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Abstract
Quantum technologies based on adiabatic techniques can be highly effective, but
often at the cost of being very slow. Here we introduce a set of experimentally
realistic, non-adiabatic protocols for spatial state preparation, which yield the same
fidelity as their adiabatic counterparts, but on fast timescales. In particular, we
consider a charged particle in a system of three tunnel-coupled quantum wells,
where the presence of a magnetic field can induce a geometric phase during the
tunnelling processes. We show that this leads to the appearance of complex
tunnelling amplitudes and allows for the implementation of spatial non-adiabatic
passage. We demonstrate the ability of such a system to transport a particle between
two different wells and to generate a delocalised superposition between the three
traps with high fidelity in short times.

Keywords: shortcuts to adiabaticity; geometric phases; complex tunnelling

1 Introduction
Adiabatic techniques are widely used for the manipulation of quantum states. They typi-
cally yield high fidelities and possess a high degree of robustness. One paradigmatic exam-
ple is stimulated Raman adiabatic passage (STIRAP) in three-level atomic systems [–].
STIRAP-like techniques have been successfully applied to a wide range of problems, and
in particular, to the control of the centre-of-mass states of atoms in microtraps. This spa-
tial analogue of STIRAP is called spatial adiabatic passage (SAP) and it relies on coupling
different spatial eigenstates via a controllable tunnelling interaction []. It has been ex-
amined for cold atoms in optical traps [–] and for electrons trapped in quantum dots
[, ]. The ability to control the spatial degrees of freedom of trapped particles is an im-
portant goal for using these systems in future quantum technologies such as atomtronics
[, , ] and quantum information processing []. SAP has also been suggested for a
variety of tasks such as interferometry [], creating angular momentum [], and velocity
filtering []. It is also applicable to the classical optics of coupled waveguides [, ].

However, the high fidelity and robustness of adiabatic techniques comes at the expense
of requiring long operation times. This is problematic as the system will therefore also have
a long time to interact with an environment leading to losses or decoherence. To avoid this
problem, we will show how one can speed-up processes that control the centre-of-mass
state of quantum particles and introduce a new class of techniques which we refer to as
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spatial non-adiabatic passage. The underlying foundation for these are shortcuts to adia-
baticity (STA) techniques, which have been developed to achieve high fidelities in much
shorter total times, for a review see [, ]. Moreover, shortcuts are known to provide
the freedom to optimise against undesirable effects such as noise, systematic errors or
transitions to unwanted levels [–].

Implementing the STA techniques for spatial control requires complex tunnelling am-
plitudes. However, tunnelling frequencies are typically real. To solve this, we show that
the application of a magnetic field to a triple well system containing a single charged par-
ticle (which could correspond to a quantum dot system [–]) can achieve complex
tunnelling frequencies through the addition of a geometric phase. This then allows one to
implement a counter-diabatic driving term [, , –] or, more generally, to design
dynamics using Lewis-Riesenfeld invariants [].

The paper is structured as follows. In the next section, we present the model we ex-
amine, namely a charged particle in a triple well ring system with a magnetic field in the
centre. In Section , we introduce the spatial adiabatic passage technique in a three-level
system and show that making one of the couplings imaginary allows the implementation
of transitionless quantum driving. We then show, in Section ., how to create inverse-
engineering protocols in this system using Lewis-Riesenfeld invariants. Results for two
such protocols, namely transport and generation of a three-trap superposition, are given
in Section . Section  presents a more realistic one-dimensional continuum model for
the system, where the same schemes are implemented. Finally, in Section , we review
and summarise the results.

2 System model
We consider a charged particle trapped in a system of three localised potentials, between
which the tunnel coupling can be changed in a time-dependent manner. In order to have
coupling between all traps, they are assumed to be arranged along a ring and a magnetic
field exists perpendicular to the plane containing the traps, see Figure . The particle will
initially be located in one of the traps and we will show how to design spatial non-adiabatic
passage protocols where a specific final state can be reached within a finite time and with
high fidelity. Such a model could, for example, correspond to an electron trapped in an
arrangement of quantum dots, where gate electrodes can be used to change the tunnelling
between different traps []. Another option would be to use ion trapping systems [],
where ring configurations have been recently demonstrated [–]. In these systems,
tunnelling of an ion has already been observed (and controlled by manipulating the radial

Figure 1 Diagram of the system consisting of three
coupled quantum wells and a localised magnetic field in
the centre. The basis states and the couplings strengths
used in the three-level approximation are indicated. The
coordinate system for the continuous model in Section 5 is
also shown. The distance between two traps along the ring is
defined as l, so that the total circumference of the ring is 3l.
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confinement), as well as the Aharonov-Bohm phase [] acquired due to the presence of
an external magnetic field [].

