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Abstract
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice,
after the ground-state is excited by a single spontaneous emission event, i.e. after an
absorption and re-emission of a lattice photon. This is an important fundamental
source of decoherence for current experiments, and understanding the resulting
dynamics and changes in the many-body state is important for controlling heating in
quantum simulators. Previously it was found that in the superfluid regime, simple
observables relax to values that can be described by a thermal distribution on
experimental time-scales, and that this breaks down for strong interactions (in the
Mott insulator regime). Here we expand on this result, investigating the relaxation of
the momentum distribution as a function of time, and discussing the relationship to
eigenstate thermalization. For the strongly interacting limit, we provide an analytical
analysis for the behavior of the system, based on an effective low-energy Hamiltonian
in which the dynamics can be understood based on correlated doublon-holon pairs.

Keywords: thermalization; optical lattices; spontaneous emissions; Bose-Hubbard
model

1 Introduction
An important fundamental question in many-body quantummechanics is to what extent
and under which conditions an isolated system perturbed away from equilibrium will un-
dergo thermalization, in the sense that at long times the system will reach a steady state
where simple observables equal the values for a thermal distribution [–]. Recently it has
been possible to observe integrable dynamics for strongly interacting cold gases confined
to move in one dimension [], and thus reach regimes where systems either do not ther-
malize in this standard sense [] or otherwise undergo generalized thermalization [, ].
These fundamental questions also have an important impact on the application of cold

atoms as quantum simulators [, ]. Development in experiments with these systems
has reached a stage where it is possible to tailor interesting many-body Hamiltonians,
and study the many-body physics of corresponding ground states. However, some of the
most interesting physical regimes require the realization of states with small energy gaps,
requiring exceptionally low temperatures and entropies, which provide a key challenge for
current experiments []. This has been particularly true in attempts to observe quantum
magnetism in optical lattices within strongly interacting regimes |U| � J , where U is the
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on-site interaction energy, and J/� indicates the tunneling amplitude for particles moving
between neighboring sites. There, magnetic order in multi-species mixtures is driven by
terms of the order of J/U , which is typically small for current experiments [–].
In this context, it is very important to understand and control the many-body effects of

competing heating processes in experiments. Previously, it has often been assumed that
all of the energy added to the system will be thermalized, causing an effective increase
in temperature. However, in regimes in which the system does not thermalize excitations
entirely (or for some types of excitations, at all), the behavior is more complex. A simple
example where excitations cannot thermalize on typical experimental timescales is given
by spontaneous emission events (incoherent light scattering). In such processes, the main
contribution to the increase in the average energy of the system as a function of time comes
from atoms being excited to higher Bloch bands of an optical lattice [–]. Because the
bandgap is usually much larger than the typical energy scales U and J of dynamics in the
lowest band, it is not possible for the system to thermalize most of the energy added to
the system as a function of time.
At the same time, understanding this process ismademore complex by the fact that pro-

cesses exciting particles to higher Bloch bands are rare compared with processes leaving
particles in the lowest band in typical experiments [, ]. As a result, the dynamics can
actually be dominated by heating in the lowest band of the lattice, the basic effects of which
have been studied in several recent articles for bosons [, , –] and for fermions
[–]. It is then natural to ask, in particular, whether the system can thermalize after
spontaneous emission events that leave atoms in the lowest band.
In this article, we study the interplay between spontaneous emissions and thermaliza-

tion in detail, asking under what conditions key simple quantities such as the quasimo-
mentumdistribution and the kinetic energy relax to values given by a thermal distribution.
In each case, we ask this question in a practical context by fixing a thermal distribution
such that we take a canonical ensemble with the temperature T chosen so that the expec-
tation value of the energy in the thermal distribution matches the expectation value of the
energy after a spontaneous emission event. In the case of strong interactions, we might
expect that the system reaches integrable limits where the system does not thermalize.
On the other hand, one might also expect that as in general, the Bose-Hubbard Hamil-
tonian is non-integrable, that outside the special cases of strong interactions (U/J → ∞)
and non-interacting systems (U = ), thermalization would essentially always occur.
Instead, we find that this generalization is not universally applicable. It is important to

