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Abstract
We discuss a class of quantum theories which exhibit a sharply increased memory
storage capacity due to emergent gapless degrees of freedom. Their realization, both
theoretical and experimental, is of great interest. On the one hand, such systems are
motivated from a quantum information point of view. On the other hand, they can
provide a framework for simulating systems with enhanced capacity of pattern
storage, such as black holes and neural networks. In this paper, we develop an analytic
method that enables us to find critical states with increased storage capabilities in a
generic system of cold bosons with weak attractive interactions. The enhancement of
memory capacity arises when the occupation number N of certain modes reaches a
critical level. Such modes, via negative energy couplings, assist others in becoming
effectively gapless. This leads to degenerate microstates labeled by the occupation
numbers of the nearly-gapless modes. In the limit of large N, they become exactly
gapless and their decoherence time diverges. In this way, a system becomes an ideal
storer of quantum information. We demonstrate our method on a prototype model of
N attractive cold bosons contained in a one-dimensional box with Dirichlet boundary
conditions. Although we limit ourselves to a truncated system, we observe a rich
structure of quantum phases with a critical point of enhanced memory capacity.

1 The role and importance of gapless modes for information storage
1.1 Emergence of gapless modes in attractive bosonic systems
A physical system is fully characterized by its degrees of freedom and by the rules of the
interactions among them. Each degree of freedom corresponds to a particular oscillatory
mode of the system. In quantum field theory, such modes are described as quantum oscil-
lators that can exist in various excited states. The level of excitation of a mode k in a given
state |nk〉 can be conveniently described by an occupation number nk of the corresponding
quantum oscillator, with the usual creation/annihilation operators â†

k , âk and the number
operator n̂k = â†

kâk (where k = 0, 1, . . . , K ). We shall limit ourselves to bosonic degrees of
freedom, which satisfy the standard canonical commutation relations:

[
âj, â†

k
]

= δjk , [âj, âk] =
[
â†

j , â†
k
]

= 0. (1)

One of the most important characteristics of a system is the energy level-spacing between
states of different occupation numbers, i.e., |nk〉 and |nk ± 1〉, which we shall denote by Ek .
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We will view quantum states from a perspective of quantum information theory. When a
degree of freedom can choose among d different possible states |nk〉 with nk = 0, 1, . . . , d –
1, it represents a qudit. Then information can be stored in the set of dK+1 basic states
|n0, n1, . . .〉 and each basic state corresponds to a distinct pattern. In particular, we will be
interested in the energy cost of information storage and read-out. In general, for a pat-
tern |n0, n1, . . .〉, it is given as En0,n1,... =

∑
k Eknk . This means that the transition between

patterns in which the occupation numbers differ significantly is in general expected to be
costly.

In this paper, we study systems in which information can be recorded and read out more
efficiently. Adopting the criteria formulated in [1, 2], we shall be interested in systems that
exhibit the following properties:

1. A largest possible number of patterns can be stored within a maximally narrow
energy gap; and

2. The stored patterns can be rearranged under the influence of the softest possible
external stimuli.

It will become evident that such a situation can be achieved when the modes that store
patterns behave as either gapless or nearly-gapless. The latter term requires some quan-
tification. Under a nearly-gapless mode we mean a mode for which the minimal excitation
energy Ek is much less than the typical energy gap �Etypical, expected for the system of a
given size. For instance, for a non-relativistic particle of mass M trapped in a box of size
L, one would expect the energy gap between the ground state and the first excited state to
be set by the inverse size of the box, �Etypical ∼ �

2

2ML2 .
As modes become nearly-gapless, Ek → 0, the energy cost of transitions between differ-

ent states shrinks. Therefore, the density of patterns that can be stored in a given energy
gap increases exponentially and such systems exhibit a sharply enhanced memory stor-
age capacity. Moreover, in such a limit it becomes highly energy-efficient to redial and/or
read out the stored patterns. Indeed, the patterns can be rearranged under an influence
of arbitrarily soft external stimuli [1]. Hence, systems that feature gapless modes possess
precisely those properties of efficient information processing that we are after.