Let us start by considering the single-particle Schrödinger equation

i�
∂ψ

∂t
=


m

(–i�∇ – q�A)ψ + Vψ , ()

where m and q are the mass and charge of the particle, respectively, and V corresponds
to the potential describing the trapping geometry. We assume that the vector potential is
originating from an idealised point-like and infinitely long solenoid at the origin (creating
a magnetic flux �B) and it is therefore given by �A = �B

πr êϕ (for �r �= ). Here r, ϕ, z are
cylindrical coordinates and êϕ is a unit vector in the ϕ direction.

At low energies such a system can be approximated by a three-level (L) model, where
each basis state, |j〉, corresponds to the localised ground state in one of the trapping po-
tentials (see Figure ). These states are isolated when a high barrier between them exists,
but when the barrier is lowered the tunnelling amplitude �jk between states |j〉 and |k〉
becomes significant.

The presence of the magnetic field leads to the particle acquiring an Aharonov-Bohm
phase [] whenever it moves (tunnels) between two different positions (traps). This phase
is given by φj,k = q

�

∫ �rk
�rj

�A(�r) · d�r, where �rj is the position of the jth trap, and for consistency,
we always chose the direction of the path of the integration to be anti-clockwise around the
pole of the vector potential (at �r = ). The effects of this phase on the tunnelling amplitudes
is given through the Peierls phase factors [–], exp(iφj,k), and the Hamiltonian for the
L system can be written as

H = –
�



⎛

⎜
⎝

 �eiφ, �e–iφ,

�e–iφ,  �eiφ,

�eiφ, �e–iφ, 

⎞

⎟
⎠ . ()

Here the �jk are the coupling coefficients in the absence of any vector potential. The total
phase around a closed path containing the three traps is then given by

� ≡ φ, + φ, + φ, =
q
�

∮
�A(�r) · d�l =

q
�
�B, ()

and is non-zero due to the pole of the vector potential �A at the origin.
To simplify the Hamiltonian () one can use the following unitary transformation, which

only employs local phases,

U =

⎛

⎜
⎝

  
 e–iφ, 
  e–i(φ,+φ,)

⎞

⎟
⎠ , ()

and transforms the Hamiltonian as

H → U†HU = –
�



⎛

⎜
⎝

 � �e–i�

�  �

�ei� � 

⎞

⎟
⎠ , ()

so that two of the tunnelling amplitudes become real-valued.
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A case of particular interest is when � = π/, i.e., when the magnetic flux is �B = π�/q.
In this case the Hamiltonian becomes

H = –
�


(�K + �K + �K), ()

where each Kj is a spin  angular momentum operator defined as

K =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ , K =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ , K =

⎛

⎜
⎝

  –i
  
i  

⎞

⎟
⎠ , ()

satisfying [Kj, Kk] = iεjklKl and εjkl is the Levi-Civita symbol []. This means that the tun-
nel coupling between |〉 and |〉 becomes purely imaginary. We will show in the next
section that this allows for the implementation of spatial non-adiabatic passage processes
by either applying a transitionless quantum driving protocol or by using Lewis-Riesenfeld
invariants.

3 Processes in the three-level approximation
3.1 Adiabatic methods
A series of spatial adiabatic passage (SAP) techniques have been developed in recent years,
which allows one to manipulate and control the external degrees of freedom of quantum
particles in localised potentials with high fidelity []. The standard SAP protocol for the
transport of a single particle in a triple well system [, ] is the spatial analogue of the
quantum-optical STIRAP technique [–]. It involves three linearly arranged, degenerate
trapping states, |j〉 with j = ,  and , that can be coupled through tunnelling by either
changing the distance between the traps or lowering the potential barrier between them.
The system in the L approximation is described by the Hamiltonian

H = –
�


(�K + �K), ()

which has a zero-energy eigenstate of the form

|λ〉 = cos θ |〉 – sin θ |〉 with tan θ = �/�. ()

This state is often called the dark state and SAP consists of adiabatically following |λ〉
from |〉 (at t = ) to –|〉 (at a final time t = T ), effectively transporting the particle be-
tween the outer traps one and three. This corresponds to changing θ from  (� � �)
to π/ (� 	 �). Hence in the case of ideal adiabatic following, trap two (located in the
middle) is never populated.

