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Abstract
We present an experimental system to study the Bose polaron by immersion of single,
well-controllable neutral Cs impurities into a Rb Bose-Einstein condensate (BEC). We
show that, by proper optical traps, independent control over impurity and BEC allows
for precision relative positioning of the two sub-systems as well as for dynamical
studies and independent read-out. We furthermore estimate that measuring the
polaron binding energy of Fröhlich-type Bose polarons in the low and intermediate
coupling regime is feasible with our experimental constraints and limitations
discussed, and we outline how a parameter regime can be reached to characterize
differences between Fröhlich and Bose-polaron in the strong coupling regime.

Keywords: Bose-Einstein condensate; single atom; impurity; Bose polaron; Fröhlich
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1 Introduction
The immersion of single, controllable atoms into a Bose-Einstein condensate (BEC) real-
izes a paradigm of quantum physics - individual quantum objects interacting coherently
with a single or few mode bath. This system allows to experimentally address various ques-
tions of quantum engineering, including local, non-demolition measurement of a quan-
tum many-body system []; cooling of qubits while preserving internal state coherence [,
]; or engineering bath-mediated, long-range interaction between two or more impurities
[]. An impurity strongly interacting with the quantum gas will loose its single particle
properties and it is rather described in terms of quasi particles, which are known as Bose
polarons [–]. Particularly for strong interaction, such systems have been predicted to
show remarkable properties such as self-trapping [] or polaron clustering []. Recently,
the dynamic as well as interaction effects on polaronic phenomena in Bose gases have at-
tracted much interest [–]. Experimentally, impurities in BECs have been introduced,
for example, as many atoms of different internal state [, ], different atomic species [,
], as individual ions [, ], or electrons [].

The system we report on here considers a single, neutral impurity in an ultracold gas,
where the effect of impurity-impurity interactions, either direct or mediated by the bath,
can be neglected. The corresponding Hamiltonian thus reflects an extremely imbalanced
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mixture and can be written as [, ]
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The first row of Eq. () represents the BEC part of the Hamiltonian, where a†
k (ak) creates

(annihilates) a boson of mass mB, momentum k, and energy dispersion εk = �
k/(mB).

The interaction of bosons within the BEC is given by the contact s-wave interaction with
Fourier transform VBB(q). The impurity atom of momentum p̂I , mass mI and density ρ̂I as
well as its interaction with the BEC via the potential VIB are described by the second row
in Eq. ().

1.1 The Fröhlich polaron
Originally, the polaron concept was developed for condensed matter systems to describe
electrons moving in a crystal lattice. The interaction between a moving electron and lat-
tice of the ion cores forms a propagating quasi-particle called polaron, comprising electron
and surrounding phonon cloud. Specifically the effective mass of the polaron as well as its
energy could strongly differ from the bare electron’s values depending on the interaction
with the crystal [, ]. In the limit of very small electronic wave vector, the underlying
crystal structure can be neglected, and the crystal can be described as a continuously po-
larizable medium. In this case, the model to describe polarons is the well-known Fröhlich
Hamiltonian []

Ĥp =
p̂I
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mI
+

∑
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kb̂k +

∑

k �=

Vkeik·r̂(b̂k + b̂†
–k

)
, ()

given by the sum of the kinetic energy of the impurity particle with mass mI , the energy
of the phonons in the medium with dispersion ωk, and the interaction energy with cou-
pling constant Vk arising between the two of them. The coupling strength is essentially
determined by the dielectric constant of the crystal and can be quantified by a single, di-
mensionless coupling constant α. The regime of small α is characterized by weak and
intermediate polaron coupling while for values of α �  the strong coupling regime is re-
alized. Simple perturbation theory predicts the crossover around a value of α ≈ . Exper-
imentally, Fröhlich polarons have been observed in condensed matter systems for small
and moderate interaction strengths α, however, the regime of so-called strong coupled
polarons with α �  has so far not been experimentally investigated [, ].

Recently, the quantum gas Bose-polaron was subject of intense theoretical work. It was
shown that the description of a Bose-polaron Eq. () can be directly mapped onto the
Fröhlich Hamiltonian Eq. () via a Bogoliubov transform [] and that this model could be
accessed experimentally [, ]. This analogy holds as long as interaction effects within
the BEC can be neglected, such as interaction of BEC excitations with each other [, ]
or Efimov correlations []. The resulting Hamiltonian has the same operator structure as
Eq. (), where the crystal (optical) phonons are replaced by elementary Bogoliubov excita-
tions of the BEC with dispersion εq = �vsq

√
 + (ξq)/, where vs = �/(

√
mξ ) is the sound
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velocity in the BEC, ξ = /
√

πnBECaBB is the healing length, nBEC is the BEC atomic den-
sity, and aBB is the s-wave scattering length between two atoms in the BEC. The polaronic
coupling parameter in the dilute quantum gas scenario [, ]

α =
a

IB
aBBξ

()

is given by the s-wave scattering lengths between a Boson of the quantum gas with the im-
purity (aIB) or with other quantum gas atoms (aBB), and the condensate healing length ξ .
For the quantum gas Bose-polaron, these parameters can be varied over a large range of
values from the weakly interacting to the strong coupling regime by means of Feshbach
resonances. In contrast to condensed matter systems, this allows for a systematic study
of the polaronic features’ dependence on the coupling strength. Characteristic properties
of the emerging polaron are its binding energy Ep and its effective mass mp. Both can be
inferred similarly to recent studies in imbalanced ultracold Fermi mixtures by applying ra-
dio frequency spectroscopy [–], and trap frequency measurements [], respectively.
Importantly, also the Bose polaron beyond the Fröhlich model can be experimentally re-
alized yielding access to a rich and highly controllable model system of impurity physics
in quantum fluids.

