, as discussed in Sect. 3. It is then
possible to reconstruct tomographically the state of the spin from many measurements of
the polarizations, i.e. to obtain the values of reflection and transmission amplitudes. Cru-
cially, our protocol does determine not only |Rk|2 and |Tk|2, but also the relative phase
between the amplitudes.

We then discussed the implementation of this ideal experiment in a digital quantum
simulation, by mapping the position of the particle into a register of n qubits. The al-
gorithm takes as input the initial wave-function and the potential. From the former we
construct an initial state, which we map, through a Trotter-Suzuki decomposition of the



Mussardo et al. EPJ Quantum Technology           (2024) 11:65 Page 14 of 23

Schrödinger Hamiltonian, to a final state. The number of gates necessary to implement
this time-evolution can be exponentially large for a general wave-function and potential.
However, as discussed in Appendix B, the gate requirement can be downsized by requir-
ing that the initial wave-function to be peaked in momentum and position space and the
potential to be short-ranged, as it is usually the case in quantum mechanics textbooks.

The ideal experiment we devised amounts, in the digital simulation, to the introduction
of an ancillary qubit and the application of a C-NOT operation, controlled by the sign of
the momentum. However, since the sign of momentum is by itself a spin-1/2, the infor-
mation about reflection and transmission amplitudes can be reconstructed by the readout
of such spin. In particular this can be achieved by looking at the expectation values of 〈Z〉
and 〈X〉, the latter accessible by the application of an Hadamard gate to only one qubit.

While it is well-known that in quantum mechanics only eigenvalues of Hermitian oper-
ators can be measured, there are other physical properties of a system that can be recon-
structed by repeating several times the same implementation of the process. Our result
exploits this general fact, i.e. we determine the scattering quantities by repeating the par-
ticle scattering a statistically significant amount of times.

In this work, we focused on the one-dimensional case. The analysis of the protocol sug-
gests that one can generalize it to higher dimensions, as discussed in Sect. 4.4. It may
also be possible that the symmetries of the problem can inspire more efficient quantum
algorithms to extract quantities relevant to scattering. As an example, one could study
the expansion of the scattering amplitude in partial waves and couple the ancillary qubits
to them rather than to the directions of the tessellated solid angle. Our study in one-
dimension and its possible extensions to higher dimensions is then setting a conveninent
basis for the study of scattering amplitudes in interacting theories through digital quantum
simulation.

Appendix A: S-Matrix theory of a localized potential
Although the S-matrix of the one-dimensional particle reduces to elementary linear alge-
bra, it contains fundamental physical features, which are the cornerstones of the scattering
theory in many-body quantum systems and in quantum field theory. Inspired by [23, 25],
we briefly review the scattering properties of a particle interacting with a short-ranged
potential.

As a paradigmatic example, we consider the familiar δ-potential

V (x) = gδ(x – y). (A1)

Its eigenfunction ϕk(x) of energy E = �
2k2/2m is piece-wise defined

ϕk(x) =

⎧
⎨

⎩

Aeikx + Be–ikx, x ≤ y,

Ceikx + De–ikx, x ≥ y.
(A2)

Here A (D) is the amplitude of the incoming particle coming from the left (right) of the
potential, while C (B) is associated to the outgoing one propagating to the right (left). As
well-known, the coefficients are related by the continuity of ϕk(y) and discontinuity of its
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derivative at the same point. They read

(
A
B

)

= M

(
C
D

)

, (A3)

where the matrix

M =

[
M11 M12

M21 M22

]

=

[
1 + iηk,g iηk,ge–ik2y

–iηk,geik2y 1 – iηk,g

]

, (A4)

with ηk,g = m
�2

g
k , is easily seen to be of determinant 1 and connects the amplitudes on the

left to the ones on the right of the potential.
On the other hand, the S-matrix connects incoming and outgoing amplitudes, and is

defined – up to permutations of the rows and columns – as

(
B
C

)

= S(k)

(
A
D

)

. (A5)

The matrix S is unitary (S–1 = S†) due to the conservation of the currents: |B|2 + |C|2 =
|A|2 + |D|2. Moreover, it is also symmetric because of time-reversal for real potentials.
Also, parity at x = y gives an additional constraint on the diagonal entries: S11 = S22e4iky.
For the δ-potential the S-matrix reads

S(k) =

[
S11 S12

S21 S22

]

=

⎡

⎣
– iηk,g

1+iηk,g
eik2y 1

1+iηk,g
1

1+iηk,g
– iηk,g

1+iηk,g
e–ik2y

⎤

⎦ . (A6)