3.2 Transitionless quantum driving
The main drawback of SAP is that it requires the process to be carried out adiabatically
and therefore slowly compared to the energy gap []. If this requirement is not met, un-
wanted excitations will lead to imperfect transport. One way to specifically cancel possible
diabatic transitions in STIRAP was discussed in [] and a general approach for recover-
ing adiabatic dynamics in a non-adiabatic regime is to use shortcuts to adiabaticity, such
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as transitionless quantum driving [–]. This technique consists of adding a counter-
diabatic term to the original Hamiltonian, whose particular form is given as

HCD = i�
∑

n

(|∂tλn〉〈λn| – 〈λn|∂tλn〉|λn〉〈λn|
)
, ()

where the |λn〉 are the eigenstates of H. For the reference Hamiltonian in Eq. () this gives
[]

HCD = –
��(t)


K, with �(t) = θ̇ (t) = 

(
��̇ – ��̇

�
 + �



)

. ()

We will see in Section . how this exact same scheme can also be obtained using Lewis-
Riesenfeld invariants.

Shortcuts to adiabaticity have been studied in the context of STIRAP [, ], i.e., pop-
ulation transfer between internal levels. Its spatial analogue is more challenging as it re-
quires that the additional tunnelling coupling between sites one and three is imaginary (see
the definition of K in Eq. ()). However, the system we have presented here is ideal for
this, as the system Hamiltonian Eq. () is already equal to the total Hamiltonian H + HCD.
Other methods to implement the imaginary coupling could be, for example, the use of
artificial magnetic fields [] or angular momentum states [].

A heuristic but not rigorous explanation of why the coupling needs to be imaginary can
be obtained by examining the two ‘paths’ the particle can take to move from trap one to
trap three. The first is via SAP and leads to |〉 → –|〉 whereas the second is via the direct
coupling the shortcut introduces, which leads to |〉 → iei�|〉. One can then immediately
see that for constructive interference of these two terms the phase needs to have the value
� = π/, which corresponds to the required imaginary coupling between states |〉 and |〉.
It is also interesting to note that the coupling between traps one and three in the shortcut
has the form of a π-pulse

∫ T


�(t) dt = 

∫ T


θ̇ (t) dt = 

[
θ (T) – θ ()

]
= π . ()

3.3 Invariant-based inverse engineering
Another method of designing shortcuts to adiabaticity is by means of inverse-engineering
using Lewis-Riesenfeld (LR) invariants [, ]. In this section we will briefly review these
methods and then apply them to our particular system to both transport the particle and
create a superposition between the three wells.

A LR invariant for a Hamiltonian H(t) is a Hermitian operator I(t) satisfying []

∂I
∂t

+
i
�

[H , I] = . ()

Since I(t) is a constant of motion it can be shown that it has time-independent eigenvalues.
It can be further shown that a particular solution of the Schrödinger equation,

i�∂t
∣
∣ψ(t)

〉
= H(t)

∣
∣ψ(t)

〉
, ()
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can be written as

∣
∣ψk(t)

〉
= eiαk (t)∣∣φk(t)

〉
, ()

where the |φk(t)〉 are the instantaneous eigenstates of H(t) and

αk(t) =

�

∫ t



〈
φk(s)

∣
∣[i�∂s – H(s)

]∣∣φk(s)
〉
ds ()

are the LR phases. Hence a general solution to the Schrödinger equation can be written as

∣
∣ψ(t)

〉
=

∑

k

ck
∣
∣ψk(t)

〉
, ()

where the ck are independent of time.
The idea behind inverse engineering using LR invariants is not to follow an instanta-

neous eigenstate of the H(t) as one would in the adiabatic case, but rather follow an eigen-
state of I(t) (up to the LR phase). To guarantee that the eigenstates coincide at the begin-
ning and the end of the process, it is necessary that the invariant and the Hamiltonian
commute at these times, i.e.,

[
I(), H()

]
=

[
I(T), H(T)

]
= . ()

One is then free to choose how the state evolves in the intermediate time and once this
is fixed, Eq. () determines how the Hamiltonian should vary with time to achieve those
dynamics.