In this light, it is very important to understand what physical mechanisms can allow a
finite size system to deliver gapless modes. We shall focus on a mechanism schematized
in [1, 2], which can be referred to as the phenomenon of assisted gaplessness. It repre-
sents a generalization of the original idea [3] of information storage in gapless modes that
emerge in certain quantum critical states of attractive bosons. The key principle of the as-
sisted gaplessness mechanism is easy to summarize. If the interaction energy among the
degrees of freedom of a system is negative, a high excitation of some of those modes lowers
the excitation energy thresholds for the others. In this way, these highly excited degrees
of freedom play the role of master modes that assist others in becoming easily-excitable.
When the occupation numbers of the master modes reach certain critical levels, the as-
sisted modes become nearly-gapless. At this point, a state of enhanced memory storage
capacity is attained.

In order to understand the essence of the phenomenon, following [1, 2], we consider
an exemplary situation in which a mode n̂0, which is typically the one with the smallest
kinetic energy E0, can be highly occupied and has the following negative-energy coupling
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with a set of K modes:

Ĥ =
K∑

k=1

Ek(1 – αn̂0)n̂k + E0n̂0 + · · · . (2)

In this way, n̂0 becomes the master mode. Its interaction energy with each mode n̂k is
proportional to the threshold energy Ek of the latter modes via an universal proportionality
constant α. Due to the negative sign, such a connection is excitatory, i.e., it is energetically
favorable to simultaneously excite the inter-coupled modes.

Thus, on states in which the occupation number of the master mode is 〈n̂0〉 = N0, the
effective gap for other modes is lowered as,

Eeff
k = Ek(1 – λ), (3)

where we introduced the collective coupling

λ := αN0. (4)

Therefore, the master mode n̂0 assists the rest of the modes in becoming more easily ex-
citable. Accordingly, once the occupation number of the master mode reaches a critical
value N0 = α–1 corresponding to λ = 1, the assisted modes n̂k become gapless. The cor-
responding excitation energy as a function of λ is plotted in Fig. 1(a). Note that small
deviations δN0 ∼ 1 of the occupation number N0 from the critical value result in the gen-
eration of an effective gap of order Eeff

k ∼ Ekα. Correspondingly, the smaller α is, the less
sensitive the gap becomes to small fluctuations of the occupation number N0 around its
critical value. Therefore, we will throughout focus on cases with small α and large N0.

In the model (2), all states of the form |N0, n1, . . . , nK 〉, where nk �=0 can take different
possible values from 0 to d – 1, become degenerate in energy. This means that the gap-
less modes can store an exponentially large number of patterns, Npattern = dK , within an
arbitrarily narrow energy gap. The resulting density of states as function of the collec-
tive coupling λ is plotted in Fig. 1(a). The neighborhood in the Fock space with a large
number of states that fit within a narrow energy gap is characterized by the same macro-
scopic parameter, i.e., a macroscopically large occupation number N0 of the n̂0-mode. If
d is not large, we can say that the states |N0, n1, . . . , nK 〉 for all possible values of nk �=0 are
macroscopically-indistinguishable. Hence, they form a set of microstates belonging to the
same macrostate. Correspondingly, we can define the microstate entropy as the logarithm
of the number of such nearly-degenerate microstates,

Entropy = K ln(d). (5)

Apart from a low energy cost, systems that feature gapless modes possess a second prop-
erty that makes them ideal information storers. Namely, gaplessness of a given mode b̂
implies that the disturbance from other modes is small since otherwise the gaplessness
would be destroyed. This suppression of interaction is either due to a relatively high en-
ergy gap of the other modes or due to a very weak coupling to them (or both). In both
cases, the time evolution into the other modes is small. Therefore, gaplessness implies a
long information storage time.
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Figure 1 Schematic plots of the behavior of a system of attractive bosons such as (2) in the vicinity of a
critical point with nearly-gapless modes that arise due to assisted gaplessness