From it we can immediately read the reflection and transmission amplitudes:

Rk = S11 =
M21

M11
, Tk = S21 =

1
M11

. (A7)

In considering ϕ–k(x), we notice that the role of incident and escaping waves are swapped
and S(–k) = S(k)–1. Therefore

R–k =
(
S†

)

11 = R∗
k , T–k =

(
S†

)

21 = T ∗
k , (A8)

from which we obtain

RkR–k + TkT–k = 1, (A9)

which reduces to Eq. (2), the S-matrix being unitary and symmetric (also equivalent to
saying that the column vector e1 = (S11, S21) is of unit norm). Notice that this result is
independent of any symmetry of the potential: only conservation of probability currents
and a real short-ranged potential are required.

If we assume the potential to be symmetric at the origin, we can easily connect Rk and
Tk to the phase shifts, which arise naturally in the partial wave expansion of the three-
dimensional spherically symmetric scattering, see e.g. [35]. In one dimension, if parity is
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a symmetry of the potential, eigenfunctions associated to energy E = �
2k2/2m can be split

into even ψ0
k (x) and odd ψ1

k (x). Their asymptotic behavior reads

ψ0
k (x) ∼

⎧
⎨

⎩

cos(kx – δ0), x < –a/2,

cos(kx + δ0), x > a/2,
ψ1

k (x) ∼
⎧
⎨

⎩

sin(kx – δ1), x < –a/2,

sin(kx + δ1), x > a/2.
(A10)

Here, 2δ0 and 2δ1 are the one-dimensional analogue of the phase shifts one encounters in
higher dimensions. In polar coordinates x = r cos θ , θ = {0,π}, it is possible to rewrite the
wavefunction associated to an incident wave from the left Eq. (1) as

ϕ(x) ∼ eikx + g(θ )eikr , r > a/2, (A11)

where the angular dependence g(θ ) is related to both phase shifts and the coefficients of
reflection and transmission. In one dimension it assumes only two values, since only two
directions are possible in the outcome of scattering:

g(0) = Tk – 1 =
∑

�=0,1

ieiδ� sin δ�, g(π) = Rk =
∑

�=0,1

i(–1)�eiδ� sin δ�. (A12)

While in one dimension spherical waves are dimensionless, in three dimensions they as-
sume dimension of inverse length, due to their normalization:

ϕ3D ∼ eikx +
f (θ )

r
eikr . (A13)

In three dimensions f (θ ) is a scattering amplitude having dimensions of length. Its one-
dimensional analogue is

f (θ ) =
g(θ )

ik
= k–1

∑

�=0,1

ei�θ eiδ� sin δ�, (A14)

which satisfies the optical theorem

∑

θ=0,π

∣
∣f (θ )

∣
∣2 = 2k–1 Im f (0). (A15)

Crucially, the S-matrix can be written in different but equivalent ways, depending on
the chosen basis of wave-functions. For example, Eq. (A5) assumes incoming waves from
the left and right as basis. To see this, it is useful to adopt a slightly modified version of
Eq. (A11). Generically incident waves ψ+ from the left (θ = 0) and right (θ = π ) can be
compactly written as a combination of an incident wave e–ikr and an outgoing one eikr :

ψ+
θ ′ (x) = δθ ,π–θ ′e–ikr +

[
g
(
θ ′ – θ

)
+ δθ ,θ ′

]
eikr (A16)

for r > �/2. Any orthonormal combination of ψ+
0 and ψ+

π is a valid basis. Let such basis be
ψ+

α , with α = 1, 2:

ψ+
α (x) = φα(0)ψ+

0 (x) + φα(π)ψ+
π (x), (A17)
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with the coefficients ψα(θ ) to be orthonormal functions. The S-matrix relates the ampli-
tudes of incoming and outgoing amplitudes:

∑

θ ′

[
g
(
θ ′ – θ

)
+ δθ ,θ ′

]
φα

(
θ ′) =

∑

γ

Sαγ φγ (θ ). (A18)

We find the matrix elements Sαβ by multiplying both terms of the latter equation by φ∗
β (θ )

and summing over θ :

Sαβ =
∑

θ

∑

θ ′
φ∗

β (θ )
[
g
(
θ ′ – θ

)
+ δθ ,θ ′

]
φα

(
θ ′). (A19)

On the other hand, outgoing waves

ψ–
α (θ ) ≡

∑

γ

ψ+
γ S∗

γ α (A20)

coincide with the solutions of the Schrödinger equation obtained by time-reversal symme-
try and reflection, which maps left to right: [ψ+

α (π – θ )]∗. From their equality, we deduce
that S is symmetric: the transitions α → β and β → α happen with equal probabilities.