note that spontaneous emissions correspond to local quenches for the many-body state,
leading to population of low-lying excited states. As we showed previously [], after a
spontaneous emission, depending on the parameter regime and the corresponding dif-
ferent characteristics of the low-energy spectrum: either (i) the system relaxes over short
times to thermal values of the quasimomentum distribution and kinetic energy, or (ii) on
short timescales, the system relaxes to states that are clearly non-thermal, even if all atoms
remain in the lowest Bloch band. The latter regime was found to occur if the interactions
are strong enough so that the ground-state of the system corresponds to a Mott insulator
state. Below we elaborate on these results especially for the quasimomentum distribution,
and discuss their interpretation in terms of eigenstate thermalization.
In the limit where the system is close to an ideal Mott-insulator (a product state with

a fixed number of particles per cite) and in the case of unit filing, one can describe the
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dynamics of the system in an effective model, where one restricts the local Hilbert space
to having a maximum of two particles per site. The low-lying excitations can then be de-
scribed as correlated pairs of holes (“holons”) and doubly occupied sites (“doublons”) [,
]. Here we use this approximation to show that no thermalization is present for sponta-
neous emission in this limit. We compare our result to exact numerical calculations either
using exact diagonalization in small systems, or by making use of t-DMRG techniques
[–].
This article is organized as follows.We begin by introducing spontaneous emissions and

thermalization in these systems in Section . Then, in Section  we review the explana-
tion of the basic behavior we find in terms of the eigenstate thermalization. In Section 
we discuss how the behavior can be understood in the strongly interacting limit, making
predictions that could be observed for the propagation of excitations when the system
does not thermalize in that limit. In Section  we then provide a summary and outlook.

2 Thermalization of spontaneous emissions
Spontaneous emissions are a fundamental source of heating in optical dipole potentials
[, ], and one of the key contributing heating sources in current experiments with cold
atoms in optical lattices [, ]. As shown in Ref. [], a multi-band many-body master
equation can be derived to describe this process in the case of far detuned lattice light.
An adiabatic elimination of the electronic excited states leads to an equation for atoms in
their electronic ground states. Taking this, and assuming the typical experimental case in
which the lattice spacing a is comparable to the wavelength of scattered photons, a = λ/,
the dynamics of the many-body density operator ρ follows a master equation of the form
(� ≡ ), ρ̇ = –i[HMB,ρ] + Lρ . Here HMB is a multi-band Bose-Hubbard Hamiltonian and
Lρ includes dissipative Lindblad terms with on-site jump operators ∝ (b[n]i )†b[m]

i . Here,
b[n]i is the bosonic annihilation operator at site i, for a particle in bandm.
For relatively deep optical lattices, transition rates for inter-band processes coupling

neighboring Bloch bands are strongly suppressed by the square of the Lamb-Dicke pa-
rameter, η = πaT /λ. For a typical experiment with a lattice depth V ≈ ER [ER =
π

�
/(mλ), where m is the mass of the atom], η ∼ .. In the usual case of a red-

detuned optical lattice the dominant processes are thus intra-band processes, which re-
turn the atoms to their initial Bloch band. Provided we initially consider the system to be
in the lowest band, processes accessing higher Bloch bands are suppressed by a factor of
the order η or greater, and the master equation for the D model simplifies to:

ρ̇ = –i [H ,ρ] –
γ


∑
i

[
ni, [ni,ρ]

]
, ()

where ni = b†i bi is the particle number operator for the lowest band, and γ is the scattering
rate. The Hamiltonian is the usual single band Bose-Hubbard Hamiltonian

H = –J
∑
i

(
b†i bi+ + b†i+bi

)
+
U


∑
i

ni(ni – ). ()