This point can be illustrated in very general terms on an example with one additional
mode ĉ that in particular may impersonate an environment. By assumption, both modes
are approximate eigenmodes of the Hamiltonian. The latter can then be written in the
following 2 × 2 form:

Ĥ =
(

b̂† ĉ†
)(ε g

g ε′

)(
b̂
ĉ

)

. (6)

In order not to disturb the nearly-vanishing gap ε, g must satisfy g � √
εε′, i.e., g must

be sufficiently small in order to maintain the level-splitting. This implies that either the
time evolution will be strongly suppressed due to the large level-splitting (in the regime
of ε′ 
 ε) or the evolution timescale will be set by tcoh ∼ �

ε
and thus will be long (in the

regime of ε′ ∼ ε). In both cases we have an effective protection of the stored information.
In other words, the information stored in a gapless mode b̂ is maintained either due to
the suppression of the amplitude of oscillations or due to a very long timescale of this
transition.

An important point of our analysis is that we do not introduce a gapless mode by hand
but discover that such modes emerge even if the system is confined within a box of finite
size. This is a highly non-trivial phenomenon that requires a critical balance between the
coupling and the occupation number. In this way, the decoherence time of quantum in-
formation stored in a gapless mode can be made arbitrarily long, even for fixed values of
the size of the box and � (see Fig. 1(b)).

As we have seen, the only requirements for the phenomenon of assisted gaplessness
to take place in a bosonic system are a weak attractive interaction and a high occupa-
tion number of some of the modes. Therefore, as explained in [1], we expect that gapless
modes, which lead to states of high memory storage capacity, are a generic phenomenon in
these systems. Only the details, such as the exact number of the emergent gapless modes
and the corresponding microstate entropy, depend on the symmetry structure and other
details of the Hamiltonian.
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Interestingly, in the D-dimensional model of [4], the number of the emergent gapless
modes and their microstate entropy scale as the area of a D – 1-dimensional sphere, in
similarity to the black hole Bekenstein entropy. These results suggest that systems with
emergent gapless modes can offer a pathway for understanding the microscopic origin of
black hole entropy and holography on simple prototype systems. In addition, such mod-
els serve as an existence proof of a non-gravitational system with area-law entropy and
holography. We will elaborate on these points shortly in Sect. 1.2.

To summarize, we expect that the phenomenon of emergence of gapless modes is a com-
mon phenomenon in bosonic systems with attractive interactions and its study is moti-
vated from broad perspective of quantum information storage and processing, including
practical applications, [3, 5–9]. Moreover, in the light of existing models [2, 4] that give an
explicit microscopic description of the origin of the area-law of the microstate entropy and
the emergence of holographic gapless modes, such systems can serve as a toy laboratory
for understanding analogous properties in black holes. Finally, it has been suggested [1, 2]
that a similar mechanism of the enhancement of memory storage capacity can operate in
neural networks, both quantum and classical.

In the present paper, we shall focus our study on the detailed understanding of the phe-
nomenon of assisted gaplessness. We will provide a method that enables the search for
states with gapless modes in a systematic way in a theory of bosonic modes with a generic
interaction Hamiltonian. The method relies on the Bogoliubov approximation, in which
mode operators are replaced by their expectation values [10]. In this way, we transform
the Hamiltonian in its Bogoliubov counterpart, which only depends on c-numbers. We
will show that it suffices to look for flat directions in this Bogoliubov Hamiltonian to con-
clude that gapless modes exist in the spectrum of the full quantum system. This allows us
to replace the difficult problem of diagonalization of the Hamiltonian by a much simpler
problem of extremizing a c-number function.

This approach, which we shall call c-number method, is a generalization of the one used
in [7], where it was shown for a specific model that the appearance of gapless modes at the
critical point can be deduced from the minimization of a non-linear sigma-model obtained
by replacing the Hamiltonian by a c-number function. Apart from its practical application,
the c-number method also serves a second purpose. The fact that any flat direction in the
Bogoliubov Hamiltonian already implies a gapless mode supports the reasoning of [1] that
the emergence of gapless modes, which lead to states of high memory storage capacity, is
rather generic, provided the interacting degrees of freedom of a system are bosonic and
that some of the interaction energies are negative.