2 Experimental realization
Our experimental approach to realizing the Bose polaron aims at immersing single or few
neutral Caesium (Cs) atoms into a Rubidium (Rb) BEC. Using single impurities allows
us to study the dynamics and properties of individual polarons. This is in contrast to solid-
state systems, where only averaged polaronic effects can be measured by probing macro-
scopic properties of the material [, ]. While for single impurities polaron-polaron in-
teraction effects [] are absent, we can study these effects by choosing a specific number
of multiple impurities. Moreover, tight external control over individual impurities allows
to prepare and study polaron dynamics in steady state or in non-equilibrium states, which
is challenging in typical condensed matter systems. Our combination of species features
several advantages, facilitating the realization, control and characterization of the Bose
polaron. First, due to the relatively high nuclear charge of Rb and Cs the fine structure
splitting of both species is also relatively large and allows to tune dipole traps in between
the two fine structure lines of the first excited P-level with moderate unwanted photon
scattering [, ]. As a consequence the atoms of this element do not experience a dipole
potential. In order to improve the control over both species independently, we employ this
fact constructing a species-selective conveyor-belt lattice allowing for trapping and con-
trolled transport of impurity atoms, only. The lattice offers a unique way to study nonequi-
librium phenomena, such as polaron transport [], coherence properties [], or Bloch
oscillations [], being inaccessible in solid state systems.

Second, for a dipole trap wavelength of λ = , nm, the trapping frequency ω and
thus the gravitational sag g/ω with g the gravitational acceleration, is equal to the percent
level for the two species. Therefore, a high spatial overlap is ensured when both species are
trapped in the same dipole potential, even for ultracold temperatures. Third, with Cs rep-
resenting the minority component, three-body losses limiting the lifetime of the polaron
are due to Rb-Rb-Cs collisions rather than Cs-Cs-Rb collision, where the loss coefficient
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L of the former is an order of magnitude smaller than for the latter []. While three-
body losses will still be a limitation of the atomic lifetime, the lifetime of the polaron is
expected to be significantly larger than the lifetime in balanced Rb-Cs mixtures. Further-
more, fluorescence imaging of such a small number of atoms in an optical lattice allows
for single-site resolved detection of the impurities with standard optical systems [], en-
abling the tracking of single impurity dynamics with high precision.

For the design of the experimental apparatus, additional considerations have to be made.
In a combined system of quantum gas and single atoms, the respective ways to experimen-
tally extract information from averages differ: For a quantum gas, a single realization yields
an ensemble average of typically  . . .  atoms. For single atoms, in contrast, averages
have to be formed as time averages of typically  . . .  repetitions for identical parame-
ter values. For a combination, the statistics is clearly limited by probing the single impurity,
while usually the time scale of a single experimental run is limited by the production of
a BEC. Therefore we produce a BEC all-optically in a crossed dipole trap with high trap
frequencies, resulting in cycling times smaller than  seconds.

Our system therefore combines several advantages over previous experiments [], such
as spatial control and high resolution imaging of the impurity atoms combined with a short
cycle time which enables us to study polaronic effects in yet unexplored regimes. In the
following we first discuss the experimentally relevant parameter ranges and constraints
for our system of single Cs impurities in a Rb BEC, before we turn to the presentation of
our experimental apparatus.

2.1 The Rb-Cs Bose-polaron
For the experimental characterization of the Bose-polaron, we focus on the binding en-
ergy Ep = hνp in the following. This energy can be measured by radio or microwave spec-
troscopy, driving a Zeeman or hyperfine transition between two impurity states, where
one state is interacting with the bosonic bath forming the polaron, whereas the other state
is non-interacting or only weakly interacting. The polaron binding energy manifests itself
as a shift of the transition’s RF spectrum compared to an impurity without the bosonic
bath, similar to Fermi-polarons [, ].

The method of RF spectroscopy is a standard tool for high-precision, but it is limited by
the lifetime of the polaron. In our system the polaron decays predominantly by three-body
losses, i.e. molecule formation, occurring with rate γp = n

BECL with the loss coefficient L

and the BEC density nBEC. The decay limits the time during which the rf transition occurs
to τ = 

γp
, implying a lower bound for the linewidth of the measured polaron spectroscopy

peak. In order to clearly resolve the polaron peak at a frequency shift of νp, the ratio β =
νp/γp should be significantly larger than  yielding a figure of merit for the determination
of optimum experimental parameters.

In Figure  we explore the regimes of Bose polarons realized with our typical experimen-
tal parameters discussed below, employing theoretical data of elastic scattering length aIB

and three-body loss coefficient L around the interspecies Feshbach resonance at  G
[]. The range of polaronic coupling strengths α accessible with our experimental setup
is determined by several parameters: the boson-boson scattering length aBB ≈ a [],
with the Bohr radius a =  pm, is given by the background scattering length of Rb and
does not change within the range of magnetic field values considered here; BEC peak den-
sities are on the order of nBEC,max =  cm– which serves as a worst case approximation
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Figure 1 Bose polaron properties at the Feshbach resonance. (a) shows the theoretical values of the
interspecies scattering length aIB and the three-body loss coefficient K3 for Rb-Rb-Cs scattering at the 181 G
Feshbach resonance (dashed red). For our typical BEC density of 1014 cm–3 the estimated coupling strength α

and the corresponding polaron energy Ep is shown in (b). The vertical blue shaded area indicates fulfillment
of the condition β = νp/γp > 5 (>1 light shaded). (c) The parameter ε is derived in [7] and gives an estimate of
how well the Bose polaron fits the Fröhlich type. The horizontal green shaded area indicates ε < 0.3 which
means good correspondence to the Fröhlich type polaron.

for nBEC; and the interspecies scattering length aIB ≈ a at zero magnetic field is tun-
able in the vicinity of the Feshbach resonance [, ].

From this we calculate the polaron coupling constant α and polaronic binding energy
Ep using a simple analytic expression for an impurity with infinite mass from [], see
Figure (b). Furthermore, the polaronic decay rate γp is calculated from the BEC peak
density and theoretical values for L in vicinity of the Feshbach resonance []. For β > ,
we can reliably resolve polarons spectroscopically within the discussed parameter ranges,
indicated by the vertical shaded regions in Figure .

Furthermore, we use the parameter ε = π/( + mB/mI)aIB
√aBBnBEC from [] in Fig-

ure (c) to indicate where the Bose polaron realized can be described by means of the
Fröhlich model discussed above, where ε �  corresponds to a good description. One can
see that ε lies well below  for the experimentally directly accessible range (blue), placing
our setup mainly in the weak and intermediate coupling regime. For reference, the value
of ε < . given in [] is marked as horizontally shaded area in Figure .

