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Abstract

Analog quantum simulators (AQS) will likely be the first nontrivial application of
quantum technology for predictive simulation. However, there remain questions
regarding the degree of confidence that can be placed in the results of AQS since
they do not naturally incorporate error correction. Specifically, how do we know
whether an analog simulation of a quantum model will produce predictions that
agree with the ideal model in the presence of inevitable imperfections? At the same
time there is a widely held expectation that certain quantum simulation questions
will be robust to errors and perturbations in the underlying hardware. Resolving these
two points of view is a critical step in making the most of this promising technology.
In this work we formalize the notion of AQS reliability by determining sensitivity of
AQS outputs to underlying parameters, and formulate conditions for robust
simulation. Our approach naturally reveals the importance of model symmetries in
dictating the robust properties. To demonstrate the approach, we characterize the
robust features of a variety of quantum many-body models.

Quantum simulation is an idea that has been at the center of quantum information science
since its inception, beginning with Feynman’s vision of simulating physics using quantum
computers [1]. A quantum simulator is a tunable, engineered device that maintains quan-
tum coherence among its degrees of freedom over long enough timescales to extract in-
formation that is not efficiently computable using classical computers. The modern view
of quantum simulation differentiates between digital and analog quantum simulations.
Specifically, the former performs simulation of a quantum model by using discretized evo-
lutions (i.e., gates) [2—4] whereas the latter uses a physical mimic of the model to infer its
properties [5]. A crucial issue is that while quantum error correction can be naturally in-
corporated into digital quantum simulation, this does not seem to be possible for AQS,
which are essentially special-purpose hardware platforms built to model systems of in-
terest. However, digital quantum simulators are extremely challenging to build, whereas
AQS are more feasible in the near future, with several experimental candidates already
under study [6-10]. Thus a critical question for the quantum simulation field is: as AQS
become more sophisticated and begin to model systems that are not classically simulable,
can one verify or certify the accuracy of results from systems that are inevitably affected
by noises and experimental imperfections [11]?

In response to this challenge, we develop a technique for analyzing the robustness of an
AQS to experimental imperfections. We specialize to AQS that prepare ground or thermal
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states of quantum many-body models since these are the most common types of AQS
currently under experimental development.

1 Definitions

Define a quantum simulation model, notated (H, O), as consisting of a Hamiltonian H and
an observable of interest O (both Hermitian operators). We write a general Hamiltonian in
parameterized form as H(A) = Zf=1 AHy, where A = (Ay,..., Ax)T denotes the vector of pa-
rameters (% = 1 throughout this paper). Hy are the terms in the Hamiltonian that are indi-
vidually tunable through the parameters . In addition, we decompose the observable into
orthogonal projectors representing individual measurement outcomes O = 2214:1 [ -
with Py, Py, = Py Syun

The goal of an AQS is to produce the probability distribution of a measurement of
O under a thermal state or ground state of a system governed by H(1°), where 1° de-
notes the ideal, nominal values of the system parameters. That is, to produce the dis-
tribution p,,(A°) = tr(Pro(A°)), m = 1,..., M, where o(A°) = ePH0") jtre=PHC") | for some
inverse temperature 8 = 1/kgT, if the goal is to predict thermal properties of the model;
or 9(1%) = [1g(12)) (¥g(A°)| with [1/4(1°)) being the ground state of H(A?), if the goal is to
predict ground state properties. However, due to inevitable environmental interactions,
miscalibration, or control errors, the parameters A can deviate from their nominal values,
which can potentially corrupt AQS predictions. We quantify the reliability of an AQS by
the robustness of this probability distribution with respect to the deviations of A from its
ideal value A°.

In general, there is no reason to expect that the prepared state o(A) will be robust to
perturbations of A. In fact, we know that for Hamiltonians that possess a quantum critical
point, thermal and ground states can be extremely sensitive to A around that point [12-14].
However, reliable AQS does not require robustness of ¢(1) around A%, but only robustness
of the probability distribution of observable outcomes, {p,,}*.,. The fact that this is a less
demanding requirement is the fundamental reason to expect that some models may be
reliably simulated using AQS.

2 Quantifying AQS robustness

To quantify the reliability or robustness of an AQS, we begin by utilizing the Kullback-
Leibler (KL) divergence to measure the difference between the measurement probability
distributions p() and p(1°) [15]: D1 (p(M)[|p(A°)) = 3, Pm(X) log %. Assuming that
the deviation in parameters from the ideal, AA = A — A%, is small, we expand the KL diver-
gence to second order to obtain

Dy (pIP0) = 5 AATEGO) AR+ O ARP). W

The positive semidefinite matrix F is the Fisher information matrix (FIM) for the model,
whose elements are given by [15]:

ZM 1 3pu(d) dpm(n)
. 0 = - -
Fy(3.7) = S=pu(A) 8% 9y |0 :

In Appendices 1 and 2 we describe how to compute the FIM for a quantum simulation
model in closed-form, without using numerical approximations to derivatives. Note that
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even though we adopt the KL divergence to motivate the FIM, Cencov’s theorem states
that the FIM is the unique Riemannian metric for the space of probability distributions
under some mild conditions [16], and is therefore a general measure of the sensitivity of
the parameterized outcome distribution around A°.

We first note that if the parameter deviations, AA, are Gaussian distributed with zero
mean then the expected KL-divergence can be approximated to second-order by the trace
of the FIM. This follows from Eq. (1), and the fact that ﬁ Zf\fl zl.TAzi is an estimate of the
trace of A when the elements of z; are independent, standard normal variables [17]. How-
ever, we are interested in not only obtaining such an average measure of AQS robustness,
but also in understanding the factors that determine robustness, or lack thereof, of a par-
ticular model. For this purpose we turn to a spectral analysis of the FIM associated with
a quantum simulation model. Consider the set of eigenvalues ¢, and eigenvectors vy of F,
with k indexing the eigenvalues in descending order. Since F is a symmetric matrix, we
have F = Zle {kvkvz. Then the simulation error caused by the deviated parameter A can
be approximated to the second order by Zl,le %k ||v,+(A)\ 2. This error is influenced by two
quantities: the magnitude of the eigenvalues, and the overlap of the eigenvectors with the
parameter deviation. We can use this structure to quantify the robustness of AQS outputs
to the system parameter deviations around the ideal A°.

A quantum simulation model is trivially robust to parameter deviations if all & ~ 0; i.e.,
F ~ 0. In the high temperature limit, 8 — 0, we can show that F(A°) — 0 at the rate of
B? generically and so all models become trivially robust, see Appendix 5. This is expected
since the equilibrium state becomes dominated by thermal fluctuations at high tempera-
tures, and observables become insensitive to underlying Hamiltonian parameters.

A more interesting way a model can be robust is if the FIM possesses only a small num-
ber of dominant eigenvalues that are separated by orders of magnitude from other eigen-
values. In this case, only parameter deviations in the directions given by the eigenvectors
of dominant eigenvalues affect the simulation results. For instance, if ¢; is the dominant
eigenvalue, then the composite parameter deviation (CPD) VIA)» has the major influence
on simulation errors. We refer to AQS models that have FIMs with a few dominant eigen-
values separated by orders of magnitude from the rest as sloppy models. This terminology
is adopted from statistical physics, where it has been recently established that a wide va-
riety of physical models possess properties that are extremely insensitive to a majority of
underlying model parameters, a phenomenon termed parameter space compression (PSC)
[18, 19].