After describing the c-number method in general, we apply it to a prototype model of
attractive non-relativistic bosons in a one-dimensional box. To facilitate the analysis, we
truncate the system to the three lowest momentum modes. We will show that this system
of three interacting degrees of freedom possesses a critical point with a nearly-gapless
mode. The choice of our particular prototype model is mainly motivated by its presumed
experimental simplicity. The fact that the described phenomenon of memory enhance-
ment takes place already in such a simple system gives a natural hope that it could be
experimentally studied under laboratory conditions, e.g., in a system of cold atoms. Such
experiment would be highly interesting both from a general perspective of quantum in-
formation storage and due to the above mentioned connection to black holes and neural
networks.
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The outline is as follows. In the remainder of this section, we elaborate on the potential
of using bosons in a box to simulate other systems of enhanced memory storage such
as black holes and neural networks. Moreover, we motivate the choice of our prototype
system. In Sect. 2, we present the c-number method for finding gapless modes in a generic
system of attractive bosons. Section 3 introduces our prototype model of non-relativistic
bosons in a one-dimensional box. In Sect. 4, we come to its critical point, at which a light
mode appears and leads to the information storage properties of our interest. We will first
apply the c-number method to identify it and then confirm its existence by studying the full
quantum system numerically. Moreover, we point out how we could encode information in
the occupation numbers of the light mode around the critical states by coupling the system
to external degrees of freedom. In Sect. 5, we discuss how we can map the properties of our
model onto a neural network. We conclude in Sect. 6 by summarizing our findings and
emphasizing the importance of studying the critical point of a system of attractive cold
bosons experimentally. Appendix A contains some explicit formulas for our prototype
systems and Appendix B is devoted to the exemplary application of the c-number method
to a simpler model, which is analogous to our prototype model except for the choice of
periodic boundary conditions and which has already been solved previously.

1.2 Simulating black holes and neural networks
Black holes are mysterious objects from the point of view of quantum information. One
well-established fact about them is that they saturate the Bekenstein bound on information
capacity [11, 12].a This means that for a given size of the system, the black hole is the state
with maximal information, where its capacity of information storage is measured by the
Bekenstein entropy [11]. This entropy satisfies an area-law, i.e., it is given by the area mea-
sured in units of the Planck scale. Both facts are mysteries. First, in order to accommodate
such a high entropy, the black hole must deliver qudits with extremely small energy gaps.
For a black hole of mass MBH (also measured in Planck scale units) and the size R, this gap
is at least by a factor ∼ 1/M2

BH more narrow than a quantum level-spacing in any ordinary
system of the same size (for more details, see the counting in [3, 7, 8, 13]). Secondly, the
number of qudits must scale as the black hole area. Nothing certain is known about how a
black hole manages to achieve this goal. The key problem is the lack of non-perturbative
techniques that would allow to perform computations beyond the semi-classical picture.

One legitimate approach for shedding light on mysterious properties of incalculable
systems is to look for analogous properties in systems that are much easier to solve. If this
search is successful, it can enable us to understand the basic mechanism in terms of some
universal phenomenon that takes place also in non-gravitational systems. This strategy
was first adopted in [3, 13], where a system of attractive bosons in a box of dimensionality
D ≥ 1 with periodic boundary conditions was studied.b It was noticed that the critical state
of enhanced memory capacity in this simple system exhibits some similarities to certain
universal scaling properties satisfied by analogous parameters for black holes. Therefore,
it was hypothesized in [3, 13] that the emergence of gapless qudits responsible for nearly
degenerate microstates of a black hole in its bare essence is the same phenomenon as the
appearance of gapless qudits around the quantum critical point in the system of attractive
bosons.