In conclusion, realizing a Bose-polaron is well possible with our experimental setup.
Also the regime of Fröhlich-type polarons in the weak and intermediate coupling regime is
well accessible and new polaron physics can be explored. For the observation of a strongly
coupled Fröhlich polaron, the regime of β >  can be expanded towards higher aIB, by low-
ering the -body lossrate. This can be achieved by reducing the BEC density, and thus de-
creasing ε, too, for example by increasing the trapping volume and levitating magnetically
[]. Employing Feshbach resonances with more favorable three-body loss properties, or
the application of optical tuning methods [] are being considered.
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2.2 Rb Bose-Einstein condensate
In order to optimize the statistics of single atom probing, the experimental setup aims at
a short BEC production time. This is realized by, first, a short initial laser cooling stage,
where a D magneto-optical trap (MOT) is loaded from a D MOT in ≈. s at a rate of
 atoms/s and, second, evaporation in a steep optical dipole trap which is formed by a
horizontal and a vertical beam within ≈ s. In order to avoid perturbation from cooling
and trapping of single Cs atoms in a MOT, the Rb cloud is prepared in the magnetic field
insensitive F = , mF =  state while evaporating. We typically prepare a BEC with .×

atoms at a peak density of . ×  cm– and a critical temperature of approximately
 nK. The BEC’s decay rate of . Hz is dominated by two- and three-body collisions at
this density but decreases to . Hz for a lower number of atoms. For technical details of
the BEC production and state preparation, see Section .

2.3 Single atoms
Single or few Cs atoms are captured in a high magnetic field gradient (≈ G/cm) MOT
[], spatially overlapped with the Rb MOT, but operated at a different time in the prepa-
ration sequence. In contrast to the Rb MOT, the Cs MOT is loading atoms from the back-
ground, and the laser cooling beams have a smaller diameter and beam intensity, leading
to an overall reduced loading rate. The fluorescence signal of such a MOT features discrete
values, which can be assigned to a specific number of atoms in the MOT. A Poissonian dis-
tribution describes the loading statistics in the few atom regime, observed in a histogram
of measured fluorescence signal, corresponding to the distribution of atom numbers in
Figure (b). The width of each histogram peak is ideally given by the shot noise of the
atoms’ fluorescence light; practically, however, fluctuations of the MOT laser beam inten-
sities and technical contributions such as readout noise additionally broaden the peaks.
This limits the maximum countable atom number to roughly eight for our setup. Refer to
Section  for technical details and a description of the fluorescence imaging system.

In order to provide position control over the single Cs atoms independently from the
Rb BEC trap, we apply a species selective optical conveyor belt lattice, formed by two
counter propagating, linearly polarized laser beams with wavelength λlat =  nm and
a waist of  μm. For this wavelength between the Rb D-Lines, the resulting potential
cancels out for Rb atoms [, ], but at the same time the frequency is blue detuned
for Cs, providing confinement along the lattice axis in the nodes of the standing wave
with depths up to ,ECs

r =  μK × kB, with ECs
r = �

k/mCs the single photon recoil
energy, k = π/λlat, kB the Boltzmann constant, and mCs the mass of a Cs atom. While the
lattice provides tight axial confinement for Cs atoms, it does not confine the atoms radially.
We therefore superpose the lattice axis with one beam of the dipole trap (see Section )
and obtain a maximum trap depth of . mK radially, resulting in trap frequencies of
π ×  kHz radially and π ×  kHz axially. The lifetime of atoms in the lattice at full
depth is limited to τ ≈ . s by phase fluctuations. If in addition an optical molasses is
used to cool the atoms, the lifetime can be extended up to τ =  s, limited by background
pressure.

An important quantity characterizing the lattice is the selectivity s = ERb
r /ECs

r for a given
intensity and wavelength. By performing Raman-Nath [–] scattering on the BEC for
various lattice wavelengths, we have identified the optimal wavelength around  nm
and find a selectivity of , :  for Cs. In order to transport the Cs atoms by a defined
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Figure 2 Loading curve and histogram of the high gradient MOT. (a) Typical loading trace of the single
atom MOT. After 8 s a first atom is loaded into the MOT and in steps of 3-5 s an atom is gained. The time is
binned in 110 ms to collect enough fluorescence photons. (b) Histogram of the electron count rate taken over
30 traces with 267 data points each. The red solid line shows a Multi-Gaussian fit to the data. (c) Probabilities
for each atom number obtained from the area of each peak in the multi-Gaussian fit (gray bars) and from a
Poisson distribution (red bars) with mean atom number n = 1.23, calculated from the histogram.

distance, a precisely controlled relative detuning δ between the lattice beams is used, which
causes the standing wave interference pattern to move at a velocity v = λlatδ/ for a specific
amount of time []. For details also see Section .

2.4 Combining single atoms with the quantum gas
During evaporation, the Rb cloud is prepared in the magnetic field insensitive state
|F = , mF = 〉 by a radio frequency transition, see Section . After it has been sufficiently
cooled down to be well localized in the dipole trap crossing region, the Cs MOT is switched
on. To avoid immediate losses of the single Cs atoms due to light-induced collisions [–
], both species are trapped in different traps with a displacement of  μm. Figure 
shows the probability of Cs atoms surviving a . s MOT period while a cold thermal Rb
cloud is present in the dipole trap crossing region in dependence of the crossing region’s
position. The minimum in survival probability marks the position of maximum overlap
between MOT and dipole trap.

As an initial step towards immersing the Cs atoms into the Rb BEC, we immerse them
into a thermal Rb gas. Here, the horizontal dipole trap is sufficiently deep to directly trap
Cs atoms from the MOT. After switching off the Cs MOT, we let the two species interact
for a certain time before pushing Rb out of the trap by shining in resonant light perpen-
dicular to both dipole trap beams. The high gradient MOT is switched on to recapture the
Cs atoms from the dipole trap and the number of atoms in both MOT phases is compared
to each other. Figure  shows a measurement of the survival probability in dependence of
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Figure 3 Light assisted collisions. The graph
shows the probability of Cs atoms surviving a 1.3 s
MOT period while a cold Rb cloud is present in the
dipole trap crossing region in dependence of the
crossing region’s position along the horizontal
dipole trap beam. We attribute the losses to light
assisted collisions of Cs with Rb in the presence of
near resonant Cs MOT light. A negative Gaussian fit
(red) serves as a guide to the eye.