Model sloppiness is a prerequisite for non-trivial AQS robustness, since without this
property an AQS can only be robust if most or all Hamiltonian parameters can be pre-
cisely controlled, an impractical task as quantum simulation models scale in size. In con-
trast, given a sloppy quantum simulation model, one only has to control and stabilize a
few (« K) influential CPDs. However, model sloppiness alone is not sufficient for AQS
robustness since the practicality of controlling these influential CPDs has to be evaluated
within the context of the particular AQS experiment at hand, including its control limi-
tations and error model. In this work we aim for a general analysis and do not focus on
any particular AQS implementation. Instead, we demonstrate that many quantum simu-
lation models exhibit model sloppiness, the prerequisite for robustness, and how this can
help to identify the parameters that must be controlled in order to produce reliable AQS
predictions.
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3 Analyzing the FIM
A low rank FIM immediately indicates a sloppy model, and since the rank is an analytically
accessible quantity, we can use the FIM rank to study model sloppiness beyond numerical
simulations. In particular, in this section we discuss two useful methods for bounding the
rank of the FIM for a quantum simulation model.

We begin by rewriting the FIM in a compact form. Define a matrix V' € RF*M, whose
km-th entry is a’?'”l(f), and A = diag{p1(A),p2(X),...,prs(A)}. Then the FIM can be written

an
as F = VA~'VT, Here we assume that all p,,,(1) are non-zero. In the case when some p,,(1)

equal 0, these elements and the corresponding rows in V' should be removed.

This factorized form of the FIM immediately provides a useful bound on its rank. Notice
that the row sum of V is zero, therefore the rank of V' is at most M — 1, which is an upper
bound on the rank of F. In many physical situations, it is common that the number of
distinct measurement outcomes is much less than the number of model parameters, i.e.,
M < K. In this case, the rank bound of M — 1 can immediately signal a sloppy model. An
example of this that we shall encounter later is a spin-spin correlation function observable,
whence M =2 and K typically scales with #, the number of spins in the model.

Next we will show that fundamental symmetries of the quantum simulation model can
reduce the rank of the FIM, and further, that symmetries can be used to deduce the struc-
ture of the FIM eigenvectors and characterize the influential CPDs. To do this, we de-
fine the symmetry group of a quantum simulation model, G, as the largest set of sym-
metries shared by the Hamiltonian and the observable in the model - i.e., the maximal
group of space transformations that leave the Hamiltonian and the observable invariant.
Let {U,},cc be a faithful unitary representation of this symmetry group for the quantum
simulation model,> and suppose ngHkng = Hj for some k, j, g. Then in Appendix 3 we

show that %}?) =2 a”;?) for all m, under ground or thermal states. Therefore, the spatial
symmetry of the model leads to identical rows in V, and we see an immediate connec-
tion between model symmetry and model sloppiness: a high degree of symmetry yields a
significant redundancy in the FIM and only a few non-zero eigenvalues.

This observation suggests a constructive procedure to formulate an upper bound on the
rank of FIM based on model symmetries. Specifically, compute the orbit of Hx under the
symmetry group for the quantum simulation model; i.e., { ngHkng lge G}, foralll <k <
K. The number of orbits will be the maximum number of distinct rows in the matrix V,
and therefore provides an upper bound to the rank of the FIM.

The repeated rows in V resulting from model symmetries also informs us about the
structure of the eigenvectors of the FIM, and as a result, the structure of the influential
CPDs. Explicitly, the CPD takes the form (see Appendix 4):

viAL =Y uf08) D Ak, 3)

I:H;eOrbit s

where s indexes the unique orbits, and ;¥ is a scalar dependent on the orbit, nominal pa-
rameter values and temperature. Although the forms of the CPDs are always determined
by the eigenvectors of F and therefore by the symmetries of the model, i.e., Eq. (3), the co-
efficients 1X(1°, B) are temperature-dependent and the structure of the CPD can simplify
further if these coefficients become alike or approach zero as temperature changes. We
will encounter instances of this in the next section.
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4 Applications

In this section we use the rank bounds derived above and numerical simulations to under-
stand the sloppiness and robustness of several quantum simulation models. In addition to
the applications presented here, we analyze several other quantum simulation models in
Appendix 7.

4.1 1D transverse-field Ising model
The well-known transverse field Ising model in one dimension (1D-TFIM) is described by
the Hamiltonian:

n n
H, = ZBl-o'Zi + Z]io';o';ﬂ, (4)
i=1 i=1

where 00’; is a Pauli operators acting on spin i with « = x, y, or z, and is normalized such that
{04,084} = 845%. We are interested in the uniform version of this model with BY = B* and
]i0 =] for all i; however, when this model is simulated by an AQS, the actual values of B;
and J; may fluctuate around these nominal values. The boundary conditions for this model

can be either periodic, i.e., 5/*! = o}, in which case the Hamiltonian will be denoted as

x T Ux?
Hf . or open, i.e., J, = 0, in which case the Hamiltonian will be denoted as H10 pen. Although
this model is efficiently solvable [20-22], its role as a paradigmatic quantum many-body
model with a non-trivial phase diagram makes it a useful benchmark for quantum simu-
lation. Moreover, it exhibits many generic phenomena related to robust AQS, as we will
show below.

Two observables of interest in this model are the net transverse magnetization S, =
3", o} and two-point correlation functions C,(i,j) = U;ag. It is feasible to measure these
observables experimentally, and importantly, they probe the magnetic order in the sys-
tem. For example, both of these observables can be used to characterize a quantum phase
transition that occurs in the ground state of the uniform 1D-TFIM when swept past its
quantum critical point at J°/2B° =1 [23].

First we consider the quantum model {HY*, S,} with fixed /°, and sweep the parameter
BO to explore the behavior of the model across its phase diagram. This quantum simulation
model has full translational invariance. The orbit of any o} under the (lattice) translation
i+l

group contains all crg, 1 <j < n, and the orbit of any a;ox contains all aio,’fl, 1<j<n.

Consequently, we can prove that

pm(A) _ apm(») pm(A) _ Apm(3)
9B;  0B; ' /R

(5)

for all m and 1 < i,j < n; that is, all the rows in V' corresponding to B and J are identical,
respectively. Hence, an upper bound on the rank for the FIM of this model is 2, for all
possible J°, B%, B, and n. This is a very sloppy model, especially for large 7.

To illustrate this general result, in Figure 1 we show the eigenvalues of the FIM for a
10-spin 1D-TFIM with J° =1, as B® is swept. The rank bound derived above is evident in
this figure - there are two dominant eigenvalues - and the negligible eigenvalues shown
in Figure 1 (gray lines) are actually numerical artifacts. In fact, the largest eigenvalue is

also orders of magnitude above the second largest, except in the region of the quantum
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Figure 1 Eigenvalues of the FIM for the quantum 0 e
simulation model {H}", S}, evaluated for 10 spins, at -
low temperature (8 = 10) and intermediate temperature S
(B = 1). There are two dominant eigenvalues for all 8% and ~ 10 = — =10
these are shown in color, while the others are shown in gray. <%~ T =1
g -15
-20
-25
05 1 1.5 2
g0
O ———
%-D.Sl
A
0.5 1 15 2

B° 8’ ’ 8°
(a) Eigenvalues of FIM (b) Influential CPD when system is in (¢) Influential CPD when § =1
ground state

Figure 2 The AQS model {HY*", C,(2, 6)} evaluated with 10 spins. (a) Eigenvalues of the FIM at different
values of 8. The largest eigenvalue is shown in color for zero temperature (ground state) and intermediate
temperature (B = 1), whereas the insignificant ones are shown in gray. (b), (c) Composition of the influential
CPD in terms of the original underlying Hamiltonian parameter variations. The data points (which are entries
of the principal eigenvector) are labeled by the parameter variation that they multiply to form the CPD, see
Eq. 3).

critical point, where the second eigenvalue approaches it (although still many orders of
magnitude smaller).