This point of view is further strengthened by the model of [4] (see [2] for its neural net-
work realization), which describes a non-relativistic bosonic quantum field living on a D-
dimensional sphere and experiencing a momentum-dependent attractive self-interaction.
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This model comes closest to imitating the black hole information properties. Namely, it
exhibits a one parameter family of critical states labeled by the occupation number N of the
lowest momentum mode. In each state, a set of gapless modes emerges. The remarkable
thing is that the number of these gapless modes scales as the area of a D – 1-dimensional
sphere. This means that the resulting microstate entropy obeys an area law, similar to
Bekenstein entropy of a black hole. Therefore, the emergent gapless modes represent holo-
graphic degrees of freedom and the model gives an explicit microscopic realization of the
idea of holography, which is usually considered to be an exclusive property of gravitational
systems, such as black holes [14, 15] or AdS-spaces [16, 17]. These findings give a strong
motivation for further studying the proposed mechanism of emergence of gapless modes
at criticality in systems of bosons with “gravity-like” attractive interactions.

Another motivation for our study is that the emergence of gapless modes could be a
mechanism to enhance the memory capacity in neural networks. Indeed, as suggested in
[1], the above discussed phenomenon of critical memory enhancement due to assisted
gaplessness can establish a connection between the underlying mechanisms of the en-
hanced memory storage capacities in black holes and in quantum brain neural networks.
Furthermore, as shown in [2], an explicit mapping of a neural network onto a system of
cold bosons can be achieved by identifying the neural degrees of freedom with the differ-
ent momentum modes of bosons and simultaneously identifying the excitatory synaptic
connections between the neurons with the couplings between the different momentum
modes.

Thus, the next logical step would be to start performing studies in experimental set-
tings, i.e., to bring a gas of attractive cold bosons to the critical point and to measure
various characteristics of the system predicted by theoretical studies. Such experiments
have never been performed previously. On the one hand, this would enable us to study
the information processing properties of cold bosons, which are interesting in their own
right. In particular, this opens up the possibility to create efficient storers of quantum in-
formation. On the other hand, the above connection can give an interesting prospect of
simulating in table top quantum experiments the key mechanism of information storage
in such seemingly-remote systems as black holes and quantum brain neural networks.

As discussed above, one of the biggest mysteries in black hole physics is the origin of
nearly-gapless qubits (or modes) that store quantum information. It has been hypothe-
sized [3, 6–9, 13] that the general mechanism behind the emergence of such gapless modes
can be understood as a many-body phenomenon of the type discussed in the current pa-
per. Since in the present work we theoretically demonstrate the existence of assisted gap-
lessness already in a simple one-dimensional system, this naturally opens up a prospect of
possible experimental simulations. Such simulations could both verify the proposed phe-
nomenon and check how far the similarity with black hole information processing goes.

For example, a very concrete effect to check would be how the timescale of information
storage near criticality scales with N0, which plays the role of a macroscopic parameter
analogous to the black hole mass. Another interesting question concerns the scrambling
and a release of information: When an excitation is added to a system of enhanced memory
capacity, how fast does it get entangled with the rest of the system and how long does it take
to read it out afterwards? Obviously, the main focus is on understanding generic features
of enhanced information storage and by no means on imitating intrinsically geometrical
properties of black holes.
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1.3 Choice of concrete prototype system
In order to demonstrate the c-number method for finding critical states of enhanced mem-
ory storage, we shall apply it to a concrete prototype system. We consider a gas of cold
bosons that experience a simple attractive contact interaction and are placed in a one-
dimensional box with Dirichlet boundary conditions. We truncate the tower of momen-
tum modes to three and thus end up with a system of three interacting bosonic quantum
modes with a specific Hamiltonian. Despite the expected simplicity of this 3-mode system,
we shall discover that it exhibits a rich variety of quantum phases. The nature of quantum
phase transitions is qualitatively different from the analogous system with periodic bound-
ary conditions, which has been studied previously [3, 18] (see review in Appendix B).

Since the three modes are bosonic, each of them can be in many different states labeled
by its occupation number. Thus, from a quantum information point of view, they represent
three qudits. The attractive interaction translates as negative interaction energy between
different modes. Correspondingly, the system satisfies the conditions discussed above for
the emergence of a nearly-gapless mode and for reaching the critical states of enhanced
memory capacity. Our goal is to identify such states with our analytic method and then
confirm their existence by numerical analysis.