Figure 4 Lifetime of Cs in presence of a cold Rb
cloud. The graph shows the probability of
recapturing Cs atoms from the dipole trap after they
have been stored together with a cold Rb cloud for a
given ‘interaction time’. Without Rb present in the
trap, the survival probability is 0.69 (dashed gray). For
a Rb cloud in |F = 1,mF = 0〉 with 38,000 atoms at a
temperature of T = 3 μK at trap frequencies of
ω = 2π × (63, 1,300, 1,300) Hz and a peak density of
ρ0 = 1.3× 1013 cm–3, the fit reveals a lifetime of
τ = 112 ms for Cs atoms in |F = 3〉.

the time between switching off the Cs MOT and pushing out the Rb, which we refer to as
‘interaction time’. For a Rb cloud in |F = , mF = 〉 with  ×  atoms at a temperature
of T =  μK at trap frequencies of ω = π × (, ,, ,) Hz and a peak density of
ρ = . ×  cm–, we measure a lifetime of τ =  ms for Cs atoms in |F = 〉. We at-
tribute the limited lifetime to two-body losses due to the fact that Rb and Cs have not been
pumped to their lowest Zeeman states. For experiments in which Cs lifetime is crucial, we
will pump Cs to |F = , mF = 〉 and Rb to |F = , mF = 〉, such that the lifetime is limited by
-body losses with a loss coefficient of L = × – cms– []. Here, the lifetime would
be τ = 

L
〈n

Rb〉 =  ms in the spin polarized case. For the relevant parameter range of
β >  close to the Feshbach resonance shown in Figure , the lifetime is bounded above
 ms . . .  ms allowing to spectroscopically measure the polaron energy.

We see that the overlap in occupied trap volume of the two species decreases upon fur-
ther cooling of the Rb cloud, leading to an increasing chance that the two species do not
interact. For experiments involving colder Rb clouds, especially a BEC, the experiment
will therefore be enhanced by an intermediate cooling step for Cs.

3 Methods
Our experiments take place in a two-chamber vacuum system consisting of a low pres-
sure (≈– mbar) and a high pressure region (≈– mbar), separated by a differential
pumping section of length  mm and diameter increasing from . mm to  mm. The low
pressure region is formed by a glass cell, whereas the high pressure region is located in a
titanium chamber and contains a D MOT for Rb which is loading atoms from the back-
ground gas. The distance between the D MOT region and the D MOT is approximately
 cm.

The coil system shown in Figure (b) is installed at the low pressure side, providing
a quadrupole field for the Cs and Rb MOTs, a homogeneous field to address Feshbach
resonances, and a vertical magnetic field gradient for Stern-Gerlach experiments. Addi-
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Figure 5 Overview of the experimental setup. (a) Experiment in top view: With dichroic mirrors beams for
the optical dipole trap, MOTs for each species, the optical lattice for Cs, and an optical pumping beam for Rb
are overlapped. A CCD camera resembles the position of the cold atoms which is useful for the initial
alignment of the dipole trap and the optical lattice to the position of the Cs MOT. (b) Front view with main
magnetic coils (dimensions in mm). (c) Side view.

tionally, compensation coils are installed to provide weak, homogeneous fields in all three
dimensions up to  G to compensate magnetic stray fields.

Single atom MOT
The position of the Cs MOT is overlapped with the Rb MOT as both use the same coil
system. A set of  diaphragms with variable aperture mounted in the coil holders is used to
align the MOT beams to precisely overlap in the middle of the glass cell. The cooling light
is  MHz red detuned to the F =  → F ′ =  transition of the Cs D line and has a total
power of typically  μW. The repumping light is on resonance to the F =  → F ′ = 
transition with a total power of typically  μW. In every beam pair a piezo driven mirror at
 Hz frequency destroys phase coherence between orthogonal beam pairs and therefore
avoids interference effects, which lead to an instable MOT position. To keep the MOT
loading time short, a low magnetic field gradient of  G/cm axially and  G/cm radially
is applied for  ms. During this sufficiently short time the trap volume is large enough to
load on average one atom []. In a next step the magnetic field gradient is increased in
 ms to  G/cm in axial and  G/cm in radial direction. This effectively pins the atom
number and avoids additional atom loading during the imaging process. The duration of
the low gradient stage depends on the vapor pressure of the Cs atoms and the required
atom number. For an efficient transfer of the trapped atoms into the optical dipole trap,
a low MOT temperature is needed. Therefore we increase the red detuning of the cooler
light to  MHz for  ms, while setting its power so low that we just do not lose the atoms.
We release the atoms into the dipole trap by switching off the MOT beams. The cooler
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is switched off  ms after the repumper ensuring that the atoms remain in their lowest
fine-structure state |F = 〉.

Optical dipole trap and evaporative cooling
Our BEC is produced in a crossed beam optical dipole trap at , nm. The trap is formed
by a horizontal beam with a focal waist of w =  μm at  W and a vertical beam with a fo-
cal waist of w =  μm at  W of power, yielding trap frequencies of . kHz radial to the
horizontal beam and  Hz along the horizontal beam. The beam setup allows both for
a forced evaporation scheme [] as well as standard, passive evaporation []. The laser
light is generated by a Nufern NUA--PD--D fiber amplifier and transported to
the experiment by two optical fibers (LMA-PM- by NKT Photonics and Liekki Passive-
/-PM). A PID controller and AOMs are employed to stabilize the dipole trap beams’
power with a bandwidth of  kHz.

After the Rb MOT has been loaded, both dipole trap beams are switched on at full power
during a CMOT phase [, ]. The repumping light is switched off  μs before the
cooling light, so that Rb is pumped to the F =  state and approx.  atoms are trans-
ferred to the dipole trap. After  ms of self-evaporation we decrease the horizontal
beam’s power exponentially. As soon as the increase in density within the crossing region
causes atom loss, we ramp down the power of the vertical beam as well until a BEC with
. ×  atoms forms after a total evaporation time of . s. The entire BEC sequence, in-
cluding D MOT loading, CMOT phase and evaporation ramps has been optimized with
an evolutionary algorithm, that is implemented as a part of our timing software [].