The eigenvectors associated to the two dominant eigenvalues prescribe the parameter
deviations that the model is most sensitive to, and due to the full translational invariance of
the model we find that they exhibit particularly simple structure (regardless of 8). Namely,
the two dominant eigenvectors take the form [u,...u,n,...,n7] and [-n,..., =0, i, ..., 1],
where 1 and 7 are two scalars depending on the value of B. This implies that across all
phases, the model is sensitive only to the CPDs ), AB; and ) ; AJ;. Hence, this quantum
simulation model will be robust to parameters deviations as long as these two sums are
maintained at zero; i.e., local fluctuations of the microscopic parameters that (spatially)
average to zero are inconsequential.

Next we examine the AQS model {Hf “,C,(i,j)} - i.e., the 1ID-TFIM with periodic bound-
ary and a correlation function observable. Noticing that the observable has only two out-
comes immediately indicates that the rank of F is at most one, and hence this model is also
very sloppy, especially for large n. To illustrate this in Figure 2(a) we show eigenvalues of
the FIM for a 10-spin example, with the observable being the correlation function C,(2, 6),
for zero and intermediate temperature. As expected, only one eigenvalue is significant and
all the others are zero up to numerical precision across the whole phase diagram (values
of J°/2B%).

The structure of the dominant eigenvector is more complex in this case, since although
the Hamiltonian is translationally invariant, the observable is not. The eigenvector struc-
ture can be extracted from symmetry considerations, but for simplicity we plot its com-
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ponents for the n = 10 case in Figure 2(b), (c), for 8 = oo, 8 = 1, respectively. Focusing
on the zero temperature case first (Figure 2(b)), we see that the CPD takes the form
> mi(BY)AB; + 31 ni(B°)AJ;, where p;(B°) and 1;(B°) are dependent on B°. Unlike
the previous quantum simulation model {H}*',S,}, the form of the linear combination of
underlying model parameters that the AQS is sensitive to not only depends on B, but this
dependence is not the same for all 20 parameters. Another interesting aspect of Figure 2(b)
is that away from the quantum critical point, the composite parameter is mostly composed
of model parameter variations near the spins whose correlation is being evaluated. More
specifically, the AQS model is most sensitive to (ABy + ABg) + (AB1 + ABs + ABs + AB7)/2
and (AJ; + Ay + AJs + AJg) (i.e., the parameters local to spins involved in the correla-
tion function C,(2, 6)). However, near the quantum critical point, all underlying parame-
ter changes enter into the definition of the influential CPD. This is a novel manifestation
of collective phenomena in quantum many-body systems: whereas local correlations are
typically influenced by local parameters, near a critical point, local correlations are influ-
enced by all the parameters in the system.

The complexity of the influential CPD for this model is most evident when the system
is in its ground state, but these features persist for small finite temperatures also. How-
ever, as shown in Figure 2(c), the structure of the CPD simplifies with increased simu-
lation temperature. The sensitivity to all parameter variations in the model around the
region near the quantum critical point disappears at intermediate temperature, as ex-
pected, since thermal fluctuations overwhelm signatures of quantum criticality as the
temperature increases [24]. Moreover, the influential CPD becomes composed of only
the parameter changes at the spins involved in the correlation function (AB; + ABs and
AJ1 + Al + AJs + AJg) across the whole phase diagram.

We pause to reflect on the differences between the two models examined so far. Whereas
{H}*',S,} and {H*, C,(i,j)} are both sloppy quantum simulation models, the influential
CPD for the former is much simpler in form - its form remains invariant across the phase
diagram and with varying temperature. An immediate consequence is that if the goal of a
quantum simulation of the 1D-TFIM is to characterize the phase diagram and the phase
transition, one should utilize the transverse magnetization as an experimental observable
as opposed to correlation functions since the former is more robust to independent local
parameter fluctuations. Another option is to probe the site averaged correlation function
(C.(j) = % > oziaziﬂ ) in which case the translational invariance, and consequently robust-
ness to independent local parameter fluctuations of the quantum simulation model is re-
stored.

To study a model with a lower degree of symmetry, we now turn to the 1D-TFIM with
open boundary conditions, with the observable of interest being transverse magnetization
again; i.e., the quantum simulation model {H;**", S,}. This model is no longer translation-
ally invariant, but has reflection symmetry about the center spin (for odd n) or center
coupling (for even n). Under this symmetry, each orbit contains at most two elements -

e.g., the orbit of aé contains itself and ozml_j

- and hence an upper bound on the rank of the
(2n —1) x (2n — 1) matrix F is n. In this case symmetry considerations do not completely
reveal the sloppiness of the model, that is, the FIM rank bound is weak, as # is not a lot less
than 2n — 1. We explicitly calculate the FIM for this model with # = 10 at low temperature,
and Figure 3(a) shows its eigenvalues as a function of B®. As expected from the symmetry

rank bound, the model has at most # = 10 eigenvalues that are nonzero (within numerical
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Figure 3 The quantum simulation model {H{**", ok
S.} evaluated for n = 10 spins. (a) Eigenvalues of
the FIM at low temperature B = 10. The ten largest
eigenvalues are shown in red, whereas the others sl
are shown in gray. (b) The elements of the >
eigenvector associated to the largest eigenvalue, e 10!
which specify the composite influential parameter 5’
deviation.
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(b) Principal influential CPD

precision). Furthermore, the first eigenvalue is several orders of magnitude larger than the
others at all phases, although there is a pronounced aggregation of eigenvalues around the
quantum critical point. Hence the model is sloppy although not to the same degree as the
previous two models examined. The influential CPDs for this model takes the form:

5 4
Z wi(AB; + ABy_;) + Z ni(AJ; + AJio=i) + 15 AJs,

i=1 i=1

where u; and n; are B°-dependent real numbers. Therefore this model is robust to parame-
ter fluctuations that are negatively correlated across its center spin (or coupling for even 7).
As a result of the complexity of these CPDs and the overall lower degree of sloppiness, we
conclude that an AQS implementation of this model will be less robust to parameter fluc-
tuations than the previous two 1D-TFIM models considered.

4.2 2D transverse field Ising model

Now we study the uniform 2D-TFIM on an n x #n square lattice:

2
n
H2 = ZBiUZi + Z],'jo;a,{, (6)
i=1 ()

with net magnetization S, as the observable of interest. Here (i, /) indicates coupling be-
tween neighboring spins on a square lattice. We consider open boundary conditions and
the uniform nominal operating point B; = B and Jij = JO. In this case the model has two



Sarovar et al. EPJ Quantum Technology (2017) 4:1 Page 9 of 29

3 x 3 square lattice. The 2D-TFIM Hamiltoman on this lattice has o, operators
on each site and the links represent the oo o, couplings between sites. Lattice
sites and couplings that lie in the same orbit (under the reflections and rotations
that leave the quantum simulation model unchanged) are identically colored.

There are five distinct orbits in this example. g

types of planar symmetries: rotational symmetry about the center of the lattice and mir-

Figure 4 Orbits under the symmetry group for the model {H,,S,;} ona G (E O

ror reflection symmetry about four reflection lines. The net magnetization observable is
invariant under the above symmetries. This is not an exactly solvable model as in the 1D-
FTIM case and is therefore of more fundamental interest for AQS.

Several local terms (0//) and coupling terms (o crx) in the Hamiltonian are mapped to the
same orbit under the action of the symmetry transformations for {H,, S,}. For example,
Figure 4 shows the lattice sites and couplings that lie in the same orbit for a 3 x 3 lattice.
There are a total of five distinct orbits in this case and thus the rank the 19 x 19 FIM is
upper bounded by five. Also, according to Eq. (3) fluctuations of the local magnetic fields or
spin-spin couplings that act on identically colored site or edges in Figure 4 will be grouped
together in the influential CPD. Explicit computations of eigenvalues and CPDs for this
model are included in Appendix 7.1.