In the following we will focus on a system with M sites and N =M particles, so that the
filling is n̄ = N/M = . In this case the system undergoes a ground-state quantum phase
transition between a superfluid (SF) and a Mott insulating (MI) state at the critical value,
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Figure 1 Example of heating and relaxation dynamics.We consider a system with N = 48 particles on
M = 48 sites and U = 2J that is initially in its ground state and subjected to heating with different scattering
rates γ0 for a short time of tJ = 1, as sketched in panel (a). (b) Depending on γ0 this leads to an increase in
energy. (c) Evolution of the quasi-momentum distribution nq during the heating period (γ0 = 0.06J). The tails
are lifted due to the localization of particles. (d) Relaxation dynamics of nq after the heating is switched off.
The system relaxes to a broadened distribution at tJ = 5 (t-DMRG results, bond-dimension, D = 256, 500
quantum trajectories). (e/f) Relaxation of a large q component of the quasi-momentum distribution after a
single spontaneous emission on an arbitrary site (we consider a weighted ensemble average of jumps on the
different sites). The dashed horizontal line indicates the equilibrium value (Monte-Carlo calculation).
Thermalization only occurs in the superfluid regime (e), and not in the Mott insulating regime (f) [t-DMRG
results, bond-dimension, D = 512, 256 for (e), (f )].

which was estimated to be Uc ≈ .()J [, ]. The underlying physics of the lattice-
photon scattering process can be summarized as the environment obtaining information
about the position of an atom. Thereby the atoms are localized on the length-scale of a
single lattice-site size.
Numerically we can fully simulate the master equation () also for large D systems by

combining t-DMRG techniques with a Monte-Carlo sampling over quantum trajectories
[–]. There, the density matrix is obtained from a statistical average over many tra-
jectories with randomly applied jump operators []. To give an example, in Figure  we
plot the dynamics for the evolution under equation (). We start in the ground-state for a
system with U = J (SF regime,M = ). Then we turn on light scattering for a short time
up to tJ =  and for different values of γ = γ (illustrated in Figure (a)). This leads to an
increase in energy (Figure (b)). Once the heating is switched off, the system then relaxes.
This relaxation is for example seen when looking at the evolution of the quasi-momentum
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distribution

nq =

M

∑
n,m

e–iq(n–m)〈b†nbm〉
. ()

During the heating period the localization of particles leads to a “lifting” of tails of this
distribution, as seen in Figure (c). Once the heating is switched off, the high quasi-
momentum components become redistributed and the system is relaxing to a broadened
distribution, depicted in Figure (d). The question whether the system thermalizes or not
depends now on the shape of this distribution. In the case that the steady state distribu-
tion coincides with a Boltzmann distribution (in themany-body eigenstates) for a temper-
ature corresponding to the same mean energy, we call the system thermalized, otherwise
we don’t. Obviously, the question of thermalization is connected to the observable under
consideration. In Ref. [] it was found that for example the tails of the quasi-momentum
and the kinetic energy Ekin = 〈Hkin〉 = –J

∑
i〈b†i bi+〉 + 〈b†i+bi〉 thermalize on experimen-

tally relevant time-scales in the SF regime and that this thermalization breaks down in the
MI.
Here, we demonstrate a specific example of this in Figures (e),(f ). There we show re-

laxation of a high-q component of the quasimomentum distribution, q = π/, in a
system with M =  lattice sites. We can clearly see that after a short period of time, this
component relaxes to its value in a corresponding thermal distribution provided that we
initially start in a superfluid state with U/J = . In the MI limit, we see that the behav-
ior is similar, in so far as there is a rapid relaxation of this value of quasimomentum on
short times. However, this leads to a value that is markedly different to the corresponding
thermal value. It is naturally possible that in this regime, there are processes on very long
timescales that will eventually lead to thermalization of this quantity. But it is clear that on
theMI side of the phase transition, the system exhibits a qualitatively different behavior in
terms of how close it is to thermal distributions on the scale of a few tunnelling times. This
will significantly impact the ability of the system to thermalize energy added by heating
on the timescales of the heating process itself.
We note that the relaxation of the quasimomentum distribution could be directly ob-