Internal state preparation
The Rb atoms are prepared in the magnetically insensitive state |F = , mF = 〉 during
evaporation so that the magnetic field gradient of the single atom MOT does neither
heat nor destroy the cold Rb cloud: During self-evaporation, a magnetic field of . G is
switched on to lift the degeneracy of the Zeeman substates. Then the atoms are pumped to
the |F = , mF = 〉 state by a  μs light pulse resonant to the F =  → F ′ =  σ +-transition
and a  μs light pulse resonant to the F =  → F ′ =  π-transition of the D line. Both
beams are turned on simultaneously. Their respective powers are  nW and  μW
with red detunings of . MHz and  MHz at equal beam waists of . mm.

By applying a magnetic field gradient of typically . G/cm during a  ms time of flight
experiment, we perform a Stern-Gerlach experiment to measure the population of mag-
netic substates. Without optical pumping we observe an almost equally distributed spin
mixture, while with optical pumping approximately % of the atoms are in the mF = 
Zeeman substate and approximately % remain in mF = . Optical pumping does not
deplete the number of atoms in the condensate.

After optical pumping we transfer the population to the mF =  state with a Landau-
Zener sweep: We apply a radio frequency at . MHz for  ms while we increase the
magnetic field linearly. The magnetic field ramp is chosen such that the detuning of the ra-
dio frequency with respect to the |mF = 〉 → |mF = 〉 transition falls from approximately
+ kHz to – kHz. We observe a Rabi-frequency of � = π × . kHz with a transfer
efficiency of %, with no negative impact on the number of atoms in the BEC.
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Figure 6 Fluorescense images of single Cs atoms
in MOT and lattice. Four consecutive images of
three single Cs atoms. (a) Fluorescence image of Cs
atoms trapped in a MOT, (b) after being transferred
to the species-selective conveyor belt lattice, (c) after
being moved for 30 μm, (d) after being held in place,
(e) after being transferred back to the MOT.

3.1 Single atom imaging
To observe the single atoms we use fluorescence imaging. Near resonant light from the
MOT beams is scattered in the whole solid angle. We collect .% of the photons corre-
sponding to . pW/atom for a saturation parameter S = I/Is =  by a custom made
objective. It has a numerical aperture (NA) of . and is placed beneath the glass cell
at a distance of . mm to the atoms’ position (see Figure (c)). Stray light protection is
crucial and the whole beam path is located inside black anodized lens tubes and mirror
housings.

The objective tube is mounted on a precision xyz linear stage (Newport Ultralign
Model -XYZ) for accurate positioning. The light which is collimated by the objec-
tive is focused onto an EMCCD camera (Andor iXon  ) by a lens with focal length
f = , mm. This yields a magnification of M = . The camera chip has  ×  pixel
with a pixel size of  ×  μm which leads to a field of view of  μm. An advantage of
this setup is that the objective can be aligned independently from the focusing lens which
is producing the image on the camera. The high EMCCD gain and the quantum efficiency
of nearly % of the camera allows to observe single atoms in the MOT as well as in the
optical lattice (see Figure ). During imaging the atoms are illuminated by the repumper
light of the MOT and cooler light, which is  MHz red detuned in order to compensate
the light shift caused by the dipole trap. Exposure times of  ms ( ms) in the MOT
(lattice) are usually used to image the atoms. The number of atoms in the MOT can be
determined with close to % reliability from the brightness of the image.

3.2 Optical lattice
Our optical lattice consists of a two beam setup (see Figure ), where both beams are
guided to the experiment by means of optical fibers with identical length. This helps to
reduce phase drifts and guarantees a good beam quality at the experimental side. To make
sure that the lattice beams and the horizontal dipole trap beam are overlapped with each
other and hit the small-volume Cs MOT, we exploit the AC stark effect. The lattice fre-
quency is blue detuned and hence enhances the fluorescence of the MOT, whereas the
dipole trap is red detuned and reduces the fluorescence (see Figure ).

3.3 Lattice transport
For the single atom transport in the conveyor belt optical lattice [], a relative detuning
δ between the two lattice beams is employed to create a standing wave pattern, moving at
velocity v = λlatδ/. For a typical transport, the detuning between the beams is ramped in a
trapezoid shape: a linear ramp from zero to the maximum detuning yields an acceleration
of the atoms in the lattice, followed by a plateau of constant detuning where the atoms
move at constant velocity. After this plateau, the detuning is ramped back to zero and the
atoms are decelerated again. The transport distance is given by the integral over the veloc-
ity. Thereby large transport distances in the range of millimeters can be realized, which are
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Figure 7 AC Stark effect of dipole trap and lattice. A typical fluorescence trace with lattice and dipole trap
beam. During the MOT phase one atom is captured. Switching on the dipole trap reduces the fluorescence
level by about 70%. In combination with the lattice a slight increase is observed because it compensates the
light shift of the dipole trap. For the combination of MOT and lattice an increase of about 10% in fluorescence
level is observed. In the end the count rate due to stray light and the dark count rate is detected. A binning
time of 100 ms is used.

only limited by trap size. This is in contrast to phase shifting transport approaches, where
the maximum transport distance is given by the maximum phase shift []. The absolute
maximum acceleration amax = kU/mCs ≈  ·  m/s in the lattice is determined by the
Cs mass mCs, the laser wave number k and the potential depth U ≈ . mK of the standing
wave potential.

In order to control the detuning, each lattice beam is frequency shifted by a common
value of f ≈ f =  MHz in an AOM double-pass setup. The relative detuning between
the two beams then is given by δ = f – f and can be controlled by the two RF frequencies
supplied to the AOMs. Both RF signals have to be phase-stable compared to each other
and the offset-frequency of both channels has to be equal up to a fraction of a Hertz to
yield a stable standing wave pattern when both beams interfere for δ =  Hz. Therefore, we
use a driver electronics based on direct digital synthesis (‘DDS’) with an amplifier chain.
The DDS chips employed (AD) sample the output sine wave in a digital circuit and
have an analog digital converter stage for signal output. By supplying both DDS chips
with the same clock signal which is locked to a Rb frequency standard, the relative phase
stability between the signals is guaranteed by the digital sampling of the output signal. The
frequency of the output sine wave is set by a  bit control parameter, yielding a frequency
resolution of . Hz which allows for very small frequency variations compared to the
output frequency of  MHz. To supply output powers of up to ∼ dBm a two stage
amplifier chain combined with a voltage controlled attenuator for output power control is
applied. The RF power level can be directly used to adjust and stabilize the light intensity
of the lattice beams. The DDS chips are controlled by a microcontroller which provides
exact timing of frequency changes and stores the data for the frequency ramps.