4.3 Fermi-Hubbard model

The Fermi-Hubbard Hamiltonian, a minimal model of interacting electrons in materials,
is of significant interest to the AQS community since it is thought that understanding
emergent properties of this model could explain some high- T, superconducting materials
[25]. The Hamiltonian takes the form:

Hy ==Y ty(clcio +hc) + Y Uinipnyy, 7
i

(ij)o

where c:fa (cis) creates (annihilates) an electron with spin o € {1, |} on site i, n;, = cjo Cio 18
the electron number operator for site i. We consider this Hamiltonian defined over a two-
dimensional lattice, and the (i,j) indicates that the first sum runs over nearest neighbor
sites. Moreover, t; represents the coupling energy between sites that induces hopping of
electrons, and U; > 0 represents the repulsive energy between two electrons on the same
site. We are interested in the uniform version of this Hamiltonian with nominal parameters
U; = U°, forall i and ¢; = ¢°, for all i, j. The observable of interest is the double occupancy
fraction, D = % Zi nipn;y, where u is the total number of sites, which for example can be
used to probe metal to insulator transitions in this model.

In Figure 5 we show FIM properties for this AQS on a 2 x 3 lattice with periodic bound-
ary conditions. We show results from simulations of the Hubbard model at half-filling
(3, mip = D, n;, = 3), but the results are qualitatively the same for the slightly doped cases
as well. Figure 5(a) shows sites and coupling energies that lie within the same orbit under
symmetry transformations for this model, which are lattice translations in the x and y di-
rections. All Hamiltonian terms that act locally are mapped between each other and all
verical and horizontal couplings are mapped between each other, respectively, and thus
there are three distinct orbits for this model implying an upper bound on the rank of the
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Figure 5 FIM properties for the AQS model {H3, D} at half-filling, for a 2 x 3 lattice with periodic
boundary conditions and t° = 1. (a) Orbits under the symmetry operations for this model. The dotted green
lines indicate periodic boundary conditions. Lattice sites and couplings that lie in the same orbit are identically
colored. There are three distinct orbits in this example. (b) Eigenvalues of the FIM for this model at different
values of U, for B =1,10, with the three largest eigenvalues colored. (c) Composition of the influential CPD in
terms of the original underlying Hamiltonian parameter variations, for 8 = 10. Atyert denotes all the vertical
coupling terms (i.e. Atyy, Atza, Atse), and Atheriz denotes all horizontal coupling terms.

FIM of 3. Figure 5(b) shows eigenvalues of the model with t° = 1, as a function of L/°. As ex-
pected, there are always at most three non-zero eigenvalues (to numerical precision) and
the model is extremely sloppy. In contrast to the models examined so far, the low temper-
ature version of this model is sloppier than the intermediate temperature version. Finally,
Figure 5(c) confirms that the influential CPDs takes the form expected from the symmetry
analysis, with the model only showing sensitivity to the sum of local fluctuations ) _; AU,
and sum of vertical coupling terms or horizontal coupling terms.

5 Scaling to large systems

Quantum simulation is most compelling for large-scale quantum models since difficulty
of classical simulation typically increases exponentially with the model scale.! Obviously,
evaluation of model robustness through classical computation of the FIM is not possible
for large-scale models. However, we will show how analysis of small-scale systems can
be bootstrapped by various techniques to draw useful conclusions about their large-scale
versions.

First, we note that the bounds on the rank of the FIM that we derived earlier can be useful
for models of any scale. For example, the rank bound derived from symmetry consider-
ations allows us to determine the sloppiness of the quantum simulation model {H}", S,}
at any scale (i.e., for any number of spins); and further, symmetry considerations yield the
form of the CPD that the model is sensitive to. More generally, we observe that the FIM for
any quantum simulation model is greatly simplified by translational invariance, and this
can be used to determine sloppiness of the model at any scale. Consider a general (finite-
dimensional) translationally invariant Hamiltonian H, = Zﬁﬂ > n AMHRr, where HY, is
an operator acting on degrees of freedom in the spatial neighborhood N, and of type «.
As an example, consider the following general spin-1/2 Hamiltonian on a 3D lattice with
nearest-neighbor interactions and periodic boundary conditions in all directions:

n
Hy=) (Biol+Bioj + Biol) + Y (loio] + Jiojo] + JVolo)), (®)
i=1 (i,j)

where (i,j) indicates the sum runs over nearest neighbors in all three directions. Here
a € {x,9,z,xx,yy,zz} and the neighborhoods are local sites or edges of the 3D lattice.

Page 10 of 29
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Figure 6 Influential CPD for the model {H}*", C;(2,10)}

evaluated with n =70 spins, when the systemis in -
K3

ground state. This model has 140 microscopic parameters, - -0.5 \{; B.AB AB,AB,,

only the ones that significantly contribute to the influential

CPD are labeled for clarity. -1 05 1 15 >

Translational invariance implies that under the action of the translation symmetry group
for these models, all Hamiltonian terms of a given type « lie in the same orbit. Therefore,
the number of orbits is the same as the number of types of interaction, and assuming that
the observable of interest is also translationally invariant, A is an upper bound on the rank
of the FIM for such models at any scale. Thus such models are guaranteed to be sloppy,
except at very small scales (where the number of parameters is comparable to A). Further-
more, the AQS will be most susceptible to the CPDs )~ AA%, for each «. For example, for
the spin-1/2 Hamiltonian H, above, if the observable is also translationally invariant, e.g.,
Sx» Sy or S, then the FIM for this quantum simulation model will have rank at most 6,
for any number of spins. Note that this example covers a wide range of models including
tilted and transverse field Ising models and a variety of Heisenberg models.

The rank bound obtained by counting the number of observable outcomes is also useful

in determining sloppiness at any scale. For example, the spin-1/2 correlation C, (i, ) = o0y,

has only two possible outcomes +£1, thus the FIM rank is always one, regardless of the
Hamiltonian and number of spins. Unfortunately, this bound does not also inform us
about the structure of the CPD that the model is sensitive to.

Second, even in cases where a complete symmetry analysis is not possible, an analysis
of the small-scale model can be informative about the robustness of the corresponding
large-scale model. In particular, since the form of the CPDs is determined by symmetries
of the model, one can extrapolate from the form of the CPDs from small-scale models to
large versions. For example, for the model {H}*, C,(i,j)} studied above, we can examine
large-scale behavior by using the well-known exact solution to the 1D-TFIM [20, 21] (see
Appendix 6 for details), and confirm that the form of the influential CPD remains the same
at large # as for the small-scale version. In Figure 6 we plot entries of the dominant eigen-
vector for the model {H*', C,(2,10)} for n = 70 spins in the ground state. The influential
CPD is mostly composed of parameters around the spins whose correlation function is
being evaluated, except near the quantum critical point when other parameters also con-
tribute. These trends agree with results for the small-scale version of the model shown in
Figure 2(b).

Third, we note that in some cases we can approximate a quantum simulation model
with one of higher symmetry in order to gain more information from the FIM. An ex-
ample of such an approximation is the common practice of imposing periodic boundary
conditions on finite lattices in order to make calculations tractable. This approximation
can also be useful for assessing robustness of large-scale models using our approach. To
illustrate this, we turn to the exact solution of the 1D-TFIM again, and confirm that the
model {H; Pt S.} can be approximated by {Hf S} as the number of spins increases. Our
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Figure 7 The largest 10 eigenvalues of the FIM for the 0
quantum simulation model {H;**", 5.} as a function of
model scale (number of spins, n), at intermediate 5
temperature  =1. T
<
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o ..
A5p e
-20
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numerical investigations show that when # is large, e.g,, n > 50, the largest eigenvalue of
the FIMs for these two models become almost identical, and the forms of the influential
CPDs for the two models approach each other. Hence for some large-scale models one
can infer sloppiness and robustness from analysis of approximations with higher degree
of symmetry. Of course such approximations are not always possible and one should be
aware of their accuracy across parameter regimes.

