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Abstract
We propose a method for the efficient quantum simulation of fermionic systems with
superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping,
Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or
direct capacitive couplings. We apply our method to the paradigmatic cases of 1D
and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest
neighbours. Furthermore, we propose an optimal architecture for this model and
discuss the benchmarking of the simulations in realistic circuit quantum
electrodynamics setups.
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1 Background
Quantum simulations are one of the most promising research fields in quantum infor-
mation, allowing the possibility of solving problems exponentially faster than classical
computers []. In those cases in which analog quantum simulation is hard or impossible,
one may decompose the simulated quantum dynamics in terms of discrete quantum gates
through a technique known as digital quantum simulation [–]. Problems involving in-
teracting fermions are frequently intractable for classical computers due to, among other
features, the exponential growth of the Hilbert space dimension with the size of the sys-
tem. Moreover, standard numerical methods such as quantum Monte Carlo algorithms,
do not converge for fermionic systems. Indeed, neither fermionic models in more than
one dimension nor systems with the well-known sign problem [] can be efficiently sim-
ulated employing a classical computer. Quantum simulations allow us the reproduction
and study of complex systems by means of the use of minimal experimental resources and
going beyond mean field approximations in numerical calculations.

Circuit quantum electrodynamics (cQED) [] is one of the most advanced quantum
technologies in terms of coherent control and scalability aspects. Several analog quantum
simulations have been proposed in this quantum platform, e.g., spin models [], quantum
phase transitions [], spin glasses [], disordered systems [], metamaterials [], time
symmetry breaking [], topological order [], atomic physics [], open systems [],
dynamical gauge theories [], and fermionic models in one dimension [], among oth-
ers. Furthermore, digital quantum simulations have been recently proposed for supercon-
ducting circuits [, ] and two pioneering experiments have been performed [, ].
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In this article, we present a method for encoding the simulation of fermionic systems
for arbitrary spatial dimensions, long range or short range couplings, and highly nonlin-
ear interactions, in superconducting circuits. For this purpose, we differentiate two kinds
of cQED setups, those employing pairwise capacitive qubit interactions [], and the ones
employing microwave resonators as quantum buses []. Our method can be summa-
rized in three steps. The first step consists in mapping a set of N fermionic modes to
N spin operators via the Jordan-Wigner transformation []. Then, we make use of the
Trotter expansion [–] to decompose the unitary evolution of the simulated system in
a sequence of quantum gates. Finally, many-body interactions [, ] are implemented
either with a sequence of capacitive two-qubit gates or by fast multiqubit gates mediated
by resonators []. Our method allows to implement highly nonlinear and long-range in-
teractions employing only polynomial resources, which makes it suitable for simulating
complex physical problems intractable for classical computers. To this extent, we analyze
the simulation of the Fermi-Hubbard model with different cQED architectures, consider-
ing couplings with nearest neighbours and next-nearest neighbours in two-dimensional
fermionic lattices. The structure of the article is the following. In Section , we explain
the method for decomposing a fermionic dynamics via digital techniques. In Section ,
we describe the proposal for implementing the Fermi-Hubbard model in two distinct sit-
uations, either with pairwise capacitive couplings or via resonators. Finally, in Section 
we give our conclusions.

2 Jordan-Wigner mapping and Trotter expansion
The Jordan-Wigner (JW) transformation allows one to map fermionic creation and an-
nihilation operators onto spin operators. When the fermionic lattice is two or three-
dimensional, it is possible that local fermionic interactions are mapped onto nonlocal spin
ones. The JW mapping reads b†

k = IN ⊗ IN– ⊗ · · · ⊗ σ +
k ⊗ σ z

k– ⊗ · · · ⊗ σ z
 , and bk = (b†

k)†,
where bk(b†

k) are the fermionic annihilation and creation operators and σα
i are the spin

operators of the ith site, being σα for α = x, y, z the Pauli matrices and σ + = (σ x + iσ y)/.
Often, the simulating system cannot provide in a simple manner the dynamical struc-

ture of the simulated systems. Therefore, one may feel compelled to use digital methods for
implementing unnatural interactions in the controllable system, based on the decomposi-
tion of the exact unitary evolution into a sequence of discrete gates []. In this sense, one
can use the Trotter formula [] in order to obtain a polynomial sequence of efficiently im-
plementable gates. The Trotter formula is an approximation of the unitary evolution e–iHt ,
where H is the simulated Hamiltonian, consisting of M quantum gates e–iHit that fulfill the
condition H =

∑M
i Hi, being Hi the natural interaction terms of the controllable system.