4 Conclusion
We have presented a cold gas experimental system to study the Bose polaron by immer-
sion of single neutral Cs impurities into a Rb BEC. This single-impurity approach yields
the possibility of investigating individual polarons in a highly controlled system. By tun-
ing the impurity-bath interaction, a wide range of coupling strengths from the weak to
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the strong coupling regime is accessible. We have estimated typical parameters, charac-
terizing Fröhlich-type Bose-Polarons in our system. Our estimations show the feasibility
of spectroscopically measuring the binding energy of Fröhlich-polarons in the weak and
intermediate coupling regime with our current setup and how the strong coupling regime
can be reached. With an all-optical approach to BEC production, we reach short cycle
times needed to obtain good statistics for single-impurity measurements. Experimentally,
we have demonstrated trapping and transporting of impurity atoms in a species-selective
conveyor-belt lattice, as well as imaging with high optical resolution. Furthermore, we have
shown the successful immersion of single impurities into a cold gas and their detection af-
ter a defined interaction time. The combination of high-resolution imaging and position
control in a quantum gas will allow a systematic study of static and dynamical properties
of individual polarons as well as interaction effects of multi-polaron systems.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
All authors contributed in the design, build-up and characterization of the experiment, as well as the writing of this
manuscript. All authors read and approved the final manuscript.

Author details
1Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Gottlieb-Daimler-Strasse 47,
Kaiserslautern, 67663, Germany. 2Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, Kaiserslautern,
67663, Germany.

Acknowledgements
The project was financially supported partially by the European Union via the ERC Starting Grant 278208 and partially by
the DFG via SFB/TR49. D.M. is a recipient of a DFG-fellowship through the Excellence Initiative by the Graduate School
Materials Science in Mainz (GSC 266), F.S. acknowledges funding by Studienstiftung des deutschen Volkes, and T.L.
acknowledges funding from Carl-Zeiss Stiftung.

Received: 30 July 2015 Accepted: 30 October 2015

References
1. Ng HT, Bose S. Single-atom-aided probe of the decoherence of a Bose-Einstein condensate. Phys Rev A.

2008;78:023610. doi:10.1103/PhysRevA.78.023610.
2. Daley AJ, Fedichev PO, Zoller P. Single-atom cooling by superfluid immersion: a nondestructive method for qubits.

Phys Rev A. 2004;69:022306. doi:10.1103/PhysRevA.69.022306.
3. Griessner A, Daley AJ, Clark SR, Jaksch D, Zoller P. Dark-state cooling of atoms by superfluid immersion. Phys Rev Lett.

2006;97:220403. doi:10.1103/PhysRevLett.97.220403.
4. Klein A, Fleischhauer M. Interaction of impurity atoms in Bose-Einstein condensates. Phys Rev A. 2005;71:033605.

doi:10.1103/PhysRevA.71.033605.
5. Cucchietti FM, Timmermans E. Strong-coupling polarons in dilute gas Bose-Einstein condensates. Phys Rev Lett.

2006;96:210401. doi:10.1103/PhysRevLett.96.210401.
6. Tempere J, Casteels W, Oberthaler MK, Knoop S, Timmermans E, Devreese JT. Feynman path-integral treatment of the

BEC-impurity polaron. Phys Rev B. 2009;80:184504. doi:10.1103/PhysRevB.80.184504.
7. Grusdt F, Shchadilova YE, Rubtsov AN, Demler E. Renormalization group approach to the Fröhlich polaron model:

application to impurity-BEC problem. Sci Rep. 2015;5:12124.
8. Klein A, Bruderer M, Clark SR, Jaksch D. Dynamics, dephasing and clustering of impurity atoms in Bose-Einstein

condensates. New J Phys. 2007;9:411. doi:10.1088/1367-2630/9/11/411.
9. Christensen RS, Levinsen J, Bruun GM. Quasiparticle properties of a mobile impurity in a Bose-Einstein condensate.

arXiv:1503.06979 (2015).
10. Levinsen J, Parish MM, Bruun GM. Impurity in a Bose-Einstein condensate and the Efimov effect. Phys Rev Lett.

2015;115:125302. doi:10.1103/PhysRevLett.115.125302.
11. Ardila LAPN, Giorgini S. Impurity in a Bose-Einstein condensate: study of the attractive and repulsive branch using

quantum Monte Carlo methods. Phys Rev A. 2015;92:033612. doi:10.1103/PhysRevA.92.033612.
12. Yin T, Cocks D, Hofstetter W. Polaronic effects in one- and two-band quantum systems. arXiv:1509.08283 (2015).
13. Grusdt F. An all-coupling theory for the Fröhlich polaron. arXiv:1509.08974 (2015).
14. Palzer S, Zipkes C, Sias C, Köhl M. Quantum transport through a Tonks-Girardeau gas. Phys Rev Lett. 2009;103:150601.

doi:10.1103/PhysRevLett.103.150601.
15. Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C, Bloch I,

Kuhr S. Quantum dynamics of a mobile spin impurity. Nature. 2009;9:235-41. doi:10.1038/nphys2561.
16. Ospelkaus S, Ospelkaus C, Wille O, Succo M, Ernst P, Sengstock K, Bongs K. Localization of bosonic atoms by fermionic

impurities in a three-dimensional optical lattice. Phys Rev Lett. 2006;96:180403. doi:10.1103/PhysRevLett.96.180403.