In the light of models of the type [4], which are easy to access analytically and which have
a much closer connection with black hole entropy, the natural question that the reader
may ask is why we are not focusing on those as opposed to the one-dimensional case with
non-periodic boundary conditions. There are two reasons for this. The first one is pre-
sumed experimental simplicity. It should be easier to realize a simple contact interaction,
as opposed to the momentum-dependent one considered in [4]. Moreover, the prototype
models studied so far only used periodic boundary conditions. For an experimental re-
alization, however, it is important to determine how sensitive the phenomenon of emer-
gence of gapless modes is to boundary conditions. In particular, non-periodic boundary
conditions may also be easier to attain in an experimental setting.

Needless to say, we are aware of the extraordinary difficulties in performing such exper-
iments. Therefore, what we present is not a concrete experimental proposal. In particular,
we do not discuss any of the problems that arise due to an imperfect isolation from the
environment.c However, in the light of recent experimental progress (see e.g., [19, 20] for
experiments with cold atoms), the realization of a system that shares the key properties of
our prototype model – in particular the emergence of gapless modes – seems a viable goal.
We hope that the study of our prototype model can contribute to finding such a system.

The second reason for the choice of our prototype model is that the non-periodic and
non-derivative case is harder to analyze analytically, and therefore it represents a better
test of the c-number method. To put it shortly, we trade a simpler-solvable model with
a higher entropy for a harder-analyzable one with a smaller entropy due to the idea that
the latter model promises more experimental simplicity and tougher theoretical test of
our method. The price we pay for this choice is that our system only produces a single
gapless mode at the critical point. Of course, since we are in a one-dimensional system,
the area-law strictly speaking is not well-defined. Nevertheless, it suffices to illustrate the
key qualitative point of assisted gaplessness in a simple setup with potential experimental
prospects.
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2 The C-number method
2.1 Procedure
We consider a set of K + 1 bosonic quantum modes described by the creation and an-
nihilation operators â†

k , âk (where k = 0, 1, . . . , K ), which satisfy the standard canonical
commutation relations (1). For later convenience, we introduce the notation

�̂a = (â1, . . . , âK ), �̂a† =
(
â†

1, . . . , â†
K
)
, (7)

where no distinction will be made between a vector and its transpose. The reason for
singling out one of the modes, in our notation â0, will become apparent shortly. We assume
that the dynamics of the system is governed by a generic Hamiltonian,

Ĥ = Ĥ
(�̂a†, �̂a, â†

0, â0
)
. (8)

A priori, we do not have to put any restriction on it, i.e., we expect our method to work
when (8) depends on all possible normal-ordered interactions of the modes. But the con-
crete application of the c-number method will be sensitive to the symmetries of the Hamil-
tonian. The reason is that any symmetry also leads to a gapless transformation.d However,
we do not want to consider those but solely focus on the ones that arise due to a collective
attractive interaction.

For the sake of simplicity, we will not consider the case of generic symmetries, but focus
on a special case of particular physical importance. We assume that the Hamiltonian only
possesses one symmetry, namely a global U(1)-symmetry due to particle number conser-
vation. So the generic Hamiltonian reads

Ĥ =
K∑

k=0

Ekâ†
kâk +

K∑

k,j,m,n=0

α
(4)
kjmnâ†

kâ†
j âmân

+
K∑

k,j,m,n,o,p=0

α
(6)
kjmnopâ†

kâ†
j â†

mânâoâp

+
K∑

k,j,m,n,o,p,q,r=0

α
(8)
kjmnopqrâ†

kâ†
j â†

mâ†
nâoâpâqâr + · · · , (9)

where Ek ,α(4)
kjmn,α(6)

kjmnop,α(8)
kjmnopqr , . . . are some parameters. We shall assume that the full

Hamiltonian is bounded from below, but some interaction terms can be negative so that
the energy landscape is non-trivial.