The Trotter expansion can be written as (� = )

e–iHt � (
e–iHt/l · · · e–iHMt/l)l +

∑

i<j

[Hi, Hj]t

l
. ()

Here, e–iHit are the gates that can be implemented in the controllable system and l is the
total number of Trotter steps. By shortening the execution times of the gates and applying
the protocol repeatedly, the digitized unitary evolution becomes more accurate. As can
be seen in Eq. (), the error estimate in this approximation scales with t/l, such that the
longer the simulated time is, the more digital steps we need to apply in order to get good
fidelities.
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3 Circuit QED implementation
3.1 Fermi-Hubbard model: small lattices with pairwise interactions
In this section, we present a cQED encoding of the Fermi-Hubbard model, as an example
of a fermionic model with nearest-neighbour pairwise interactions, which hence employs
only pairwise capacitive spin-spin interactions. Although we focus on a model with three
fermionic modes, for the sake of clarity, these techniques are straightforwardly extendable
to arbitrary number of fermionic modes in two and three spatial dimensions. These cases
are in general mapped into multi-qubit gates that can be always polynomially decomposed
into sets of two-qubit gates, as shown below in Eq. (). In the last part of Section , we
focus on another cQED platform that uses resonators instead of direct qubit couplings to
mediate the interactions.

The Fermi-Hubbard dynamics is a condensed matter model describing traveling elec-
trons in a lattice. The model captures the competition between the kinetic energy of the
electrons, discretized in a lattice and encoded in a hopping term, with their Coulomb in-
teraction that is expressed by a nonlinear term. We begin by considering a small lattice
realizable with current technology. We consider the Fermi-Hubbard-like model for three
spinless fermions with open boundary conditions,

H = –h
(
b†

 b + b†
b + b†

b + b†
b

)
+ U

(
b†

 bb†
b + b†

bb†
b

)
. ()

Here, b†
m and bm are fermionic creation and annihilation operators for the site m.

We will use the Jordan-Wigner transformation in our derivation to encode the fermionic
operators into tensor products of Pauli matrices. We will show below that the latter may be
efficiently implemented in superconducting circuits. The Jordan-Wigner mapping reads,

b†
 = I⊗ I⊗ σ +,

b†
 = I⊗ σ + ⊗ σ z, ()

b†
 = σ + ⊗ σ z ⊗ σ z.

Afterwards, we rewrite the Hamiltonian in Eq. () in terms of spin-/ operators,

H =
h

(
I⊗ σ x ⊗ σ x + I⊗ σ y ⊗ σ y + σ x ⊗ σ x ⊗ I + σ y ⊗ σ y ⊗ I

)

+
U


(
I⊗ σ z ⊗ σ z + I⊗ σ z ⊗ I + I⊗ I⊗ σ z + σ z ⊗ σ z ⊗ I

+ σ z ⊗ I⊗ I + I⊗ σ z ⊗ I
)
. ()

Here, the different interactions can be simulated via digital techniques using a specific
sequence of gates. We will first consider the associated Hamiltonian evolution in terms
of exp(–iφσ z ⊗ σ z) interactions. These can be implemented in small steps of CZφ gates,
where an average single-qubit gate and two-qubit gate fidelities of .% and up to .%,
respectively, have been recently achieved []. One can then use the following relations,

σ x ⊗ σ x = Ry(π/)σ z ⊗ σ zRy(–π/),

σ y ⊗ σ y = Rx(–π/)σ z ⊗ σ zRx(π/),
()
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Figure 1 Sequence of gates for one Trotter step of Hamiltonian 2.

where Rj(θ ) = exp(–i θ
 σ j) denote local rotations along the jth axis of the Bloch sphere act-

ing on both qubits.
The evolution operator associated with the Hamiltonian in Eq. () can be expressed in

terms of exp(–iφσ z ⊗ σ z) interactions. Moreover, the operators may be rearranged in a
more suitable way in order to optimise the number of gates and eliminate global phases,

exp(–iHt) ≈
[

R′
y(π/) exp

(

–i
h

I⊗ σ z ⊗ σ z t

n

)

R′
y(–π/)Ry(π/)

× exp

(

–i
h

σ z ⊗ σ z ⊗ I

t
n

)

Ry(–π/)R′
x(–π/)

× exp

(

–i
h

I⊗ σ z ⊗ σ z t

n

)

R′
x(π/)Rx(–π/)