http://dx.doi.org/10.1103/PhysRevA.78.023610
http://dx.doi.org/10.1103/PhysRevA.69.022306
http://dx.doi.org/10.1103/PhysRevLett.97.220403
http://dx.doi.org/10.1103/PhysRevA.71.033605
http://dx.doi.org/10.1103/PhysRevLett.96.210401
http://dx.doi.org/10.1103/PhysRevB.80.184504
http://dx.doi.org/10.1088/1367-2630/9/11/411
http://arxiv.org/abs/arXiv:1503.06979
http://dx.doi.org/10.1103/PhysRevLett.115.125302
http://dx.doi.org/10.1103/PhysRevA.92.033612
http://arxiv.org/abs/arXiv:1509.08283
http://arxiv.org/abs/arXiv:1509.08974
http://dx.doi.org/10.1103/PhysRevLett.103.150601
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1103/PhysRevLett.96.180403


Hohmann et al. EPJ Quantum Technology  (2015) 2:23 Page 14 of 15

17. Scelle R, Rentrop T, Trautmann A, Schuster T, Oberthaler MK. Motional coherence of fermions immersed in a Bose gas.
Phys Rev Lett. 2013;111:070401. doi:10.1103/PhysRevLett.111.070401.

18. Zipkes C, Palzer S, Sias C, Köhl M. A trapped single ion inside a Bose-Einstein condensate. Nature. 2010;464:388-91.
doi:10.1038/nature08865.

19. Schmid S, Härter A, Hecker Denschlag J. Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys Rev Lett.
2010;105:133202. doi:10.1103/PhysRevLett.105.133202.

20. Balewski JB, Krupp AT, Gaj A, Peter D, Büchler HP, Löw R, Hofferberth S, Pfau T. Coupling a single electron to a
Bose-Einstein condensate. Nature. 2013;502:664-7. doi:10.1038/nature12592.

21. Shashi A, Grusdt F, Abanin DA, Demler E. Radio-frequency spectroscopy of polarons in ultracold Bose gases. Phys
Rev A. 2014;89:053617. doi:10.1103/PhysRevA.89.053617.

22. Landau LD. Phys Z Sowjetunion. 1933;3:664.
23. Pekar SI. Research in electron theory of crystals. Moscow: Gostekhizdat; 1951.
24. Fröhlich H. Electrons in lattice fields. Adv Phys. 1954;3(11):325-61. doi:10.1080/00018735400101213.
25. Hodby JW. Cyclotron resonance of the polaron in the alkali and silver halides - observation of the dependence of the

effective mass of the polaron on its translational energy. Solid State Commun. 1969;7(11):811-4.
doi:10.1016/0038-1098(69)90767-4.

26. Madelung O, Rössler U, Schulz M, editors. Indium antimonide (InSb), conduction band, effective masses. In: Group IV
elements, IV-IV and III-V compounds. Part b - electronic, transport, optical and other properties. Berlin: Springer; 2002.
p. 1-10. (Landolt-Börnstein - group III condensed matter; vol 41A1b). doi:10.1007/10832182-371.

27. Schunck CH, Shin Y, Schirotzek A, Zwierlein MW, Ketterle W. Pairing without superfluidity: the ground state of an
imbalanced Fermi mixture. Science. 2007;316(5826):867-70. doi:10.1126/science.1140749.

28. Schirotzek A, Wu C-H, Sommer A, Zwierlein MW. Observation of Fermi polarons in a tunable Fermi liquid of ultracold
atoms. Phys Rev Lett. 2009;102:230402. doi:10.1103/PhysRevLett.102.230402.

29. Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun GM, Schreck F, Grimm R. Metastability and
coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature. 2012;485(7400):615-8.

30. Koschorreck M, Pertot D, Vogt E, Frohlich B, Feld M, Kohl M. Attractive and repulsive Fermi polarons in two
dimensions. Nature. 2012;485(7400):619-22.

31. Nascimbène S, Navon N, Jiang KJ, Tarruell L, Teichmann M, McKeever J, Chevy F, Salomon C. Collective oscillations of
an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys Rev Lett. 2009;103(17):170402.
doi:10.1103/PhysRevLett.103.170402.

32. Miyake SJ. Strong-coupling limit of the polaron ground state. J Phys Soc Jpn. 1975;38(1):181-2.
doi:10.1143/JPSJ.38.181.

33. Casteels W, Tempere J, Devreese JT. Bipolarons and multipolarons consisting of impurity atoms in a Bose-Einstein
condensate. Phys Rev A. 2013;88(1):013613. doi:10.1103/PhysRevA.88.013613.

34. LeBlanc LJ, Thywissen JH. Species-specific optical lattices. Phys Rev A. 2007;75:053612.
doi:10.1103/PhysRevA.75.053612.

35. Arora B, Sahoo BK. State-insensitive trapping of Rb atoms: linearly versus circularly polarized light. Phys Rev A.
2012;86:033416. doi:10.1103/PhysRevA.86.033416.

36. Bruderer M, Klein A, Clark SR, Jaksch D. Transport of strong-coupling polarons in optical lattices. New J Phys.
2008;10(3):033015. doi:10.1088/1367-2630/10/3/033015.

37. Grusdt F, Shashi A, Abanin D, Demler E. Bloch oscillations of bosonic lattice polarons. Phys Rev A. 2014;90:063610.
doi:10.1103/PhysRevA.90.063610.

38. Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A. Dynamics of single neutral impurity atoms
immersed in an ultracold gas. Phys Rev Lett. 2012;109:235301. doi:10.1103/PhysRevLett.109.235301.

39. Karski M, Förster L, Choi JM, Alt W, Widera A, Meschede D. Nearest-neighbor detection of atoms in a 1D optical lattice
by fluorescence imaging. Phys Rev Lett. 2009;102:053001. doi:10.1103/PhysRevLett.102.053001.

40. Wang Y. Private communication (2012).
41. van Kempen EGM, Kokkelmans SJJMF, Heinzen DJ, Verhaar BJ. Interisotope determination of ultracold rubidium

interactions from three high-precision experiments. Phys Rev Lett. 2002;88:093201.
doi:10.1103/PhysRevLett.88.093201.

42. Pilch K, Lange AD, Prantner A, Kerner G, Ferlaino F, Nägerl H-C, Grimm R. Observation of interspecies Feshbach
resonances in an ultracold Rb-Cs mixture. Phys Rev A. 2009;79:042718. doi:10.1103/PhysRevA.79.042718.

