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Abstract
We discuss the noise occurring during a classical dissipative switching process as it
would be detected by a quantum bit used as a detector for noise. In particular we
study the switching-induced decoherence during escape events. We present a simple
method to obtain analytical results for the qubit dephasing and bit-flip, which goes
beyond the simple Born-Markov notion of the qubit as a spectrometer for noise but
still allows us to correlate its behavior with the noise source. These results also provide
insight into the qubit measurement process involving a switching type of detector,
showing under which conditions switching detectors can be operated fast and with
low error. In particular, the state in the end recovers from temporary bit flip errors due
to an intrinsic approximate time reversal symmetry, whereas the switching process
mostly produces low frequency pure dephasing noise.
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1 Introduction
Noise-activated switching out of a metastable state is a common phenomenon in a wide
range of physical systems, including Josephson junctions, nanomechanical devices, and
chemical reactions [, ]. Starting with Kramers seminal work [], such processes have
been studied close to equilibrium [], as well as in driven systems []. The activated es-
cape paths have been studied theoretically and observed experimentally [, ]. Due to the
multiple time scales involved, some of them very fast, observing these fluctuations remains
challenging.

Recently, noise-activated switching has gained attention due to its role in qubit detec-
tion. Examples of switching detectors include the superconducting quantum interference
device (SQUID) [–], where switching occurs between the superconducting and dissi-
pative state and is driven by quantum fluctuations, and the Josephson bifurcation ampli-
fier (JBA) [–], which has been employed in the delicate task of detecting a qubit state
in a minimally invasive fashion []. In this case, the detector can switch between differ-
ent, weakly dissipative, dynamical states based on quantum activation [] or dynamical
tunneling []. Using an appropriate choice of a reference frame, switching between such
dynamical states can also be described as escape from a static metastable well [, ].
Switching detectors are currently receiving renewed attention for their potential as mi-
crowave photon counters [–].

Switching is a highly nonlinear phenomenon, driven by large, non-equilibrium envi-
ronmental fluctuations. Consequently, the noise produced during a switching process has
long correlation times and can be very large. Its impact on a qubit is thus far outside the
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Markov paradigm and detection is far from the weak measurement scenario. Some un-
derstanding for switching-type detectors has been provided by numerical studies [, ]
and in a simplified two-state detector version in Refs. [, ]. General properties of bi-
nary outcome detectors have been discussed in []. Our approach is complementary in
taking a rather concrete model of the detector.

In this paper we propose a simple analytical method to investigate qubit decoherence
due to a switching process that can be part of a detector. Qubits are excellent spec-
trometers for quantum noise, most simply based on studying their relaxation rate [],
with a bandwidth that can be extended when dephasing and echo data are also taken
into account []. Here, we model the noise source as a classical, overdamped particle
trapped in a metastable well. This model is a strong simplification of the various de-
tectors described above, yet capturing essential elements of the underlying switching
process. These elements include that switching is a rare event and is driven by fluctu-
ations, either thermal or quantum. Here, the escape of the particle is driven by large,
rare fluctuations in the environment. We investigate the qubit dephasing and bit flips in-
duced by the switching during the escape event. We adopt the simple model of quantum
measurement that dephasing is a necessary ingredient as the real-time representation
of wavefunction collapse, whereas bit-flips are unwanted falsifications of the measure-
ment outcome. Note that these bit-flips occur if the qubit Hamiltonian and its coupling
to the detector do not commute. They can be seen as an interplay of the coherent evo-
lution of the qubit during the measurement process and the noise that is inevitable dur-
ing detection. Note that an actual detector does not have to switch - in the ‘down’ state,
the detector potential is deformed to make switching highly unlikely, leading to another
class of trajectories that stay confined during the time of the experiment. Note that the
trajectories studies here are entirely classical, quantum physics only comes in by the qubit
exposed to them, making our approach different from the quantum trajectories method
[].

2 Method
The overdamped classical particle performs Brownian motion according to

ẋ = K(x) + f (t), ()

where K is the deterministic force experienced by the particle resulting from the meta-
stable potential and f is white Gaussian noise with a probability density functional given
by []

P
[
f (t)

]
= exp

(
–

∫ tf



f (t)
D

dt
)

, ()

where we assume [] the noise intensity D to be small compared to the barrier height
�U , see Figure . The probability density functional is not normalized a priori, subse-
quent expressions have to be normalized by hand. For a noise driven trajectory it can be
obtained by substituting Eq. ()

P
[
x(t)

]
= exp

(
–

S[x(t)]
D

)
, S

[
x(t)

]
=




∫ tf


dt

(
ẋ – K(x)

). ()
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Figure 1 Prehistory probability density P(x, t) for the potential U(x), where U′(x) = –K(x), and optimal
trajectory xopt(t). Here xm,M,i are the positions of the minimum, maximum and inflection points of the
potential.