Finally, we pose a conjecture regarding the behavior of sloppiness with scale: if a small-
scale AQS model with a lattice quantum many-body Hamiltonian is sloppy, then its large-
scale version will also be sloppy. Although we currently lack a proof of this statement,
it is well supported by numerical evidence. For example, consider the model {H;**",S,}
that was shown to be sloppy at small scales earlier. By utilizing the exact solution to the
1D-TFIM, we can analytically calculate the FIM for a large number of spins. We choose
B%=0.45,7° =1, and B = 1, and in Figure 7 plot the largest 10 eigenvalues of the FIM for
this model as a function of the number of spins, n. The model remains sloppy across all
scales that were simulated.

6 Discussion

We have developed and applied a formalism for analyzing the robustness of analog quan-
tum simulators. Many quantum many-body models are potentially robust for AQS, es-
pecially if they possess a high degree of symmetry, which we have shown leads to model
sloppiness, a necessary condition for robustness. In addition, our techniques allow one
to determine which underlying parameter(s) impact simulation results the most, which
could help to focus experimental effort when designing AQS platforms. In a sense, our
work can be thought of providing a formal justification of the commonly encountered in-
tuition that bulk properties should be immune to microscopic fluctuations, and elucidating
the connection between this intuition and system symmetries.

For brevity we have only presented results from applying our approach to uniform mod-
els above. However, we have analyzed a large variety of more general models, including
ones with random parameters and long-range couplings, and some of the results from
these studies are presented in Appendix 7. Application of our approach to these more
complex cases with less symmetry illustrates how any symmetries in the underlying ideal
model can be exploited to understand sloppiness and robustness. While nearly all the
quantum simulation models we studied were sloppy (the exception being models with
complete disorder, i.e., random parameters), in some cases the influential CPD is com-
plex, and engineering robust AQS for these models could be challenging. This finding is
mirrored by the ubiquity of sloppiness in the classical models studied by Sethna et al. [18,
19].
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The intent of this work is to introduce the notion of sloppy models to AQS, demonstrate
its relation to robust simulation and illustrate that certain quantum simulation models
can be robust to uncertainties in parameters. There are many promising directions to
extend this work. For example, while we have focused on AQS that prepare ground or
thermal states of quantum many-body models, the approach can be extended to analyze
quantum simulations that predict dynamic properties of quantum models by considering
probability distributions for the dynamical variables of interest. Finally, we have restricted
ourselves in this work to investigating the robustness of analog simulation of Hamiltonian
models with calibration uncertainties because these uncertainties can in fact dominate the
behavior of existing cold-atom analog quantum simulation platforms, e.g., [7-10], where
decoherence due to environmental coupling is very small. However, for a complete picture
of robustness, it is desirable to extend this analysis to diagnose robustness of quantum

simulation models with decoherence.

Appendix 1: Calculation of FIM for thermal states
We can analytically simplify the partial derivatives required to compute the FIM when the
system is in a thermal state o(1) = e ##*/ Z, where Z = tre##®, Now we have

- z

pm(r) 3 [tr(P,ePHW)
e O

(P 2 ) 2 — tr(Pye PO 1 2
- - . ©)
In order to calculate ae;iz(” , we utilize Eq. (78) in Ref. [26] to obtain:
e-PH() B2
- _ _e—ﬁH/Z / e—rHerrH dTC_ﬁH/z. (10)
Ok —B12

Note that we drop the A-dependence when it is clear from the context. Now we diagonalize

the Hamiltonian as
H(O)=TrTT,

where T is a unitary matrix of eigenvectors and I" = diag{y1, », ...} is a diagonal matrix of

eigenvalues. Substituting this decomposition into Eq. (10), we get

9e~BHO) B2
= = _Te-ﬁm/ (TH(T) © O(z)dre P17,
Ak —B/2

where © denotes the Hadamard product, i.e., element-wise product, and ©,,(7) = evarp)t
is the pg-th element of ®. The v dependence is entirely in this matrix, and therefore we

can evaluate this integral to yield:

e PH)

=-Te P"2((T"H, T) © @)’ *T",
I
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where @ is a matrix with elements:

sinh(yg—yp)B/2

Dy = Gz 7 Vo
B, Yo = Vq-
Consequently,
§e-BH()
tr = —tre‘ﬂH(’\)Hkﬂ,
0Ak
e PHO)
tr P, TV —trP, Te‘ﬂrlz((TTHkT) O] q>)e_ﬁr/2 T'.
k

Inserting these expressions into Eq. (9) allows us to evaluate the derivatives required to
calculate the FIM for thermal states in a manner that is numerically stable.

Appendix 2: Calculation of FIM for ground states
The FIM when the system is in its ground state, |1/5), can also be obtained in an analytical
manner. We must calculate

pm(A) 0 |g)

=—1trP =2trP,,———
e g e YW

(Vgls (11)

where 0gs = |/g) (¥/g|. For a Hamiltonian with a simple (non-degenerate) minimum eigen-
value, the minimum eigenvalue and the associated eigenvector are infinitely differentiable
in a neighborhood of H, and their differentials at H()) are [27]

dE = (Yrg|(dH)|¥rg) (12)

and

d|Yg) = (Eol, — H(V) " (dH)|¥rg), (13)
where * denotes the Moore-Penrose (MP) pseudoinverse. We then obtain

3| rg)
Ok

= (EoL, — H(\)) " Hklrg), (14)

and therefore,

0pm(L)
Ik

= 2tr(Py(Eoly — H(A)) " Hiogs)
= 2(VglPru(Eols — H(X)) " Hi[¥rg)- (15)
V, the matrix of partial derivatives can then be written in a compact matrix form as:

(V| Py
Vi=2| |(Eol,—HO)'[Hilyg) -+ Hgldy)]-
(gl Pt
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These analytical expressions for the derivatives for thermal and ground states are faster

and more numerically stable to evaluate than approximations using difference equations.

Appendix 3: FIM and model symmetries
In the main text, we stated that if a quantum simulation model has a symmetry transfor-

mation that relates Hy and Hj, then

pm(A)  Apm(A
pim(2) = P ), for all m. (16)
oAk oA
This has consequences for the rank of the FIM for the model.
To prove the above, we start with the explicit expressions for the partial derivatives under
thermal states, given in Eq. (9). The two k dependent quantities in this expression can be

written, using Eq. (10) as:

de PH
tr =-fBtr e”sHHk,
OAk
—BH 812
tr P, = —tr(PmeﬁH/Z/ e M Hie™ dTeﬂH/2).
k -BI2

Then suppose the quantum simulation possesses a symmetry with unitary representation
(we assume the symmetry group is compact) {U,},, in which case [U,, H(A)] = [Uy, 0] =0
forall g. Furthermore, given the decomposition of the observable, [U,, P,,] = 0, Vg, m. Now,
suppose the symmetry maps H; to Hy, meaning Hj = LIgH/LIgT , then using the commutation

properties stated above,

dePH de PH
tr =-prePMUHU =tr .
0Ak i A
Also,
dePH
trP,,——
"k

12
= —tr(Pme‘ﬂH/Z/ e‘THL[gH,L[geTH dre‘ﬂH/Z)
—B2

ge-PH()
N

=trP,

Therefore, all k-dependent terms in Eq. (9) are the same if we exchange k with j, and hence
we arrive at Eq. (16) for thermal states.
To prove the same property when the system is in its ground state, we turn to the ex-

pression for the partial derivatives given in Eq. (15):

8‘%(;) = 2tr(Py(Eol - H(V)) " UgH;U 0g5), 17)
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Since [Ug, H(X)] = 0, and both of these operators are normal, they share an eigenbasis,

implying [U,, 0gs] = 0. Therefore,

9pm(2)
Ok

= 2tr(P, U (EoL, — H(V)) " UyHjogs). (18)

Using [L,, H(A)] = 0, it is easy to verify that {/,(Eg —H(}))* LI; is also the MP pseudoinverse

of Egl — H(A), and from the uniqueness of MP pseudoinverse, we have that
U (Eol, — H(V)) Uy = (Eol, —H())". (19)

From this equality and Eq. (18), Eq. (16) follows for ground states as well.