A LR invariant for a three-level system described by Eq. () can be written as

I = – sinβ sinαK – sinβ cosαK + cosβK, ()

where α and β are time dependent functions which must fulfil the following relations
(imposed by Eq. ())

α̇ =
� sinα + � cosα

 tanβ
+

�


, ()

β̇ =



(� sinα – � cosα). ()

The eigenstates of this invariant are

∣
∣φ(t)

〉
=

⎛

⎜
⎝

– sinβ cosα

–i cosβ

sinβ sinα

⎞

⎟
⎠ , ()

∣
∣φ±(t)

〉
=

√


⎛

⎜
⎝

cosβ cosα ± i sinα

–i sinβ

– cosβ sinα ± i cosα

⎞

⎟
⎠ , ()
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with respective eigenvalues μ =  and μ± = ±. One solution of the time-dependent
Schrödinger equation is then given by |�(t)〉 = |φ(t)〉 as the corresponding LR phase is
zero in this case. Note that this invariant is a generalisation of the invariant considered in
[] where a third coupling � was not taken into account.

After fixing the boundary conditions using Eq. (), one is free to choose the functions
α(t) and β(t). Moreover, in this case, one is also free to directly choose the function �.
By inverting Eqs. () and (), the other coupling coefficients are then given by

� = α̇ sinα tanβ – β̇ cosα – � sinα tanβ , ()

� = α̇ cosα tanβ + β̇ sinα – � cosα tanβ . ()

4 Examples of spatial non-adiabatic passage schemes
In the following we will discuss two examples of spatial non-adiabatic passage derived
from LR invariant based inverse engineering in the L approximation. The first one is the
transport between two different traps, which is shown to be equivalent to the transitionless
quantum driving method from Section  in some cases. The second scheme will create an
equal superposition of the particle in all three traps.

4.1 Transport
The first example of control we examine is the population transfer determined by

∣
∣�()

〉
= |〉 → |�target〉 =

∣
∣�(T)

〉
= –|〉, ()

which was considered in the optical regime in []. This can be achieved by choosing
auxiliary functions that fulfil the boundary conditions

β() = β(T) = –
π


, α() = , and α(T) =

π


. ()

The experimentally required tunnelling frequencies are then explicitly given by Eqs. ()
and ().

For the special choice of β(t) = –π/, one can show that 〈|�(t)〉 =  for all times, i.e.
trap two is never occupied during the process. This choice then results in

tanα =
�

�
and � = α̇. ()

By identifying α with θ (see Eq. ()) one can immediately see that this is the same pulse as
in the STA scheme derived in Section ..

The transport scheme can be implemented by the choosing the counterintuitive SAP
pulses � and � to have a Gaussian profile []

�(t) = � exp
[
–(t/T – /)], ()

�(t) = � exp
[
–(t/T – /)], ()

and then calculating � from Eq. (). The resulting pulses and associated dynamical
populations are shown in Figure . As expected the system follows exactly the dark state,
transferring the population between states |〉 and |〉 without populating state |〉.
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Figure 2 Spatial non-adiabatic passage transport in the 3L approximation. T/τ = 100 for Ω0τ = 0.25.
(a) Modulus of the tunnelling amplitudes. (b) Evolution of the populations Pi = |〈i|Ψ(t)〉|2. The time unit τ is
defined as τ =ml2/-h.

Figure 3 Transport process |1〉 → –|3〉 in the 3L approximation. (a) Fidelity as a function of the total time
and the total magnetic phase traversing the system. The green contour line is defined by P3 = 99%.
(b) Probabilities of population in each of the traps for T/τ = 48 (indicated by a dashed white line in (a)) as a
function of the total magnetic phase traversing the system. The dashed black line indicates the optimal value
of the phase Φ = π/2.