For the study of qubit decoherence during a switching event one will need expectation
values for a generic observable O of the type

O(t) =
〈
exp

(
λφ

[
x(t), s(t, t)

])〉
sw, ()

φ
[
x(t), s(t, t)

]
=

∫ tf


x(t)s(t, t) dt, ()

were s(t, t) is a time dependent generating field for computing dephasing and bit-flip as
will be detailed later. The coupling constant λ has been singled out to parameterize the
coupling to the qubit and the time t indicates when the observable is measured. Effec-
tively, it constitutes a modulation of x(t) and λ. This approach is fairly standard in stochas-
tic path integrals and the choice of s(t, t) suitable for our problem will be clarified later.
This formulation allows for the present formalism to include detectors such as the JBA,
where, in a rotating frame, the coupling between the qubit and detector becomes time
dependent and periodic. We are interested in the qubit decoherence during switching.
Thus, the averaging 〈〉sw is performed only over switching trajectories of the detector,
which satisfy the boundary conditions x() = xm and x(tf ) = xf , with xm inside and xf out-
side the metastable well. By choosing s(t, t) =  at tf > t > t, the average becomes post-
conditioned by a switching event having taken place at the final time tf , i.e., experimental
verification would need to include recording the time of the switch and post-selecting
for different times. This condition makes sure that we only study realizations of the mea-
surement when switching occurs. In order to not over-constrain the trajectories we have
verified the dependence of our result on the precise choice of xf and found minuscule
changes only.
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Since the exact switching trajectory between the initial and final point remain random,
we average over all possible paths using the weight e–S[x]/D

O(t) =
∫ (xf ,tf )

(xm,)
Dx(t) exp

(
λφ

[
x(t), s(t, t)

]
–

S[x(t)]
D

)

× P(xm, |xf , tf )–, ()

where the total switching probability

P(xm, |xf , tf ) =
∫ (xf ,tf )

(xm,)
Dx(t) exp

(
–

S[x(t)]
D

)
()

serves as a normalization.
Switching over a high barrier is a rare event and thus requires very specific noise realiza-

tions. Thus, the switching trajectories form a narrow tube in phase space centered around
an optimal trajectory [, ] which minimizes S, and for the present case satisfies

ẍopt = K(xopt)K ′(xopt), xopt() = xm, xopt(tf ) = xf . ()

This optimal trajectory is driven by an optimal realization of the environmental noise.
Thus S[x(t)] = S[xopt(t)] + S[x(t) – xopt(t)] and we perform a saddlepoint approximation
around this optimal solution

S
[
x(t)

] ≈ 


∫ tf


dt

(
ẋ(t) – �(t)x(t)), ()

where �(t) = –(K ′(x) + K(x)K ′′(x))|x=xopt(t). Divergences due to the emergence of a slow
mode on the barrier top [, ] are avoided by the appropriate choice of the initial (ki-
netic) energy,  < ẋ()/ � �U in order to satisfy the boundary conditions (). Thus, the
switching event takes place, with non-vanishing probability, within a finite time tf . Within
the saddle point approximation (), the path integral () becomes Gaussian and can be
evaluated analytically []

O(t) = exp

(
λφ

[
xopt(t) +

x(t)


, s(t, t)
])

, ()

where x is the solution of

ẍ + �x + Dλs(t, t) = , x() = x(tf ) = . ()

The two linearly independent solutions of the homogeneous part of Eq. () are

x(t) = ẋopt(t), x(t) = ẋopt(t)
∫ t



dt′

x
opt(t′)

, ()

and the full x(t) = x(t)c(t) + x(t)c(t) can be determined by variation of parameters.
We consider the case of a potential given by U(x)/� = x/ – x/, which can, for exam-

ple, approximate a Josephson junction biased at half the critical current. Note that this
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approximation does not account for retrapping of the Josephson junction in the supercur-
rent state after n full rotations of the phase, hence it applies when the bias is large enough
to precvent such retracing or phase diffusion. � = K ′(xm) plays the role of a characteristic
frequency in our effective system but physically corresponds to the damping coefficient.