Appendix 4: Structure of the eigenvectors of F

As discussed in the main text, spatial symmetries of a quantum simulation model ren-
der some rows of the matrix V' equal. Here we show that this induces a certain structure
on the Fisher information matrix (FIM), namely that the corresponding entries of each
eigenvector of F are equal.

Without loss of generality, we assume that V' can be written as

11V-1r
121/;
V= s (20)

T
1,v,

where 1, is a column vector with dimension r; and all entries being 1, and V; are pairwise

distinct row vectors. As a result,

viATv1] - v AT
F=VAlVT= : : ) (21)
vIATyL1] - VTAT T
Let
ViAo v ATy
M= : : , D = diag{ny, ..., n}, (22)
vIATy o VTATy

and p' = [p; --- ps] is an eigenvector of MD with eigenvalue . Then

1 1
pih VIAvpim 1y + -+ VI A gpengly P
p2lo pa2ly
7 = =al|l | |. (23)

VIATvipim L + -+ VI A ygping I
sl psls
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Therefore, [p11] po1] --- ps17]" is an eigenvector of F. From Eq. (20), we know that the
rank of V is s, and thus the ranks of M and F are both s. Hence, all the eigenvectors of F
can be written in the form [p;1] po1] --- p,11]", that is, they have the same structure of

repeated entries as V in Eq. (20).

Appendix 5: Robustness at high temperature
We will show that in the limit of high temperature, the FIM approaches 0 at the rate of 82.
For simplicity, we consider an n-qubit system. From Appendix 1, and therefore we know

that when the system is in a thermal state o(1) = e ##*/ Z, we have

Dm deBH Je~PH
L2 (P ) [ 2 - (e ) —— [ 22, (24)
8)»/( 3)\1( a)\k

where Z = tre”##®, In the high temperature limit, 8 — 0, we expand to the first order

e Pl ~1-BH (25)
to obtain
dePH
~ —BH 26
o BH (26)
and
Z=2"_BtrH, Z1=2" 4 27 MBirH, 22207y 07w H. (27)

Further, using this approximation and ignoring higher order terms in 8, we get

tr(Pm%> /2~ -BuP,H(2" + 2 e H)
~ —27"Btr P,,Hy, (28)
and
tr(Pe ) tr % /22~ —BuP, (1 - BH)wH (2 + 2 B H)

~ =272 B tr Hi tr P,,. (29)

Combining these two equations, we have

ZZm o , 30
g Birm (30)

where

Wi = 272 tr He tr Py, — 27 tr P, Hy. (31)
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Define a matrix U whose km-th element is uy,. Then F = B2UATUT. Hence, as 8 — 0,
the FIM approaches the zero matrix as 82 and thus the quantum simulation is robust.
Furthermore, UA U is a constant matrix that is independent of the system parameters,
which indicates that at high temperature the quantum simulation is completely insensitive

to the nominal values of the underlying parameters.

Appendix 6: Computational aspects for the 1D transverse field Ising model

The 1D transverse field Ising model (ID-TFIM) has a well-known mapping to a free-
fermion system [20, 21], and thus is efficiently solvable. We use these efficient solutions
in order to present results for large n versions of this model. In this section we explicitly
demonstrate how the free fermion mapping can be used to calculate the probability dis-
tribution of the observables examined in the main text for this model. In the following
we present calculations for the open boundary condition case for this model, but similar

results hold for the periodic boundary condition also.

6.1 Net magnetization distribution for the 1D-TFIM
Recall that the Hamiltonian for the 1D-TFIM is given by

n n-1
H-= ZBkaZk + Z Jiolol™. (32)
k=1 j=1

Consider the observable S, = 27:1 ol = > n OnPm, where in the second equality we have

decomposed the observable as a sum of projectors. We wish to compute p,, = tr(P,,0), and
we use a two-step procedure to calculate this quantity. First, we express each P, as a linear

combination of {Sj,...,S,}:
P, = ngjsj; (33)
j=1

where

n
Sl = ZUZkl,
k=1
n

k1 _k
Sy = Z o,'0,?,

1<ki<ky<n
P (34)
_ ki ko k3
S3 = E 0,'0,%0,3,
1<ki<kp<k3=<n
_ 12 n-1_n
Sy,=0,0;---0, 0,
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Second, we calculate the expection values of S, i.e., (Sj) = tr(S;0). Combining these two
steps, we have

Pm=)_ Em(S)). (35)
j=1

We now elaborate on the details of these two steps. First, we express P, in terms of S;. The
observable P,, can be written as

N
Po= i) Kl, (36)
j=1

where |«;) is a state with 7 —1 spins in the ground state |0) and # — m +1 spins in the excited
state |1), and N,,, = (m”_l). For simplicity, we use the case m = 2 to illustrate the approach.
In this case, we have

Py=[01---1)(01---1| +|101-+-1)(101---1| + --- +|1---10)(L---10]
=10)(0| @ 1)1 ® --- @ [1){1] + [1) (1| ® [0}(0] ® [){1| ® - - ® |1)

XA +---+ I ®--- ® [1){1] ® |0)(0]. (37)
Since |0)(0| = 1/2 + 0, and |1)(1] = I/2 — 0,, we have

Py=(I12+0,)@U/12-0,)Q ---QU/2-0,)
+U2-0,)QU/12+0,)QU/12-0,)Q - ([/2-0,)
+...

+(I2-0,)Q - QU2-0,)Q /2 +5y). (38)
Eq. (38) can be rewritten as

Py=(I®"/12+0})(I®"/2~02) - (I®"/2 - o))

+(I%"2 = a})(I®"/12 + 02) (I®"/12 = 02) -+ - (I®"/2 - o))

+ (1®”/2—621)~~(1®”/2—U;"1)(1®”/2+JZ"). (39)

To find the coefficients &,,, we replace I”/2 by % and og by a scalar variable x; in Eq. (39)
and obtain the following polynomial:

Do) = (% +x1> (% _x2>... (% _xn)
el

1 1 1
+ <§_x1) (E_xn_l) (E +xn>. (40)
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The polynomial p, is symmetric and thus can be represented by elementary symmetric
polynomials s;:

n
§1= E Xky»
k=1

n

S§ = Z xklxkzy

1<ki<ky<n

(41)

n

§3 = § Kk KXkoXks »
1<kij<ky<kz=<n

Sy =X1X2 ** +Xp_1Xy.

The coefficients to represent P, in terms of S; are identical to those that represent p, in
terms of s;, that is,

n
p2= Z £28;. (42)
j=1
In fact, to obtain ,,;, we can choose all the variables x; to be the same x. Then, we have

R R

+ (;l) %'mlx + §m0~ (43)

Equating the coefficients in both sides of Eq. (43), we can obtain &,,;.
Next we show how to compute (S;). From Refs. [20, 21], we define two matrices P and

Qas

J, ifk=j+1;
]k: 1f] =k+ 1;

Py =
B, ifj=k
0, otherwise, (44)
J,  ifk=j+1;

ij = _]k) lf] =k+ 1
0, otherwise.