The fidelity of the transport process as a function of the total time and the phase �

generated by the magnetic field is shown in Figure (a). Transport can be seen to occur
with perfect fidelity for any value of the total time if the phase takes the appropriate value
� = π/. It can also be seen that the shortcut is successful for any value of the phase in
the limit of very short or very long times. The latter one is not surprising, as � can be
neglected in the adiabatic limit, and hence its phase becomes irrelevant. A similar effect
occurs for short total times, where the roles are reversed. In this limit � is the largest
of all three couplings, and hence the phase relation between it and the other couplings
becomes inconsequential. As � is a π pulse, perfect population transfer in this regime
can be achieved regardless of the phase.

However, in order to maintain this pulse area, a strong coupling is required for very
short processes, as the strength of � is inversely proportional to T . This sets a bound
on how fast this scheme can be implemented, as any physical implementation will have
a maximum tunnelling amplitude. Setting the maximum value of � to ./τ , the min-
imum process times T to achieve fidelities above % are approximately τ for SAP
and τ for the shortcut scheme. These times are similar to the ones achievable in a
spin-dependent transport scheme recently presented by Masuda et al. [], however the
setup in their work requires four traps and a constant and an AC magnetic field.
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Figure 4 Spatial non-adiabatic superposition scheme |1〉 → 1√
3

(|1〉 – i|2〉 – |3〉) in the 3L
approximation. T/τ = 400. Sub-figures are the same as in Figure 2 and the fidelity shown in (b) is defined as
F = |〈Ψtarget|Ψ(t)〉|2.

It is worth noting that this system also allows for the possibility of measuring the mag-
netic flux �B, as the amount of transferred population oscillates as a function of the total
phase �, which is directly related to the magnetic flux as � = q

�
�B. As an example we

show the occupation probabilities for T/τ =  in each trap at the end of the process as a
function of the phase in Figure (b). One can see that the populations strongly depend on
the phase and over a large range of values one can therefore determine the magnetic flux.
The exact relationship between the probabilities and the magnetic flux differs for different
total times T .

4.2 Creation of a three-trap superposition
The second scheme we discuss highlights the generality of the LR invariant based method.
In this scheme we create an equal superposition state between the particles being in all
three traps, which means that the initial and target states are

∣
∣�()

〉
= |〉 → |�target〉 =

∣
∣�(T)

〉
=

√

(|〉 – i|〉 – |〉). ()

This can be realised by imposing the boundary conditions

β() = –
π


, β(T) = – arctan

√
, ()

α() = , α(T) =
π


, ()

on the auxiliary functions. A simple ansatz which fulfils these boundary conditions is a
fourth order polynomial for β(t) and third order polynomials for α(t) and �(t). The
pulses are then obtained from Eqs. () and () and their form is shown in Figure (a).
From Figure (b) it can be seen that this choice creates the target state at the final time
with perfect fidelity.

5 Spatial non-adiabatic passage in the continuum model
While the L approximation discussed above gives a clear picture of the physics of the sys-
tem, it does not include effects such as excitations to higher energy states that can occur
during the process. We will therefore in the following test the approximation by numeri-
cally integrating the full Schrödinger equation in real space. For this, we will consider traps
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Figure 5 Schematic of the potential used in the numerical simulations (black line) with the localised
states in each trap (coloured areas). The Gaussian shape of the traps is exaggerated here for clarity.

that are narrow enough to limit the system dynamics to an effectively one-dimensional set-
ting along the azimuthal coordinate, x = ϕR, i.e., around a circle of radius R, see Figure .
Moreover, we will assume that the magnetic field is characterised by a vector potential in
the azimuthal direction, �A = Aêϕ .

We are therefore dealing with a one-dimensional system of length πR with periodic
boundary conditions, whose dynamics are described by the following Schrödinger equa-
tion

i�
∂ψ

∂t
=


m

(

–i�
∂

∂x
– qA

)

ψ + V (x)ψ . ()

We assume a constant vector potential throughout the dynamical part of the protocols,
as any time-varying vector potential would produce an unwanted force due to the electric
field �E = –∂t �A.