× exp

(

–i
h

σ z ⊗ σ z ⊗ I

t
n

)

Rx(π/) exp

(

–i
U

I⊗ σ z ⊗ σ z t

n

)

× exp

(

–i
U

I⊗ σ z ⊗ I

t
n

)

exp

(

–i
U

I⊗ I⊗ σ z t

n

)

× exp

(

–i
U


σ z ⊗ σ z ⊗ I
t
n

)

exp

(

–i
U


σ z ⊗ I⊗ I
t
n

)]n

, ()

where we use the prime notation in the rotation to distinguish between gates applied on
different qubits, since Ri acts on the first and second qubits, while R′

i acts on the second
and the third. If we consider that Rj(α)Rj(β) = Rj(α + β), the sequence of gates for one
Trotter step in the digital simulation of the Hubbard model with three qubits is shown in
Figure . There, gates A and B are two-qubit gates written in terms of exp(–iφσ z ⊗ σ z)
interactions, A = exp(–i h

 σ z ⊗σ z t
n ) and B = exp(–i U

 σ z ⊗σ z t
n ). Z and Z are single-qubit

phases, Z = exp(–i U
 σ z t

n ) and Z = exp(–i U
 σ z t

n ), while Xα and Yα are rotations along the
x and y axis, respectively.

The exp(–iφσ z ⊗σ z) interaction can be implemented in small steps with optimized CZφ

gates,

exp

(

–i
φ


σ z ⊗ σ z

)

=

⎛

⎜
⎜
⎜
⎝

   
 eiφ  
  eiφ 
   

⎞

⎟
⎟
⎟
⎠

.

Quantum circuits for simulating these gates are shown in Figures  and . In Figures -,
X and Y are π pulses.
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Figure 2 Two-qubit gates in terms of the optimized CZφ gate and X π pulses.

Figure 3 Two-qubit gates in terms of the optimized CZφ gate and Y π pulses.

Figure 4 Probability Pij for each state |ij〉 in the
Hubbard model with two fermionic modes. We
obtain the same dynamics for hopping h = 1, and
values of the potential U = 1 and U = 0.5. We also
consider in both cases different number of Trotter
steps, n = 4 and n = 10, and observe the same result
with no Trotter error. The initial state is in all cases
(|00〉 + |10〉)/√2. Dashed lines refer to numerical
solutions without Trotter approximation, and solid
lines to numerical solutions with Trotter
approximation. The absence of Trotter error comes
from the fact that the second term in the Trotter
expansion in Eq. (1), i.e., the term proportional to the
sum of commutators, is zero for this specific model,
allowing us to perform the simulation in a single
Trotter step.

.. Numerical analysis of the errors
In this section, we present numerical simulations for specific values of model parameters,
that is, the time t, the hopping coefficient h, and nonlinear coupling U . We compute nu-
merically the results for the proposed model with three fermionic modes, as well as the
equivalent one with two fermionic modes, for the sake of completeness. In Figures  and ,
we show the results of the Fermi-Hubbard model with two and three fermionic modes, re-
spectively, for n =  and n =  Trotter steps. As shown below, the achieved fidelities can
be large at the end of each digital protocol.

In Figure , we plot the fidelities of the digitally-evolved state with respect to the ideal
dynamics associated with Eq. (), where θ ≡ Ut, for n =  Trotter steps. The fidelities are
defined as F = |〈�T |�〉|, being |�〉 and |�T 〉 the states evolved with the exact unitary
evolution and the digital one, respectively. Fidelities well above % can be achieved for a
large fraction of the considered period.

Summarizing, we have analized the digital quantum simulation of the Fermi-Hubbard
model with three fermionic modes in terms of simulatable spin operators with nearest
neighbour interactions. Furthermore, we have considered the digital steps involving opti-
mized gates (CZφ).

3.2 Large lattices and collective gates mediated via quantum bus
Quantum simulations of fermionic and bosonic models, as well as quantum chemistry
problems, have been recently proposed in trapped ions [–]. In these proposals, the use
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Figure 5 Probability Pijk for each state |ijk〉 in the Hubbard model with three fermionic modes. The
physical parameters used are hopping h = 1, together with (a) U = 1 and number of Trotter steps n = 4,
(b) U = 1 and n = 10, (c) U = 0.5 and n = 4, and (d) U = 0.5 and n = 10. The initial state is in all cases
(|011〉 + |101〉)/√2. Dashed lines refer to numerical solutions without Trotter approximation, and solid lines to
numerical solutions with Trotter approximation.