3 Results
Pure dephasing: We are now going to discuss the impact of these distributions on dephas-
ing and bit-flip. The stochastic process and distribution of trajectories is the same in both
cases. Dephasing typically probes the low-frequency part of the noise spectrum. We as-
sume a qubit coupling Hamiltonian of the form

Ĥ = �ωσ̂z + ηdσ̂zx(t), ()

where x(t) is the coordinate of the classical particle. The only effect of the environment on
the qubit in this case is the irreversible decay of the phase coherence C(t) = O(t), which
can be obtained by replacing in Eq. () λ = λd = ηd/(i�) and the generating function

s(t, t) =

⎧
⎨

⎩
, t < t,

, t > t,
()

which has been chosen to fix the initial condition of the particle. This choice can be phys-
ically understood to collect all low-frequency fluctuations in the past of the evaluation of
the observable at time t.

Figure  shows that the escape process is driven by strong noise (c), with a maximum
intensity at the time where the most probable trajectory (d) reaches the inflection point
of the barrier. In the vicinity of the same point, a sharp drop in qubit coherence (a) is ob-
served. After the inflection point the motion is slowed down, and becomes diffusive close
to the barrier top. During this stage, the qubit coherence remains at an almost constant
value. We observe that the optimal noise becomes stronger for shorter values of tf . How-
ever, the strongest drop in qubit coherence was observed for the longest tf . In this case the

Figure 2 Qubit coherence during a switching event (t0 < tf ) (a), probability for an induced bit flip
error as a function of t0 (b), the corresponding most probable noise trajectory fopt(t0) and (c) most
probable switching trajectory xopt(t0) (d) for various values of tf . The particle starts from the minimum of
the well with a speed adjusted to the switching condition and a diffusion coefficient D = 0.01.
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optimal trajectory spends more time close to the barrier top, where the motion is diffusive
and broadly distributed, driven by low amplitude noise.

Bit flips: We consider a qubit-environment coupling which allows for bit flips

Ĥ = �ωσ̂z + ηf x(t)σ̂x. ()

Bit-flip typically probes the noise spectrum around the qubit frequency. Under this generic
scenario, the interplay of unitary qubit evolution and the measurement not being instan-
taneous leads to bit-flips compromising the post-measurement state. We concentrate on
the case of that unwanted evolution being slow, i.e., weak qubit-detector coupling. The
probability of noise induced transitions during a switching event at t < tf is given by the
propagator in the interaction picture (henceforth labelled by a subscript I)

P↑→↓(t) =
∣∣〈↓ ∣∣ÛI(t)

∣∣ ↑〉∣∣P(xm, |xf , tf )–, ()

where in the limit of short time and weak coupling

ÛI(t) = T exp

(∫ t


dt

HI(t)
i�

)
≈  +

∫ t


dt

HI(t)
i�

,

ĤI(t) = ηf Û†
(t)σ̂xÛ(t)x(t),

()

and Û describes the free qubit evolution. We follow the standard steps of relaxation calcu-
lations by time-dependent perturbation theory as outlines in [, ] but do not perform
the Markov approximation which would be inappropriate given the strong temporal cor-
relations of the noise. Still, the transition probability can be expressed through the auto-
correlation function of φ which in turn can be generated out of O by formal differentiation
of Eq. (). We obtain

P↑→↓(t) = lim
λf →

∂

∂λ
f

η
f

�

〈
exp

(
λf φ

[
x(t), s(t, t)R(t)

])

+ exp
(
λf φ

[
x(t), s(t, t)I(t)

])〉
sw, ()

R(t) + iI(t) =
〈↓ ∣∣Û†

(t)σ̂xÛ(t)
∣∣ ↑〉

.

In Figure (b) we observe, again, a sharp feature in P↑→↓(t) at the point in time where the
most probable trajectory (d) reaches the steepest point on the potential barrier, and the
driving noise (c) reaches it maximum strength. Despite the optimal noise being strongest
for short switching time tf , the peak in P↑→↓(t) is stronger for longer tf . Another notable
feature is the quasi-reversion of the bit flip error which occurs at this point. This feature
cannot be explained by the single, deterministic trajectory xopt alone, which causes only
the steady increase of P↑→↓(t).