Let ¢ be anormalized row eigenvector of (P~ Q)(P+Q), i.e., p{ (P— Q)(P+Q) = A7¢; . Let
vl = -A ¢} (P- Q). Juxtapose ¢ and ¥ into two matrices ® and W. For the calculation
of ground state, we define

G =vTo; (45)



Sarovar et al. EPJ Quantum Technology (2017) 4:1 Page 21 of 29

and for the thermal state, we let
G = lDTtanh<§A><D. (46)

From Wick’s theorem and Ref. [21], we know that (S;) is the sum of all the j-by-j principle

minor of G. Moreover, from Ref. [28], we have
det(t] — G) = " — (S)E" L+ (Sy)t" 2 — ... £(S,,). (47)

Hence we can determine (S;) by calculating the characteristic polynomial of G. With these

two steps, we can now obtain p,,.

6.2 Correlation function distribution for the 1D-TFIM
When the observable is the correlation function C,(i,j) = ¢ OZ, we know from Eq. (2.33c)
in Ref. [21] that under the ground state,

(o} a/) (Gf'le; Gfle;)/ (48)

and under the thermal state,

(olo]) = (GG}, - GG /4, (49)
where G¢ and G’ are defined in Egs. (45) and (46), respectively.
We then consider to analytically calculate the FIM for ground state. Since o0/ has two

eigenvalues :i:i, we obtain that for ground state,

p1 =Py (Y] = (1+ GG} - G Gf) /2,

(50)
P2 =P Yg) (Y| = (1 - GG} + GiGy) /2.
Then
d 1/dG Gt  dG ng d d
P (it L - G -G and 2" (51)
dy, 2\dx 7 drn,  dia Y Tt d di; d)\.[
We now derive dG¢/d);. Since G¢ = WT ®, we have
g 4wT dd
= o +wl— (52)

d—)\.[ - dA; * darx;’

The matrix (P- Q)(P+ Q) is simple, meaning that it has pairwise distinct eigenvalues. Then
its eigenvalue and the associated eigenvector are infinitely differentiable in a neighborhood
of H(A) and their differentials are

W

2 (4
= (03— - QP+ Q) (- QP+ @) o 53)
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where * denotes the Moore-Penrose pseudoinverse. From the definition of P and Q in Eq.
(44), it is straightforward to derive dP/dX; and dQ/d); and thus

dP d dP d

—(P QP +Q) = (d— - —Q)(P Q+(P- Q)( df) (54)
Moreover, we have that

i __ang ot ir(dPdQ

d ¢k P-Q)- (P Q) - Ay ¢ (d_)»l - d_)\.[>

1dA d dP d
- AP R - ;ldi;lw—@ 2ol (G- ) 5)

where

dAk d

Dy 2A, ¢1< (d—M(P_ QP+ Q))¢k- (56)

Combining these equations, we can calculate dp;/dX; and dp,/dA; for ground state ana-
lytically. For thermal states, we just need to calculate an additional derivative of tanh(gA)
in G' and can obtain the results similarly

When the observables are a;a,’; and o ay, their mean values can be obtained from Eq.
(2.33a) and (2.33b) in Ref. [21]. And following similar procedures as above, we can derive
analytical expressions for derivatives of the measurement probabilities.

Appendix 7: Robustness of more quantum simulation models
In this section we report the behavior of the FIM for some quantum simulation models

that were not included in the main text for conciseness.

7.1 2D transverse field Ising model

In the main text we demonstrate how symmetry analysis of the 2D-TFIM with open
boundary conditions and net magnetization as the observable enables one to determine
the rank of FIM for this model, and show that it is sloppy. For more details on the sym-
metry analysis for this model, see Appendix 8. Here in Figure 8, we explicitly present the
eigenvalues and eigenvectors of the FIM for a 3 x 3 square lattice version of this model. It
is evident from Figure 8(b) that the FIM eigenvalues agree with the rank bound (rank < 5)
derived from symmetry. Furthermore, Figures 8(c) and (d) show that the forms of the in-
fluential CPDs respect the symmetry of the model.

7.2 1D random Ising model
To examine a model with disorder, consider the 1D transverse field Ising model with ran-

dom local fields and coupling energies, i.e.,

n
Hf =Y Blo}+ ZJO olol™, (57)
i=1

with periodic boundary conditions (0" = o}), and BY = B® + §B,,J? = J° + §J;, where §B;
and §J; are independent zero-mean Gaussian random variables with standard deviation o.
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Figure 8 Eigenvalues of the FIM for the AQS model {H,, S}, evaluated for a 3 x 3 lattice of spins for
thermal states with 8 = 10, 1. (a) shows the symmetry of the model, reproduced from Figure 4 in the main
text. Lattice sites and couplings that lie in the same orbit (under the reflections and rotations that leave the
quantum simulation model unchanged) are identically colored. (b) shows eigenvalues of the FIM, with the
five eigenvalues of largest magnitude shown in color. (c), (d) show the forms of the influential CPDs for

B =10, 1, respectively.

As for the observable of interest, consider the net magnetization S, again. This quantum
simulation model has no symmetries due to the random parameters and so the FIM rank
bounds based on symmetry are not informative. The number of measurement outcomes
for this observable is M = n + 1, and therefore the rank of the FIM is at most #. In Fig-
ure 9(a) we show the eigenvalues of the FIM for a 10-spin example of this quantum simu-
lation model, with J° = 1, disorder variance ¢ = 0.2 and 8 = 10. This figure shows the FIM
eigenvalues for one representative sample of § B; and §/;. As evident from this figure, while
the dominant eigenvalue is roughly two orders of magnitude above all others, this model
cannot be considered sloppy except for small or large values of BC. In Figure 9(b) we also
show the form of the first influential CPD (we do not label the points on this plot since we
only wish to illustrate the complexity of the behavior of this quantity for this model).

7.3 J1-J; antiferromagnetic Heisenberg model

Now we turn to a quantum simulation model based on a Hamiltonian that contains
non-nearest-neighbor interactions and geometric frustration. The J;-/; antiferromagnetic
Heisenberg model is defined by the following Hamiltonian governing spin-1/2 systems on
a two-dimensional lattice:

Hs=Y Jjo' o/ + Y Kyo'- o, (58)
(i) (i)

where the first sum is over nearest-neighbor spins and the second is over next-nearest-
neighbor spins. We are interested in the uniform nominal operating point for this model
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Figure 9 The AQS model {HR,S,},forn=10 spins and 8 = 10. (a) Eigenvalues of the FIM. A bound
derived from considering the number of measurement outcomes tells us that the rank of the FIM is at most
10, and therefore we show the ten largest eigenvalues in color and the others (numerical artifacts) in gray.
(b) The form of the first influential CPD.

Figure 10 A single plaquette defining interactions between spins for a J;-J,
Heisenberg model.

where ]i(} =J%and Kl? = K% with /%, K° > 0.¢ Figure 10 shows a single plaquette in the square
lattice in the nominal model.

The magnetic order in this system is complex with different phases of magnetic ordering
being driven by competition between the two different kinds of interactions. The magnetic
order parameter is different in different K°/J° regimes. For small values of this ratio (~ 0)
the magnetization is Néel ordered (the model resembles a conventional Heisenberg an-
tiferromagnet on a square lattice in this regime), and as this ratio approached unity one
has so-called “striped magnetization” [29]. Our observables of interest is the staggered
magnetization, which probes the Néel order in the system:

n

M= Y1yt o, (59)

j=1 i<j

where 7 is the total number of spins in the system.