served (and compared to a thermal distribution) in a realistic experiment. Here one could
use a near-resonant laser beam that is switched on for a particular time and provides the
necessary heating through spontaneous emissions. In contrast to our calculations such
an experiment would not be limited to relatively low heating rates, i.e. a small number of
single spontaneous emissions. Thus, the discrepancies in the tails of the quasimomentum
distribution from thermal values can be significantly larger than for the single spontaneous
emission event considered in Figures (e),(f ).
It is important to note that in the regimewhere the system is relaxing, the thermalization

and all of the corresponding dynamics is determined by unitary closed system dynamics
alone. In the remainder of this paper we will simplify the question of thermalization to
the coherent dynamics after a single spontaneous emission event, i.e. we ask whether ex-
pectation values of observables relax to thermal values in a unitary time-dynamics after
we apply a single quantum jump. Thus, we consider a unitary time-evolution of an initial
state

∣∣ψl
(
t = +

)〉
=

nl|ψg〉
‖nl|ψg〉‖ , ()
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where |ψg〉 denotes the ground-state of the system, and then take a stochastic average over
the sites l, which is weighted proportional to the square of the density on site l, 〈ψg |nl |ψg〉.
The mechanism of this thermalization of closed quantum systems can be explained via
eigenstate thermalizaton, a mechanism which we will review in the next section.

3 Eigenstate thermalization
The question whether unitary time-dynamics leads to thermalization or not can be re-
phrased in terms of the “eigenstate thermalization” [–], which we will briefly review
here. Consider the situation where the initial state is not an eigenstate of the Hamiltonian
(such as it is the case after a spontaneous emission). The state can be expanded into energy
eigenstates defined viaH|α〉 = Eα|α〉, |ψ〉 = ∑

α cα|α〉, and the time-evolution is thus given
by

∣∣ψ(t)
〉
=

∑
α

e–
i
�
Eα tcα|α〉. ()

We note that the following discussion is restricted to non-degenerate eigenstates, which
is the natural situation in large quantum systems [] and also applies to the situation
studied in this paper. Then the time-dependent expectation value of any observable Ô is

〈Ô〉t =
〈
ψ(t)

∣∣Ô∣∣ψ(t)
〉
=

∑
α,β

e–
i
�
(Eα–Eβ )tc∗βcα〈β|Ô|α〉. ()

If the system relaxes into a steady state, this steady state must be identical to the long-time
average

〈Ô〉t = lim
T→∞


T

∫ T


dt

〈
ψ(t)

∣∣Ô∣∣ψ(t)
〉
=

∑
α

|cα|〈α|Ô|α〉. ()

Thus, the value of the steady state expectation (if such a steady state is developed) only
depends on two variables: (i) The expansion coefficients of the initial state, cα , and (ii) the
expectation values of the energy-eigenstates with the particular observable, 〈α|Ô|α〉. The
eigenstate thermalization hypothesis states, that if the eigenenergy expectation values of
an observable vary smoothly in the energy window defined by the cα (and the off-diagonal
〈α|Ô|β〉, α = β are small), the system relaxes into a state for which the observable can be
described with a micro-canonical ensemble [, ].
In our situation, spontaneous emission only adds a small amount of energy to the sys-

tem. Thus, the question whether this energy thermalizes or not will be determined by the
low-energy spectrum. Thus, we can use an exact numerical diagonalization to obtain the
lowest energy eigenstates in systems with N =M =  sites and particles. As an example,
in panels (a)-(c) of Figure  we show the matrix elements 〈α|Ô|β〉 for the kinetic energy
in the system. As observable we use the kinetic energy Ô = Hkin. The eigenvalues are or-
dered ascending according to their energy. We find that only in the SF case of U = J , the
diagonal elements vary smootly as function, while the off-diagonal elements are zero. This
verifies the findings of Ref. [], and is consistent with the breakdown of the low-energy
thermalization when entering the MI regime.
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Figure 2 Eigenstate thermalization of spontaneous emissions. (a)-(c) The matrix-elements of the kinetic
energy (N =M = 10), 〈α|Hkin|β〉/JM, in the energy eigenbasis (sorted in ascending order according to their
energy). Different panels are for increasing on-site interaction U. Only in the SF regime (U� 3.25(5)J [37]) the
diagonal elements vary smoothly with α , and allow for eigenstate thermalization. (d) The difference of the
expectations between the diagonal and the canonical ensemble corresponding to the same mean energy
after a single spontaneous emission at site i =M/2 in a system of M = 8 and M = 10 sites (errorbars are due to
the interpolation to find the canonical ensemble corresponding to the correct energy). Although finite size
effects are large the change in behavior at the quantum phase transition is evident.