If we specialize to the basis of incident waves ψ+
0 and ψ+

π it is easy to see that the asso-
ciated S matrix has form

S =

[
Tk Rk

Rk Tk

]

, (A21)

coincident to Eq. (A5) up to permutations of rows and columns. On the other hand if we
write even and odd wave-functions in terms of incoming and outgoing waves

ψ�(x) = –
[
ei�(π–θ)e–ikr + e2iδ�ei�θ eikr], (A22)

it is immediate to see that the S-matrix is diagonal and its entries are

S��′ = e2iδ�δ�,�′ . (A23)

The latter equation closes the circle. In one dimension the even and odd phase shifts are
the eigenvalues of the S-matrix and can be extracted from the reflection and transmission
coefficients through Eq. (A12).

As an example, we can compute the phase shifts for the δ-potential centered at the ori-
gin:

tan δ0 = –ηk,g , δ1 = 0. (A24)

Indeed, the phase shift associated with the odd solution must vanish because of the conti-
nuity at the origin. This means that for a δ-potential, only the component of a wave coming
from the even solution contributes to the scattering. A consequence of this is that f (θ ) is
independent of θ , since

g(θ ) = Tk – 1 = Rk =
1
2
(
e2iδ0 – 1

)
=

1 – iηk,g

1 + iηk,g
. (A25)



Mussardo et al. EPJ Quantum Technology           (2024) 11:65 Page 18 of 23

Figure 9 Approximation of a generic short-ranged
potential through piecewise constant barriers

A.1 Approximation of a generic potential with δ-pulses
Any localized potential in the range –a/2 ≤ x ≤ a/2 can be approximated by piece-wise
constant functions, see e.g. Fig. 9. However, if we sample a sufficiently large number of
points N of the potential, a good approximation is also given by a sequence of pulses

VN (x) =
N–1∑

j=0

Vj
a
N

δ

(

x +
a
2

–
j

N
a
)

, (A26)

with Vj = V (– a
2 + j

N a).
For this potential, the amplitudes of the waves from the left (x ≤ –a/2) and from the right

(x ≥ a/2) are easily connected. First of all, notice that for δ-potential considered previously
we can rewrite

(
Aeiky

Be–iky

)

= M0

(
Ceiky

De–iky

)

, (A27)

M0 =

[
1 + iηk,g iηk,g

–iηk,g 1 – iηk,g

]

, (A28)

where M0 is the matrix associated to the same potential, however located at the origin.
Hence each time the particle reaches xj = –a/2 + ja/N , a matrix M0 with parameter

ηk,j =
2m
�2

a
N

Vj

2k
(A29)

connects the amplitudes. Then, the incoming wave travels a distance �x = a/N and again
a scattering with matrix M0 occurs. Defining the matrices

M(j)
0 =

[
1 + iηk,j iηk,j

–iηk,j 1 – iηk,j

]

, (A30)

D =

[
e–ika/N 0

0 eika/N

]

, (A31)

U =

[
eika/2 0

0 e–ika/2

]

, (A32)

allows us writing

(
A
B

)

= MN

(
C
D

)

, (A33)
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Figure 10 Plots of the approximation error of modulus (a) and phase (b) for the reflection coefficient of a
potential barrier of opacity

√
2mV0/�2a = 1 and energy E/V0 = 1/

√
2 for N ≤ 200

MN = U

[N–1∏

j=0

M(j)
0 D

]

U . (A34)

The reflection and transmission coefficients can be easily read from the elements of MN ,
as in Eq. (A7).

Despite the simplicity of this method, the resummation of the single matrix elements is
nontrivial. Even for the prototypical case of the potential barrier of height V0, the ampli-
tudes for E < V0 contain nontrivial hyperbolic functions, which are purely due to tunneling
in the classically prohibited region. The matrix M reads

M =

[
(coshκa + i

2ε– sinhκa)eika i
2ε+ sinhκa

– i
2ε+ sinhκa (coshκa – i

2ε– sinhκa)e–ika

]

, (A35)

with κ =
√

2m(V0 – E)/�2 and ε± = κ
k ± k

κ
.