The quantum simulation model {H5, M} with open boundary conditions on the lattice
has several symmetries despite the complicated form of the observable of interest. For
square lattices, this model has rotational symmetry about the center of the lattice and re-
flection symmetry about four reflection lines. In Figure 11(a) we explicitly show the sym-
metries in this model for a 3 x 3 square lattice. Note that since # is odd, all these symmetry
transformations take odd (even) labeled spins to odd (even) labelled spins, and hence leave
the observable of interest invariant. From this symmetry analysis, we obtain a rank bound
on the FIM of rank(F) < 4. Figure 11(b) shows the eigenvalues of the FIM for this 3 x 3
example for § =10 and B =1, and it is clear that the rank bound is respected. Finally,
Figure 11(c) shows the primary influential CPD for this model when g = 10. The first four
eigenvectors of the FIM all define influential CPDs since the first four eigenvalues are non-
negligible. We only plot the primary influential CPD here for simplicity, but all the others
have the same symmetry properties.
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Figure 11 Eigenvalues of the FIM for the AQS model {Hs, M;}, evaluated for a 3 x 3 lattice of spins for
thermal states with § =1, 10. (a) shows the symmetry of the model. Couplings that lie in the same orbit
(under the reflections and rotations that leave the quantum simulation model unchanged) are identically
colored. (b) shows eigenvalues of the FIM, with the five eigenvalues of largest magnitude shown in color.

(c) shows the form of the influential CPD for 8 = 10.

Appendix 8: Examples of model symmetries and representations
Here we explicitly construct representations of symmetry groups for two quantum simu-
lation models analyzed in the main text. These representations acting on the Hilbert space
of the model can be constructed from elementary SWAP operations.

First consider the 1D transverse-field Ising model (1D-TFIM) with periodic boundary

conditions {H}*,S,} as discussed in the main text.

This model is translationally invariant and therefore its symmetry group G is defined as

G={Luu?.. . ut},

where
U=U, 1, Uslpy,

and Uj is the SWAP operation between two nodes j and k;, i.e.,
Uy = 20)0% + 2050;( +20l0k +1/2.

It is easy to verify that

ifm=j;

o _myrt _ j . .
Uyo,, = ow ifm=k

otherwise,
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where w = x, y, or z. For m < n, we have

ooy, ifm=jandn=k, orm+jandn+k;
oko, ifm=jandn#k;
Uij,L”UM'fU; =100k, iftm#jandn=>k;

oo, ifm=k

ooy, ifn=j.
Therefore, we can obtain

UolU' =07, UolU' =0}, e Uo'U' = o}

S

and

1 27t 1 2 P12 1 -1
Uo,o.U" =0)0,, UJWO'M%U' =0,0,, s I,[U,f,’UWL[T =0y o).

For any g, we have that
ol (W) = o, Usalal (1) = s, (50

where j — g is understood to be computed with modulo #. Then, since the ideal Hamil-
tonian for the model has identical nominal parameters (B = B%,J? = J°), we have that
UH(U?)" = H; and furthermore, USO(U%)" = O. From Eq. (60) and the discussion in Ap-
pendix 3, we know that

pm(2) _ Opm(d) dpm(A) _ Opm(X)
9B,  9B; oy Ok

, hk=1,...,n.

We can thus write V as

1-47
v=| % |,
1-b7
where1=[1--- 1] e R*, a, b € R", and the FIM can be written as

a’ -1 T
F= LT Alla bl®(1-17).

From this form it is evident that rank F = 2, and the two nonzero eigenvectors are

w - won ol
and
1"

[_r] e _n " n

Hence the influential composite error deviations take the form ), AB; and ), AJ;.
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Next consider a 2D-TFIM on a square lattice with open boundary conditions. A more

explicit form of the Hamiltonian for this model than the one given in the main text is:

n
, (124D _(1ia) (a1
H, = Z Z B )0(1112) + Z 21(111]122) z(]112)‘fz(]112+)

j1=—nja=-n j1=—nja=-n

(/1+1’12 (152) - (1+1,j2)
+ZZ(/112 oftRlg ),
j1=—nja=-n

where (j1,/2) denotes the Cartesian coordinate for a node, e.g.,

(mn) ) (0,n) )e- - (nn)

@ oo G-

- -G -

The quantum simulation model we consider is {H3,S,}, and thus the observable has
complete translational symmetry. For the nominal values of the parameters for this quan-
tum simulation model, we only require those that are symmetric with respect to x- or

y-axes are equal, i.e.,

0
(1112) B (~/1,/2) B(/112 = B (71,—72)
(j1/2+1) (1~2) 0 (1+Lj2)\0 _ (7(=1j2) O
(](11:12 ) (](llv—lz 1) ’ (](llvlz) ) - (](—1'1—1,/'2)) :

In this case the quantum simulation model has reflection symmetry about the x- and y-
axes and 90° rotation symmetry. The generators of the symmetry group are {1, Uy, U,, U},

where

n
U = 1_[ HM((QJZI)z)’

Ji=-nj2=1
(~j12)
U= H 1_[ M(Il;/z) ’
J1=1ja=-n
-1 0 n n
_ (12 —j1) (12,*1'1) (j2,~1)
Ur = 1_[ 1_[ (142) 1_[ 1_[ (j2) HnM(iL/z) ’
jr=—njp=-n ji=-njp=1 j1=1/2=0

where M(]kllkZ) is the SWAP operation between two nodes (j1,j2) and (ki, k3):

Mg;l/]z(z = 2017 (l1k2) +20(’1’2 k1k2 + 2000 k) 4 gy,
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When this operator is applied to local terms, we have

O’lg/khkz)’ lfml :jl’ miy =j2;
(k1,k2) _ (my,m: Tlkika) _ (j12) :
M(/wz oM 2) M ) oV, if my = ky, my = ko;
omm) - otherwise,

where w = x, y, or z. Note that U, flips o, fmma) with respect to x-axis, and U, flips with
respect to y-axis. The operator Uy is the product of three rotations from quadrant I to II,
11 to III, and III to IV, and then it rotates o, by 90° clockwise. Hence U,, U,, and Uy

commute with both H(A) and O. From the discussion in Appendix 1, we obtain

pm(A) 319m()») Ipm(A) — 9pm(2)
9By ) 83(}1 —j2) 9By ) aB(—}iJ’z)
) Ipu)  Opad)  Opa()

9B jp) B OBy 1) B OB(jy,j2) B aB(va—jl)’

J2)

and
pm(A)  Opm(X) pm(A)  Opm(A)
Gojp+D) ~ o ) G2~ 05 —uj2+1)’
] (1/2) 3 (j1,j2-1) 3, (1,/2) 3] f142)

Ipm(A)  Opw()  Opm(A) Ipm(A)

8](11»12 +1) 3]( —ja— 1,11) 8]( —j1,—j2-1) 8](12 +1 —11)

(1/2) (=j241) ~j1-j2) (2,=1)
pm(A)  Opm(X) pm(A)  pm(A)

L)~ o) 1L~ o i)’
9 (142) 8] (=/1-1j2) 9 (142) 3 (1,—j2)

pm()  Opm(A)  Opm(A) aPm(k)

1L~ oqo 12,11+1) 11—1,12) —j2s —11 -1)°
8] (1/2) 8] (~j241) 3] (~J142) 8] (~j2,~1)

We know that all the nodes and couplings that are mirror images of each other with respect
to the horizontal or vertical axes, or images of 90°, 180°, or 270° rotations, have identical
rows in the FIM.
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Endnotes
@ This decomposition of an observable into a set of operators that represent measurement outcomes (or more
formally, POVM elements [30]), is not unique. However, there will be an experimentally relevant decomposition
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dictated by the experimental apparatus used to probe the AQS. Our results are not dependent on the particular
decomposition chosen and for concreteness we work with the decomposition given here.

Explicit unitary representations of symmetry groups for several quantum simulation models are presented in
Appendix 8.

This is the reason we present results for the system at zero temperature for this example (instead of 8 = 10 which is
our low temperature case in the other examples).

We assume there is some natural notion of scaling of a model that maintains its symmetries - e.g., increasing the
number of spins in a spin lattice model while maintaining the coupling configurations.

Conventionally the parameters in this model are J; (instead of J°) and J, (instead of K°), and hence the name for the
model. However, to simplify notation, we use the above parameter names.
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