In addition we plot a direct comparison of the two expectation values in Figure (d). We
can calculate the expectation value on the one hand from the diagonal ensemble and on
the other hand from a canonical ensemble with the same mean-energy. As initial state we
choose the state after a single spontaneous emission on site i =M/. Although finite size
effects play an important role in this small system, it is already obvious that a discrepancy
between the two ensembles arises when entering theMI regime. Aswas found by t-DMRG
calculations in [], this also holds for larger systems. In the next section we will calculate
the low-lying energy eigenstates exactly analytically in the limit of large interactions in the
thermodynamic limit.

4 Dynamics in the strongly interacting limit
In this section we will discuss how we can understand the dynamics analytically for the
case of strong interactions. In the extreme case of infinite U , at unit filling the particles
will be in an idealized Mott insulator state, i.e., |ψU→∞〉 = ∏

n |〉n. This state is an eigen-
state of the jump operator with eigenvalue one, so that light scattering leaving particles
in the lowest band does not change the state or introduce any extra energy to the sys-
tem. Naturally this is a trivial limit that is typically not reached in experiments, and we
go beyond this below by considering situations where the amplitude for particles to be
found on neighbouring sites is non-zero in the initial state, and light scattering can lead
to the formation of pairs consisting of a doubly occupied site and a hole (unoccupied
site).

4.1 Hard-core bosons
To lowest order, one can use an approximation in which we assume that the bosons are
essentially hard-core bosons (HCBs) []. The idea is to restrict the Hilbert space to local
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states with a maximum of one particle per site. Mathematically, this can be achieved by
using the standard Bose-Hubbard model () while additionally imposing fermionic anti-
commutation relations to the creation/annihilation operators for bosons on the same site,
{bi,b†i } = . These particles are not real fermions, since they still commute on different
sites, [bi,b†j ] = . However this can be fixed by a Jordan Wigner transformation []

bi =
i–∏
α=

eiπc
†
αcα ci, ()

where the new quasi-particles now are real fermions, {ci, c†j } = δi,j. In this picture the
Hamiltonian becomes a Hamiltonian for non-interacting fermions:

H = –J
∑
i

(
cic†i+ + c†i ci+

)
, ()

and the ground-state takes the product form |ψG〉 = ∏N
n

∑N
i Pi,n|i〉 (where |i〉 denotes the

state of a particle at site i). The jump-operators - as is true for all site-local operators -
are unaffected by the Jordan-Wigner transformation and so in this transformed notation,
b†i bi → c†i ci.
If the system has fewer particles than lattice sites, spontaneous emissions will give rise

to heating in the lowest band, as the states are not eigenstates of c†i ci, which does not com-
mute with the Hamiltonian. Simple results in this case are discussed in Ref. []. However,
in the special case of unit filling, which wewould like to treat here, the only state described
by this simple HCB form is again the trivial state with a single particle on each site, which
is an eigenstate of all operators c†i ci and c†i ci+. It is then clear that we need to go beyond
this treatment in order to understand heating in a Mott Insulator state with finite U .