Figure 6 Fidelities obtained for the dynamics of Eq. (2), where θ ≡ Ut, for n = 4 Trotter steps. The
physical parameters used are hopping h = 1, together with (a) U = 1, and (b) U = 0.5. The initial state is in both
cases (|011〉 + |101〉)/√2.

of nonlocal interactions via a quantum bus, together with digital expansion techniques,
which have been implemented in recent ion-trap experimental setups [, ], allows for
the retrieval of arbitrary fermionic dynamics. Most current superconducting circuit se-
tups are composed of superconducting qubits and transmission line resonators []. A res-
onator is a useful tool with several applications such as single-qubit rotations, two-qubit
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Figure 7 Scheme of the magnitude of the couplings, gl , of the superconducting qubits i, . . . , j with the
transmission line resonator as a function of time for the simulation of fermionic hopping terms. This
sketch shows how sequences of rotations and nonlocal multiqubit gates gives place to interactions of the
form b†

i bj + b†
j bi , which can be written in terms of spin operators as –(σ x

i ⊗ σ z
i+1 ⊗ · · · ⊗ σ z

j–1 ⊗ σ x
j + σ

y
i ⊗

σ z
i+1 ⊗ · · · ⊗ σ z

j–1 ⊗ σ
y
j )/2. Multiqubit gates are marked with red color where all the couplings suffer a

frequency modulation [27]. Single-qubit rotations are implemented by coupling a single qubit to the
resonator. They are marked with green color for a phase of π /4 and with blue for a phase-dependent
single-qubit rotation, Uσy (φ), where the phase φ is proportional to the simulated time evolution of the
hopping term. Note that all the qubits between sites i and j play a role in this interaction in order to fulfill the
Jordan-Wigner mapping.

gates between distant spins, and dispersive qubit readout [, ]. In this section, we an-
alyze how a resonator permits the efficient reproduction of the dynamics of D and D
fermionic systems.

Recently, engineering of fast multiqubit interactions with tunable transmon-resonator
couplings has been proposed []. These many-body interactions allow for the realization
of multipartite entanglement [], topological codes [], and as we show below, simula-
tion of fermionic systems. Employing two multiqubit gates and a single-qubit rotation, the
unitary evolution associated with a tensor product of spin operators can be constructed,

U = US
z
Uσy (φ)U†

S
z

= exp
[
iφσ

y
 ⊗ σ z

 ⊗ σ z
 ⊗ · · · ⊗ σ z

k
]
, ()

where US
z

= exp[–iπ/
∑

i<j σ
z
i σ z

j ] and Uσy (φ) = exp[–iφ′σ y(x)
 ] for odd (even) k. The phase

φ′ also depends on the number of qubits, i.e., φ′ = φ for k = n + , φ′ = –φ for k = n – ,
φ′ = –φ for k = n – , and φ′ = φ for k = n, where n is a positive integer. Making use of
this unitary evolution and introducing single qubit rotations, it is possible to generate any
tensor product of Pauli matrices during a controlled phase that is given in terms of φ.

In Figure , we show how to implement the ith-site hopping terms of a system made
of N fermionic sites onto N superconducting qubits coupled to a quantum bus. Notice
that local interactions between nearest and next-nearest neighbours in the square lattice
involve several qubits in the experimental setup.

In order to benchmark our protocol with a specific example, we consider the Hamil-
tonian of the Fermi-Hubbard model with both nearest and next-nearest neighbour cou-
plings,

H =
∑

〈i,j〉

[

–h
(
b†

i bj + H.c.
)

+ U
(

ni –



)(

nj –



)]

+
∑

〈〈i,j〉〉

[

–h′(b†
i bj + H.c.

)
+ U ′

(

ni –



)(

nj –



)]

, ()
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where 〈i, j〉 (resp., 〈〈i, j〉〉) denote sum extended to nearest (next-nearest) neighbours, h (h′)
is the hopping parameter and U (U ′) is the interaction for nearest (next-nearest) neigh-
bours. Here, bi (b†

i ) is the fermionic annihilation (creation) operator for site i, that satisfies
the anticommutation relation {bi, b†

j } = δi,j, and ni = b†
i bi is the fermionic number operator.