We are interested in the phenomenon of assisted gaplessness, i.e., we would like to iden-
tify states around which a high occupation of some modes assists other in becoming gap-
less. As explained, the nearly-gapless modes will lead to a neighborhood in the Fock space
where a large number of states fits within a narrow energy gap. This causes the enhanced
memory capacity in which we are interested. We shall show that only two conditions suf-
fice to form such a neighborhood of high microstate density, generated by some emergent
gapless mode(s). The first one is that the degrees of freedom are bosonic so that some of
the modes can be highly occupied. The second one is that the interaction energy among
the modes can assume negative values.
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Finding such critical states requires a diagonalization of the Hamiltonian, which in gen-
eral is computationally a very hard task. Our goal is to show that under certain condi-
tions, the diagonalization procedure can be substituted by a much simpler approach of
finding an extremum of a c-number function. To this end, we perform the Bogoliubov
approximation[10], i.e., we replace the creation and annihilation operators by c-numbers,

�̂a → �a, �̂a† → �a∗, (10a)

â0 →
√√√
√N –

K∑

k=1

|ak|2, â†
0 →

√√√
√N –

K∑

k=1

|ak|2, (10b)

where ak are complex numbers and we introduced the abbreviation

�a = (a1, . . . , aK ), �a∗ =
(
a∗

1, . . . , a∗
K
)
. (11)

Note that we have replaced K +1 quantum modes by only K complex variables. The reason
is particle number conservation, as will become apparent in the proof of our method.
Because of it, the sum of the moduli are fixed and moreover we have to fix a global phase.
Furthermore, note that particle number conservation as in (10b) shows that the complex
numbers scale as ai ∼ √

N . In summary, we obtain the replacement

Ĥ
(�̂a†, �̂a, â†

0, â0
)→ Hbog

(�a, �a∗), (12)

where Hbog(�a, �a∗) is an algebraic c-number function, which depends on K complex vari-
ables.

We expect that the error in the Bogoliubov approximation scales as 1/N . Thus, we can
make it arbitrarily small in the double-scaling limit of large particle number:

N → ∞, α(i) → 0, with λ(i) ≡ α(i)Ni/2–1 = const., (13)

where we suppressed the indices of the coupling constants. The above limit corresponds
to taking the individual interaction strengths to zero in such a way that the collective cou-
plings λ(i) stay constant. Note that for the special case of 4-point interaction, we obtain
the collective coupling λ = αN . Throughout this paper, the limit N → ∞ will refer to the
double-scaling (13). In this limit, the c-number method for finding gapless modes will be
exact. For finite N , corrections appear that scale as a power of 1/N .

Before we can come to the main statement of this section, we introduce the notion of a
critical point of the Bogoliubov Hamiltonian Hbog. It is defined as a value �a◦ such that the
first derivative vanishes,

∂Hbog

∂�a |�a=�a◦ = 0, (14)

and moreover the determinant of the second derivative matrix is zero,

detM|�a=�a◦ = 0, where M≡
(
B∗ A
AT B

)

. (15)
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Here the matrices A and B denote Akj ≡ ∂2Hbog
∂a∗

k∂aj
and Bkj ≡ ∂2Hbog

∂ak∂aj
, which implies BT = B

and A† = A. So we deal with a stationary inflection point of the function Hbog(�a, �a∗), i.e., a
point at which the curvature vanishes in some directions. Our goal is to prove the following
implication.

Theorem If the c-number function Hbog possesses a critical point (in the above sense), this
implies – in the full quantum theory – the existence of a state with emergent gapless modes,
and correspondingly, with an enhanced microstate entropy.e To put it shortly, any critical
point is a point of an enhanced memory storage capacity.