In order to be able to apply a well-defined phase we model the trapping sites as highly
localised point-like potentials of depth εj at the positions xj = jl – l/ (see Figure ). They
are separated by square barriers of heights Vjk(t) (and length l), giving a total potential

V (x, t) = –
∑

j=

εj(t)δ(x – xj) +

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V(t) if  < x < x,

V(t) if x < x < x,

V(t) if x < x < x,

V(t) if x < x < l.

()

Since point-like potentials are difficult to implement numerically, in the simulations below
they are implemented as narrow Gaussians. It is important to note that this model is not
designed to give realistic estimates for the fidelities or exactly reproduce the dynamics of
the L approximation. It is a toy model to validate the basic underlying processes and show
that our schemes also make sense in the continuum.

As mentioned above, the tunnelling amplitudes �jk(t) in the L approximation are re-
lated to the barrier heights Vjk(t) of the continuum model, see the Appendix. However,
changing the barrier heights in order to achieve tunnelling will also affect the energies of
the localised states in the neighbouring traps. Therefore, in order to reproduce the reso-
nance of the L approximation (where the diagonal elements of the Hamiltonian are always
zero) in the continuum model, the depths of the delta potentials εj have to be adjusted as
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Figure 6 Spatial non-adiabatic transport process in the continuum model. T/τ = 100. (a), (b) Barrier
heights and trap depths obtained by mapping the couplings in Figure 2(a). (c) Evolution of the particle
density |ψ(x, t)|2. (d) Corresponding populations Pi = |〈i|Ψ(t)〉|2 in each trap and of the target state. (e), (f) are
the same as (c), (d) but with the magnetic flux flowing in the opposite direction. The width of the Gaussian
traps is 10–4 l.

the barriers heights change, see Figure . Finally, to map the barrier heights Vjk and trap
depths εj parameters of the continuum model to the tunnelling amplitudes �jk of the L
approximation, we numerically calculate the overlaps of neighbouring delta-trap eigen-
states.

Results for transport of a particle using the shortcut scheme described in Section . are
shown in Figure  and the barrier heights and trap depths used to match the pulses given
in Figure  are shown in Figure (a), (b). The probability density during the process can
be seen in Figure (c) and the populations in each trap are given in Figure (d). While the
process is not perfect, one can see that the particle is transported to the final trap with a
fidelity of %. The effect of the magnetic field can be seen in Figure (e), (f ), where we
show results for the same process but with an inverted magnetic field (using a total phase
of � = –π/). In this case the interference between the adiabatic and shortcut paths is
destructive, and almost no population ends up in the final trap.

The results for the creation of the superposition state discussed in Section . are shown
in Figure . The observed dynamics are very similar to the one in the L approximation
and the process reaches a final fidelity of the target state of %.
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Figure 7 Same as Figure 6(a)-(d) but for the spatial non-adiabatic superposition scheme given in Eq.
(31) in the continuum model. T/τ = 400. F = |〈ψtarget|ψ(t)〉|2 is the fidelity of the process.

Since the continuum model has many more degrees of freedom than the L model, it
is not surprising that the fidelities obtained are lower. Nevertheless, the basic functioning
of our spatial non-adiabatic techniques is clearly established from the calculations shown
above. Optimising the fidelity in the continuum is an interesting task which, however, goes
beyond the scope of the current work.

6 Conclusions and outlook
We have shown how complex tunnel frequencies in single-particle systems allow one to
develop spatial non-adiabatic passage techniques that can lead to fast and robust processes
for quantum technologies. In particular, we have discussed the case of a single, charged
particle in a microtrap environment. The complex tunnelling couplings are obtained from
the addition of a constant magnetic field, and have allowed us to generalise adiabatic
state preparation protocols beyond the usual spatial adiabatic passage techniques []. This
demonstrates that non-adiabatic techniques can be as efficient as their adiabatic counter-
parts, without requiring the long operation times.

In particular, we have discussed the implementation of the counter-diabatic term for
spatial adiabatic passage transport via a direct coupling of all the traps. This was, in a sec-
ond step, generalised to a flexible and robust method for preparing any state of the single-
particle system by using Lewis-Riesenfeld invariants. As an example, we have shown that
an equal spatial superposition state between the three wells can be created on a short time
scale. Finally, we have presented numerical evidence that spatial non-adiabatic processes
work also in a one-dimensional toy model by introducing a mapping between the discrete
three-level approximation and a continuum model.