This feature is completely absent in presence of finitely many δ-potentials, since in ev-
ery region of space the eigenfunction is a superposition of plane waves and can only be
retrieved in the limit of infinite N . However, as can be seen from Fig. 10, the convergence
is incredibly fast both in the modulus and the phase, even for a sampling of a few hundred
points.

Our method can also be applied to attractive potentials, for the M0 matrix holds for any
sign of the coupling. It is then possible to efficiently evaluate the transmission probability
|Tk|2, which presents resonances. For a potential barrier of height –V0, a simple analytic
continuation of the matrix M shows that resonances (|Tk|2 = 1) are to be found at values
of

√
2m(V0 + E)/�2a = �π for integer � and minima at

√
2m(V0 + E)/�2a = �π

2 (Fig. 11).

Appendix B: Digital implementation of the time-evolution operators
In this appendix, we discuss some specific constructions for the phase shift Eq. (32) of
Sect. 4 and show that there are indeed some cases in which an efficient implementation
exists, for certain kind of functions.

As a first example, we consider the linear phase shift g(α)
L (j) = αj, for real α:

|ψ〉 =
2n–1∑

j=0

cj |j〉 → |ψ (α)
L 〉 =

2n–1∑

j=0

cjeiαj |j〉 . (B1)
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Figure 11 Plots of the transmission probability for various values of
√
2mV0/�2a (0.1, 10 and 100 respectively

for (a), (b) and (c)) for an attractive potential barrier, using the sampling method with N = 1000

Figure 12 Realization of the linear phase-shift Eq. (B1). Here G(α)
�

is
defined in Eq. (B3)

The construction is immediate by considering that in the convention Eq. (16) we may
express, as remarked in [28],

eiαj =
n∏

�=1

eiαj�2n–�
. (B2)

As such the circuit implementing the linear phase shift is given in terms of the building-
block matrix

G(α)
� =

[
1 0
0 eiα2n–�

]

(B3)

and shown in Fig. 12. Indeed, this particular transformation requires O(n) gates, without
controlled operations.

Allowing for the use of controlled operations, one can construct the operator imple-
menting a quadratic phase-shift g(α)

Q (j) = αj2, i.e. the unitary transformation

|ψ〉 =
2n–1∑

j=0

cj |j〉 → |ψ (α)
Q 〉 =

2n–1∑

j=0

cjeiαj2 |j〉 . (B4)

The implementation with gates follows directly from the identity

eiαj2 =
n∏

�1=1

n∏

�2=1

eiαj�1 j�2 22n–�1–�2 . (B5)
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Figure 13 Realization of the quadratic phase-shift Eq. (B4) for the case for n = 3 qubits. Here G(α)
�1,�2

is defined
in Eq. (B6)

In principle n2 gates of the form

G(α)
�1,�2

=

[
1 0
0 eiα22n–(�1+�2)

]

. (B6)

are sufficient: n unitaries of the type G(α)
�,� and (n2 – n) controlled operations of the type

G(α)
�1,�2

. In Fig. 13 we present a realization of the quadratic phase-shift for the case for n = 3
qubits, but the generalization to arbitrary n is straightforward.

The implementation of generic powers g(j) = jp follows directly from the quadratic case,
if one wants to use controlled operations with (p–1) control qubits and the building-block
unitary

G(α)
�1,...,�p =

[
1 0
0 eiα2pn–(�1+···+�p)

]

. (B7)

The linear phase shift g(α)
L (j) and the quadratic one g(α)

Q (j) are the building blocks to im-
plement the kinetic operator Kδτ of Sect. 4. The general structure of such operator is,
because of Eq. (26),

K̂(α) |k〉 =

⎧
⎨

⎩

eiαk2 |k〉 , if k = {0, . . . , 2n–1 – 1},
eiα(2n–k)2 |k〉 , if k = {2n–1, . . . , 2n – 1}.

(B8)

We recover Kδτ when α = –γ (2π)2δτ . Moreover, by expanding the square in the latter
equation, it is immediate to assign the role of a control to the bit k1; indeed

K̂(α) |k〉 = eiα(k2...kn)2
eδk1,1[–iα(2k2...kn–22n–2)] |k〉 . (B9)

Hence Kτ can be implemented with n2 – n + 2 gates (either single-qubit phase shifts or
controlled with only one control), i.e. is still O(n2). A circuit representation of the kinetic
gate is given in Fig. 14.
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Figure 14 Implementation of the kinetic operator Eq. (B8), assuming that linear (Eq. (B1)) and quadratic (Eq.
(B4)) phase shifts are used as subroutines. The convention for the representation of bits is given in Eq. (18)
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