4.2 Doublon/holon calculation
To study thermalization of spontaneous emission we have to go to the next order in the
approximation and allow for states with , , and  particles per site. It turns out that also in
this case approximate analytical calculations can be derived []. Assuming that the state
of the system remains close to theMott insulator statewith n̄ = , thenwith conservation of
total particle number, the lowest-order excitations will be given by combinations of doubly
occupied sites (sometimes referred to as population of particles in a second Mott Band),
and holes (in the lowest Mott Band). It is now possible to introduce creation/annihilation
operators with a vacuum given by the ideal MI state |vac〉i = |〉i as

d̃†
i |vac〉i = |〉i, ()

h̃†i |vac〉i = |〉i. ()

Since there can only be one hole or doublon on each site these quasi-particles must obey
the hard-core constraint, which can again be expressed with on-site anti-commutation
relations {d̃i, d̃†

i } =  = {h̃i, h̃†i }. Note that in principle one also has to add a constraint in
order not to have a doublon and holon on the same site. However, based on the assumption
that the total number of doubly-occupied sites and holes remains lowwewill neglect these
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terms, as was originally done in Ref. []. As in the case of the HCB model one can now
turn the quasi-particles into proper fermions via the Jordan-Wigner transformation

d̃i =
i–∏
α=

eiπd
†
αdαdi, ()

h̃i =
i–∏
α=

eiπh
†
αhαhi. ()

In the picture of these fermionic quasi-particles, the Hamiltonian reads

Hdh = U
∑
i

d†
i di – J

(

∑
i

did†
i+ +

∑
i

hih†i+ + h.c.
)

–
√
J

(∑
i

d†
i h

†
i+ –

∑
i

hidi+
)
. ()

A discrete Fourier transformation into quasi-momentum space (xj = √
M

∑
q eijqaxq, for

the operator xj, q ∈ {, π/M,  × π/M, . . . , π}) gives the quadratic Hamiltonian (up to
a constant)

H̃dh =
∑
q

(
d†
q h–q

)(
Ed(q) iEdh(q)

–iEdh(q) –Eh(q)

)(
dq
h†–q

)
. ()

The corresponding dispersion relations are given by Ed(q) = –J cos(q) + U , Eh(q) =
–J cos(q), and Edh(q) = J

√
 sin(q). This Hamiltonian can be diagonalized straightfor-

wardly by a Bogoliubov transformation

H =
∑
q

(
d†
q h–q

)
UB(q)UB(q)†

(
Ed(q) iEdh(q)

–iEdh(q) –Eh(q)

)
UB(q)UB(q)†

(
dq
h†–q

)
()

=
∑
q

(
d†
q h–q

)
UB(q)

(
εd(q) 
 –εh(q)

)
UB(q)†

(
dq
h†–q

)
()

≡
∑
q

(
c†d,q ch,–q

)(
εd(q) 
 –εh(q)

)(
cd,q
c†h,–q

)
()

=
∑
q

εd(q)c†d,qcd,q + εh(q)c†h,–qch,–q, ()

where the new fermionic quasi-particles cd/h are linear combinations of the dq and hq, i.e.
are correlated pairs of doublons and holons. The dispersion relations of the particles are
given by (assuming U > J)

εd/h(q) = ±J cos(q) +



√
J sin(q) +

[
U – J cos(q)

]. ()

The ground state in this approximation is the vacuum |vac〉, which is defined by cd/q|vac〉 =
 for all q.
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4.3 Spontaneous emission in the doublon/holon picture
Using the inverse transformation, (c†d,q, ch,–q)U

†
B(q) = (d†

q ,h–q), we can express the local par-
ticle number operator for site m, nm in the Bogoliubov frame. Applying this operator to
the ground-state, we find

nm|GS〉 = |vac〉 + 
M

∑
q,q′

(uq′vq – uqvq′ )c†d,q′c†h,–qe
ima(q–q′)|vac〉, ()

where we introduced the matrix elements of the transformation as uq = UB(q)[, ], and
vq =UB(q)[, ]. The time-evolved state after the jump is therefore