While in this work we have focused on a three-trap system, an interesting extension
would be to investigate similar schemes in larger systems, or in different physical settings
(for example, superconducting qubits []). Often, if the transitionless quantum driv-
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ing technique is directly applied to complex quantum systems, the additional counter-
adiabatic terms become very complicated, hard to implement or even unphysical. Nev-
ertheless, the steps outlined in our work (using a few-level approximation, applying the
shortcut technique, and then mapping everything back to a continuous model) can in
principle be applied to any trap configuration. These steps might lead to schemes which
are much easier to implement experimentally than the direct application of the transition-
less quantum driving. However, each of these generalised configuration would need to be
studied on an individual basis.

It would also be very interesting to see the effect of interactions in this system. For very
strong interactions such that double occupancy of a site is suppressed and a single empty
site is present, one might expect to observe similar dynamics but for the empty site []. In
this case, spatial non-adiabatic ideas can be straightforwardly transferred. For intermedi-
ate interaction strengths (but stronger than the tunnelling couplings), repulsively-bound
pair processes have been shown to dominate the dynamics and single-particle-like dynam-
ics can be recovered for the pair [, , ]. In this case the presented techniques might
be extended for a particle pair.

Finally, it is also worth noting that these complex tunnelling couplings we introduce can
be used to implement techniques based on composite pulses [].

Appendix: Mapping between three-level approximation and continuum model
In this appendix we give more details on how to connect the parameters of the three-
level (L) approximation and the continuum model. For clarity, we set � = m =  in the
following. Let us first recall the eigenfunctions of a single asymmetric delta potential given
by

V (x) = –εδ(x) +

⎧
⎨

⎩

VL, x < ,

VR, x ≥ .
()

This potential has only one bound state (as long as ε > |VL – VR|) which is of the form

ψ(x) =

⎧
⎨

⎩

φL(x), x < ,

φR(x), x ≥ ,
()

where

φL(x) = exp

[
(ε + VL – VR)x

ε

]√
ε – (VL – VR)

ε/ , ()

φR(x) = exp

[

–
(ε + VR – VL)x

ε

]√
ε – (VL – VR)

ε/ , ()

with an energy

E = –
ε + (VR – VL) – ε(VL + VR)

ε . ()

In our work we use these eigenstate as the localised basis states in each of the three
delta trap potentials. For example, the basis state ψ(x) for the first trap can be constructed
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from the substitutions ε → ε, VL → V, VR → V and x → x – l/ (see Figure ) and the
states ψ(x) and ψ(x) for the other two wells can be obtained in a similar manner. While
choosing a basis for the system this way does not necessarily lead to an orthogonal basis
set, we have checked numerically that the states are approximately orthogonal at all times
during our simulations. This allows us to approximate the Hamiltonian associated with
Eq. () as Eq. ().

The couplings constants between each pair of neighbouring two traps can be deter-
mined by calculating the overlap between the two respective trap states in the barrier
region between them, i.e.,

� ≈ –
∫ l/

l/
ψ(x)

[

–



∂
x ψ(x) + Vψ(x)

]

dx, ()

� ≈ –
∫ l/

l/
ψ(x)

[

–



∂
x ψ(x) + Vψ(x)

]

dx, ()

� ≈ –
∫ l/

l/
ψ(x – l)

[

–



∂
x ψ(x) + Vψ(x)

]

dx. ()

Similarly, the on-site energies (or diagonal elements) are approximated by considering
only the regions for which the basis states are significant, e.g.,

E ≈
∫ l/

l/
ψ(x)

[

–



∂
x ψ(x) + Vψ(x)

]

dx

+
∫ l/

l/
ψ(x)

[

–



∂
x ψ(x) + Vψ(x)

]

dx ()

and correspondingly for the energies E and E. We can then tabulate sets of values
for the barrier heights, {V, V, V}, trap depths, {ε, ε, ε}, and tunnelling amplitudes,
{�,�,�}, such that the energies all match a fixed reference value, i.e., E = E = E =
E where E is fixed to some constant value. Since for a given protocol the required tun-
nelling amplitudes are known, we can finally numerically invert the table in order to de-
termine how the barrier heights and trap depths have to vary in time.
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