Employing the method introduced before, it is possible to simulate any fermionic dy-
namics. Let us analyze the interactions we need to simulate in a superconducting qubit
platform considering a two-dimensional lattice of × sites. Taking as an example the th
site in Figure , the simulation of hopping terms with sites  and  requires only two-qubit
gates, since they are nearest neighbours in the order chosen for the mapping. However,
the simulation of hopping terms between sites  and  involves  superconducting qubits,
b†

b + b†
b = –(σ x

 ⊗σ z
 ⊗σ z

 ⊗σ z
 ⊗σ x

 + σ
y
 ⊗σ z

 ⊗σ z
 ⊗σ z

 ⊗σ
y
 )/. The same thing hap-

pens for next-nearest neighbour interactions, which are simulated employing multiqubit
gates made of either  or  spin operators. On the other hand, interaction terms between
qubits i and j can be implemented by evolving the system with a global interaction involv-
ing all the qubits with labels between i and j, decoupling the rest of the qubits from the
resonator.

The number of gates needed for realizing this simulation depends linearly on the num-
ber of qubits. Assuming that N is the number of fermionic sites in a D square lattice, the
number of hopping and interaction terms that we need to simulate is 

√
N(

√
N – ) for

nearest neighbours and (
√

N – ) for next-nearest neighbours. As can be seen in Fig-
ure , every hopping term involving qubits with distant labels is made of  single-qubit
rotations and  multiqubit gates. On the other hand, interaction terms can be simulated
applying just one multiqubit gate.

The superconducting setup that we are considering for this quantum simulation is com-
posed of N transmon qubits coupled to a single resonator. In order to perform highly
nonlocal interactions between two distant qubits, every qubit with label inside the inter-
val spanned by them should interact with the same resonator. Coupling several qubits to
just one resonator can be a difficult task wherever the number of simulated sites is large
enough. Therefore, we propose an optimized architecture for the simulation of Fermi-
Hubbard model with up to next-nearest neighbours in D. As it is shown in Figure , we
propose a setup with N superconducting circuits distributed in a square lattice []. Se-
quentially coupling two rows by a single transmission line resonator, one can reduce the
number of qubits coupled to a single resonator. Nevertheless, all the interactions needed
for satisfying the Jordan-Wigner mapping can be simulated with this architecture. Fur-
thermore, one can achieve a speedup of the protocol by performing interactions that in-
volve different qubits in a parallel way, e.g. the interaction between qubits  and  and the
one between qubits  and  can be performed simultaneously using resonators  and ,
respectively.

In order to benchmark our protocol, we study its efficiency by computing the error as-
sociated with a digital decomposition. To this extent, we analyze the occupation of the
fermionic sites in a  ×  lattice. In Figure , we show a plot of these populations consider-
ing a perfect unitary evolution of the Fermi-Hubbard model versus the evolution associ-
ated with the digital decomposition, where l is the number of Trotter steps. As l increases,
the fidelity F = |〈�T |�〉| improves, being |�〉 and |�T 〉 the states evolved with the exact
unitary evolution and the digital one, respectively.
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Figure 8 Architecture of superconducting qubits coupled to microwave resonators optimized for the
simulation of a square lattice of 4 × 4 fermionic sites with Fermi-Hubbard interactions between
nearest and next-nearest neighbours. By the use of resonators as quantum buses in the dispersive regime,
several qubits are coupled allowing the implementation of single and many-body gates, which are necessary
for the simulation of fermionic operators. Coupling two subsequent rows of superconducting qubits via a
resonator allows to implement all the interactions required for the simulation. In order to scale the system,
one needs to couple two more qubits to every resonator for simulating one more column of sites, or make
use of one more resonator for connecting another row. This scheme shows an optimized architecture for the
simulation of fermionic models, and further resonators would be required for the read-out and single-control
of the qubits.

Figure 9 Simulation of a 2D lattice of 3 × 3 sites where the coupling ratios are: U/t = 2, U/t′ = 10 and
U/U′ = 5. The principal plot shows the fidelity of the evolved state with digital methods for a phase of
θ ≡ Ut = 4 applying different numbers of Trotter steps, l. The inset shows the population of sites 2 and 4
being the initial state |�I〉 = b†

2|0〉. The markers denote the digital evolution with 10 Trotter steps while the
lines show the exact evolution.

4 Conclusions
We have presented a method for the digital quantum simulation of many-body fermionic
systems in superconducting circuits with polynomial resources. Moreover, we have ana-
lyzed the efficiency of this method for the simulation of the Fermi-Hubbard model in D
and D with different superconducting platforms. Finally, we have proposed an optimized
circuit QED architecture where our ideas may be implemented. This work paves the way
for the quantum simulation of complex fermionic dynamics in superconducting circuits.
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