√
N

∣∣ψ(t)
〉
= |vac〉

+

M

∑
q,q′

eima(q–q′)(uq′vq – uqvq′ )e–it[εd(q
′)–εh(q)]c†d,q′c†h,–q|vac〉, ()

where N ≡ 〈GS|nm|GS〉. The initial probablity-distribution of the wavepacket w(q,q′) ≡
uq′vq – uqvq′ is proportional to

∣∣w(q,q)′∣∣ ∝ sin

[
arctan

(

√
J sin(q′)

U – J cos(q′)

)
– arctan

(

√
J sin(q)

U – J cos(q)

)]

()

and examples forU = J andU = J are depicted in Figure . The wavepackets are peaked
at opposite momenta and therefore, the jump creates holes and double occupations which
move in the opposite direction. For example, for U/J = , the wavepackets are peaked at
qa = –q′a ≈ .π and we can calculate the group-velocity from () as d

dqaεd(q)|.π ≈
.a/J .
We can test this analytical result with an exact t-DMRG time-evolution calculation after

a single jump. We compare the dynamics after a jump in the center of a system with N =
M =  site in Figure (a). There we plot the time-evolution of the number of doubly
occupied sites as a function of time. Thewhite dashed line in Figure (a) indicates the light-
cone according to the analytically expected group-velocity and is in excellent agreement
with the numerical calculations.

Figure 3 The quasimomentum distribution of the initial state that is created by a spontaneous
emission in the doublon-holon model for U = 7J (left panel) and U = 10J (right panel).

Schachenmayer et al. EPJ Quantum Technology (2015) 2:1
DOI 10.1140/epjqt15

http://www.epjquantumtechnology.com/content/1/1/15


Page 11 of 14

Figure 4 Dynamics after a single spontaneous emission. (a) Time-evolution of the probability of doubly
occupied sites after a single spontaneous emission in the center of a 48 site system with U = 10J. This
observable reveals doublon-holon pair wave-packets, which propagate freely through the system in opposite
directions until they reach the boundary (dashed white line: analytical result for the light-cone in the
thermodynamic limit). (b) Comparison of the corresponding time-evolution of the difference of the kinetic
energy to the ground-state. The grey line shows the time-independent analytical result for the
thermodynamic limit. The dots show the numerical result right after the jump and the blue line indicates the
values that develop before boundary effects become important (tJ < 5, see inset). (t-DMRG calculation
converged with D = 256, 512, nm = 6.)

4.4 Behaviour of the kinetic energy and similar variables
We now consider a specific type of observable, such as the kinetic energy, which in quasi-
momentum space and in the Bogoliubov frame can be written as O =

∑
q Oq with

Oq ≡O(q)c†d,qcd,q +O(q)c†d,qc
†
h,–q +O(q)ch,–qcd,q +O(q)ch,–qc†h,–q, ()

with matrix elements Oij for each q. Calculating the expectation value of this observable
with the time-evolved state gives

〈Ô〉(t) = 
N

∑
q

O +

N


M

∑
q,q′

(
O

(
q′) –O(q) +

∑
p

O(p)
)∣∣w(

q,q′)∣∣. ()

The important points to note are that all cross-terms corresponding to the O and O

part of the operator disappear. This is because terms such as 〈vac|ch,–pcd,pc†d,q′c†h,–q|vac〉 =
δp,q′δp,q become zero due to the symmetric form of the specific wave-packet that is created
in the jump, w(q,q′) ≡ uq′vq – uqvq′ , w(p,p) = . Similarly, Kronecker deltas in the terms
of the form 〈vac|ch,–rcd,r′c†d,pcd,pc†d,q′c†h,–q|vac〉 = δp,q′δr′ ,pδr,q lead to a cancellation of time-
dependent terms. Thus, we find that any observable of this type is time-independent after
the spontaneous emission. This is a remarkable result, given the fact that the state () is
not an eigenstate of the Hamiltonian. The effect of a jump operator here is that it puts the
system into a state whose density matrix is diagonal in the space of single doublon-holon
pair excitations, for which case these specific observables don’t evolve in time. In partic-
ular, the expectation value of observables of the form () can be effectively expressed by
a density matrix – 〈O〉 = tr(ρO) – of the form