4 Discussion
The results presented above can be understood from the distribution of switching trajec-
tories. We calculate the probability Ph(x, t) for the classical particle to occupy the position
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x at time t during a switching event, i.e., a prehistory density distribution []

Ph(x, t) =
P(xm, |x, t)P(x, t|xf , tf )

P(xm, |xf , tf )
. ()

Within the approximation (), the probability for a transition between any pair of points
(x, t) and (x, t), with t, < tf reads

P(x, t|x, t) =
∫ (δx,t)

(δx,t)
Dx(t) exp

(
–

S[xopt(t)]
 + S[x(t)]


D

)
, ()

where S[x(t)]
 implies that the time integral is taken between t and t and δx, = x, –

xopt(t,). One can show that

P(x, t|x, t) = exp

(
–

S[xopt(t)]
 + S[xb(t)]


D

)
F(t|t), ()

where ẍb + �(t)xb(t) =  and xb(t,) = δx, and

F(t|t) =
∫ (,t)

(,t)
Dx(t) exp

(
–

S[x(t)]
D

)

=
(

πDẋopt(t)ẋopt(t)
∫ t

t

dt
ẋ

opt(t)

)–/

. ()

We obtain a Gaussian distribution, centered around xopt(t)

Ph(x, t) =
√

πw(t)
exp

(
–

(x – xopt(t))

w(t)

)
, ()

where w(t) = F(|tf )/(F(|t)F(t|tf )).
Figures  and  reveal a narrow tube of trajectories close to the bottom of the well, fol-

lowed by a strong widening of the distribution in the process of climbing up the potential

Figure 3 Width of the prehistory probability distribution Ph(x, t) (a) and optimal trajectory (b) for a
particle starting from the minimum at rest, parameters as in previous figure.
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barrier. This event is driven by a sharp noise pulse. On the barrier top we see again a
fairly localized density distribution, again driven by low-amplitude noise. The tube nar-
rows even more on the outer side of the barrier. These results are in agreement with the
findings of Ref. [], for a different system. It should be emphasized that this narrow tube
is due to the fact that the necessary realization of environmental noise is a rare event in
sync with the connection to a fixed final time - if the latter were not imposed, we would
find a mixture of those tubes.

We found, see Figure  that the qubit suffers the strongest decoherence at the point in
time when the optimal trajectory reaches the steepest point on the barrier wall. This is
true for both bit flips and dephasing. The magnitude of both effects depends strongly on
the total time necessary for the switching event, such that longer tf leads to enhanced
coherence loss, and higher bit flip rate. The observed effect can be explained by the strong
widening of the prehistory distribution Ph(x, t) at the same point in time, see Figure .

The peak in P↑→↓ originates in the strong widening of the trajectory tube. Thus, large
excursions around xopt, see Figure , are very probable during this time. However, since
each of these switching trajectories must return to the narrow tube of trajectories on the
other side of the widening, i.e. in the region close to the barrier top, they all show an
approximate time reversal symmetry. In other words, part of the change to the qubit state
- the one originating from the average of the trajectory, is deterministic and is in parts
undoing itself. Thus any induced bit flip errors will be partially reversed when the particle
reaches the barrier top.

In conclusion, we have studied the interaction between a switching particle that could be
part of a detector with a qubit. We have shown how the stochastic dynamics of the detector
are correlated with the qubit. A switching detector, such as the one modeled here, presents
several qualities which makes it desirable as a nonlinear qubit detector. The strong deco-
herence suffered by the qubit as the classical particle climbs up the potential barrier affects
strongly the coherence, leading to a fast measurement. The equally strong bit flip errors
acquired during the process are reversed by the quasi time-reversal symmetry of most
trajectories.

We observe that a fast switching event causes less decoherence, despite stronger noise
being required for surmounting the barrier. Figure  reveals that longer switching time
tf allows more freedom in the choice of the particular time the particle climbs up the
potential barrier and such incoherent behavior causes decoherence between different re-
alizations of the experiment.

We note that the widening of the trajectory tube at the inflection point of the potential
appears throughout the literature on Brownian motion as a general feature of the tube of
escape trajectories out of metastable states, but the connection to quantum measurement
has not been made yet. Having identified it as the major cause for the features observed in
qubit decoherence, we expect these features to be common to various potentials. There-
fore we expect that our results have applicability to existing experimental setups, e.g. the
JBA and the DC-SQUID.
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