43. Takekoshi T, Debatin M, Rameshan R, Ferlaino F, Grimm R, Nägerl H-C, Le Sueur CR, Hutson JM, Julienne PS,
Kotochigova S, Tiemann E. Towards the production of ultracold ground-state RbCs molecules: Feshbach resonances,
weakly bound states, and the coupled-channel model. Phys Rev A. 2012;85:032506. doi:10.1103/PhysRevA.85.032506.

44. Lercher AD, Takekoshi T, Debatin M, Schuster B, Rameshan R, Ferlaino F, Grimm R, Nägerl H-C. Production of a
dual-species Bose-Einstein condensate of Rb and Cs atoms. Eur Phys J D. 2011;65(1-2):3-9.
doi:10.1140/epjd/e2011-20015-6.

45. Compagno E, De Chiara G, Angelakis DG, Palma GM. Tunable polarons in Bose-Einstein condensates. arXiv:1410.8833
(2014).

46. Haubrich D, Schadwinkel H. Observation of individual neutral atoms in magnetic and magneto-optical traps.
Europhys Lett. 1996;34:663-8.

47. Martin PJ, Oldaker BG, Miklich AH, Pritchard DE. Bragg scattering of atoms from a standing light wave. Phys Rev Lett.
1988;60:515-8. doi:10.1103/PhysRevLett.60.515.

48. Cahn SB, Kumarakrishnan A, Shim U, Sleator T, Berman PR, Dubetsky B. Time-domain de Broglie wave interferometry.
Phys Rev Lett. 1997;79:784-7. doi:10.1103/PhysRevLett.79.784.

49. Gadway B, Pertot D, Reimann R, Cohen MG, Schneble D. Analysis of Kapitza-Dirac diffraction patterns beyond the
Raman-Nath regime. Opt Express. 2009;17(21):19173-80. doi:10.1364/OE.17.019173.

50. Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A,
Meschede D. Coherence properties and quantum state transportation in an optical conveyor belt. Phys Rev Lett.
2003;91:213002. doi:10.1103/PhysRevLett.91.213002.

51. Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A. Inserting single Cs atoms into an ultracold Rb
gas. Appl Phys B. 2012;106:513-9.

http://dx.doi.org/10.1103/PhysRevLett.111.070401
http://dx.doi.org/10.1038/nature08865
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1038/nature12592
http://dx.doi.org/10.1103/PhysRevA.89.053617
http://dx.doi.org/10.1080/00018735400101213
http://dx.doi.org/10.1016/0038-1098(69)90767-4
http://dx.doi.org/10.1007/10832182-371
http://dx.doi.org/10.1126/science.1140749
http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.103.170402
http://dx.doi.org/10.1143/JPSJ.38.181
http://dx.doi.org/10.1103/PhysRevA.88.013613
http://dx.doi.org/10.1103/PhysRevA.75.053612
http://dx.doi.org/10.1103/PhysRevA.86.033416
http://dx.doi.org/10.1088/1367-2630/10/3/033015
http://dx.doi.org/10.1103/PhysRevA.90.063610
http://dx.doi.org/10.1103/PhysRevLett.109.235301
http://dx.doi.org/10.1103/PhysRevLett.102.053001
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevA.79.042718
http://dx.doi.org/10.1103/PhysRevA.85.032506
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://arxiv.org/abs/arXiv:1410.8833
http://dx.doi.org/10.1103/PhysRevLett.60.515
http://dx.doi.org/10.1103/PhysRevLett.79.784
http://dx.doi.org/10.1364/OE.17.019173
http://dx.doi.org/10.1103/PhysRevLett.91.213002


Hohmann et al. EPJ Quantum Technology  (2015) 2:23 Page 15 of 15

52. Weber C, John S, Spethmann N, Meschede D, Widera A. Single Cs atoms as collisional probes in a large Rb
magneto-optical trap. Phys Rev A. 2010;82:042722. doi:10.1103/PhysRevA.82.042722.

53. Weiner J, Bagnato VS, Zilio S, Julienne PS. Experiments and theory in cold and ultracold collisions. Rev Mod Phys.
1999;71:1-85. doi:10.1103/RevModPhys.71.1.

54. Kuhr S. A controlled quantum system of individual neutral atoms. PhD thesis. Bonn; 2003.
55. Clément J-F, Brantut J-P, Robert-de-Saint-Vincent M, Nyman RA, Aspect A, Bourdel T, Bouyer P. All-optical runaway

evaporation to Bose-Einstein condensation. Phys Rev A. 2009;79:061406. doi:10.1103/PhysRevA.79.061406.
56. Arnold KJ, Barrett MD. All-optical Bose-Einstein condensation in a 1.06 μm dipole trap. Opt Commun.

2011;284:3288-91.
57. Ketterle W, Davis KB, Joffe MA, Martin A, Pritchard DE. High densities of cold atoms in a dark spontaneous-force

optical trap. Phys Rev Lett. 1993;70:2253-6. doi:10.1103/PhysRevLett.70.2253.
58. Lewandowski HJ, Harber DM, Whitaker DL, Cornell EA. Simplified system for creating a Bose-Einstein condensate.

J Low Temp Phys. 2003;132(5-6):309-67.
59. Lausch T, et al. Paper in preparation.
60. Belmechri N, Förster L, Alt W, Widera A, Meschede D, Alberti A. Microwave control of atomic motional states in a

spin-dependent optical lattice. J Phys, At Mol Opt Phys. 2013;46:104006. doi:10.1088/0953-4075/46/10/104006.

http://dx.doi.org/10.1103/PhysRevA.82.042722
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/PhysRevA.79.061406
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1088/0953-4075/46/10/104006

	Neutral impurities in a Bose-Einstein condensate for simulation of the Frohlich-polaron
	Abstract
	Keywords

	Introduction
	The Fröhlich polaron

	Experimental realization
	The Rb-Cs Bose-polaron
	Rb Bose-Einstein condensate
	Single atoms
	Combining single atoms with the quantum gas

	Methods
	Single atom imaging
	Optical lattice
	Lattice transport

	Conclusion
	Competing interests
	Author's contributions
	Author details
	Acknowledgements
	References