ρ = λvac|vac〉〈vac| +
∑
q,q′

λq,q′
∣∣q,q′〉〈q,q′∣∣, ()
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where |q,q′〉 ≡ c†d,q′c†h,q|vac〉. Thus, we conclude that after a single spontaneous emission,
observables of the form () can immediately be described by the diagonal ensemble, i.e.
the effective density matrix for those observables takes a diagonal form in the basis low-
lying energy states.
As an example, let us now consider the kinetic energy operator, which can be written as

Oq = Tq =

(
–J cos[q] –i

√
J sin[q]

i
√
J sin[q] J cos[q]

)
. ()

In the thermodynamic limit, we can replace the sum over quasi-momenta with the inte-
gral, (/M)

∑
q → ∫

d(qa)/(π ), which yields

〈Ĥkin〉(t) = –M
J
U

– (M + )
(

J
U

)

+O
[(

J
U

)]
. ()

We compare this analytical result to our time-dependent t-DMRG calculations This is in
excellent agreement with our numerical results even for relatively small U/J as shown in
Figure (b).

4.5 Eigenstate expectation values
We can check the eigenstate expectation values of the kinetic energy analytically. In Ref.
[], it was found that, once one enters the MI regime, these do not coincide with the
expectation values for Boltzmann distributions (in the many-body eigenstates) with the
corresponding value of total energy anymore (cf. Section ). Now we can check whether
these agreewith our analytical calculation. Therefore, using exact diagonalizationwe com-
pute the  lowest eigenstates in a system of N =M =  sites. These are shown as dots
in Figure  for the case of U = J and U = J . In addition we add the values we obtain
analytically for the ground state (grey dot) and the branch of single doublon-holon pair ex-
citations (grey lines).We find good agreement for large interactions. Since the first branch

Figure 5 Eigenstate expectation values of the kinetic energy. Violet dots are results from an exact
diagonalization calculation in a system with N =M = 10 particles/sites. Panel (a) is for U = 10J, panel (b) for
U = 20J. The grey dot is the result for the ground-state kinetic energy from the analytical doublon-holon
calculation in the thermodynamic limit. Grey lines are expectation values for the first branch of single
doublon-holon pair excitations. For increasing U the numerical results approach the analytical result as
expected (differences arise from contributions with more than two-particles per site and finite size effects).
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converges towards the analytical calculation, we conclude that this branch indeed due to
the single doublon-holon pair excitations, which is further verified by the fact that it con-
tains M –M points. The second branch must thus correspond to two pair excitations.
Already soon after entering the MI U ∼  the gap and branches start to appear []. This
indicates that the doublon-holon calculations are indeed a good approximation even for
regimes that are not particularly deep in the MI phase.

5 Summary and outlook
In summary, we have investigated the non-equilibrium dynamics of bosons in an opti-
cal lattice in the presence of spontaneous emission events. We show clearly parameter
regimes in which the system relaxes to thermal distributions for simple quanitites (espe-
cially the quasimomentum distribution), and others where it relaxes on short timescales
to non-thermal values. We can understand this behavior by applying eigenstate thermal-
ization considerations to small systems for which we can perform exact diagonalization
calculations. We also show that we can understand the dynamics in the strongly interact-
ing limit well in terms of propagating doublon-hole pairs, which are analytically tractable.
All of these results are expected to be directly observable in ongoing experiments. In

addition to the possibility to measure quasimomentum distributions, the propagation of
doublon-holon pairs as investigated here is a key signature for the effects of spontaneous
emissions that could be measured in quantum gas microscope experiments with single-
site resolution in ways that were previously implemented for quenches within the MI
regime []. Measurements of this type could be used as a diagnostic tool for heating of
many-body states in optical lattices, which could in turn be used to improve the robustness
of quantum simulators. In the future, these studies can be continued towards thermaliza-
tion for fermions in optical lattices undergoing spontaneous emissions [–], and the
incorporation of partial thermalization from excitations to higher Bloch bands.
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