2.2 Proof
In order to see this, we will follow the known procedure for determining the spectrum of
quantum fluctuations around a given state. Namely we consider the expectation value of
the Hamiltonian in an arbitrary state, for which only the expectation value of the particle
number is fixed:

N =
K∑

k=0

〈â†
kâk〉 . (16)

In the following, expectation values will always refer to such a state. As explained, we
moreover want to fix a global phase to exclude the gapless direction that arises due to the
corresponding symmetry. Up to 1/N-corrections, we therefore obtain

〈â0〉 ≈ 〈â†
0〉 ≈

√√
√√N –

K∑

k=1

〈â†
kâk〉. (17)

In this way, we can make particle number conservation manifest and obtain a Hamiltonian
that only depends on K modes.

Next, we shift the remaining K mode operators by the constants corresponding to the
above-discussed stationary inflection point of the c-number function Hbog,

�̂a → �a◦ + �̂α, �̂a† → �a∗
◦ + �̂α†. (18)

Obviously, the operators α̂
†
k , α̂k satisfy commutation relations analogous to (1). So the

replacement (18) is always possible and exact, not only as an equation for the expectation
values. But of course, the Hamiltonian is not diagonal in the new modes α̂

†
k , α̂k .

Now we want to expand the theory around a state in which the expectation values of the
original âk-modes are given as 〈â†

kâk〉 = |a◦,k|2. Thus, we write down the effective Hamil-
tonian in which we keep terms up to second order in the α̂k-modes. Since �a◦ extremizes
the c-number function Hbog, terms linear in α̂k-modes are absent from the Hamiltonian.
Moreover, the c-numbers scale as ak ∼ √

N whereas the α̂k are independent of N . Thus,
each additional factor of α̂k leads to a suppression by 1/

√
N . So in the limit (13) of large N ,

the second-order term dominates and the effective Hamiltonian takes the following form:

〈Ĥ〉 = H0 + 〈�̂α†A �̂α〉 +
1
2
(〈�̂αB �̂α〉 + 〈�̂α†B∗ �̂α†〉), (19)
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where the constant H0 ≡ Hbog(�a◦, �a∗◦) denotes the value of the c-number function at the
extremal point. Up to this irrelevant constant, we can rewrite the Hamiltonian in block-
matrix form:

〈Ĥ〉 =
1
2

〈(
�̂α† �̂α

)(B∗ A
AT B

)(
�̂α†

�̂α

)〉

+ const. (20)

Now we can bring the Hamiltonian into a canonical diagonal form by performing the
following Bogoliubov transformation:

(
�̂α†

�̂α

)

= T
( �̂β†

�̂β

)

, with T =

(
V ∗ U
U∗ V

)

, (21)

or equivalently,

α̂k = U∗
kjβ̂

†
j + Vkjβ̂j, (22)

where U and V are the transformation matrices and β̂
†
j , β̂j are the new modes that form a

diagonal canonical basis. The canonical commutation relations imply the conditions:

VV † – U∗UT = 1, VU† – U∗V T = 0. (23)

As always, we choose the matrices U and V such that off-diagonal terms, of the type β̂jβ̂k

and β̂
†
j β̂

†
k , are absent from the Hamiltonian. This implies that U , V satisfy

U†AT V ∗ + V †AU∗ + V †B∗V ∗ + U†BU∗ = 0. (24)

In this way, we bring the Hamiltonian to the form

〈Ĥ〉 = 〈β̂†
kEkjβ̂j〉 + const., (25)

where the matrix E is given by

E ≡ U†AT U + V †AV + V †B∗U + U†BV . (26)

Note that the conditions (23) and (24) allow the multiplication of U and V by an arbitrary
unitary matrix. Therefore, without loss of generality, we can set the Hermitian matrix E
to be diagonal.

Now, due to the fact that the modulus of the determinant of the matrix T is 1, the con-
dition detM = 0 is equivalent to the condition detE = 0.f Thus, among the degrees of free-
dom described by the operators β̂

†
k , β̂k , there exist gapless modes. Moreover, the number

of zero eigenvalues of the two matrices is the same since multiplication by regular matri-
ces does not change the dimension of the kernel of a matrix. So the number of gapless
modes is given by the number of zero eigenvalues of the matrix M, i.e., by the number of
independent flat directions at the critical point of the c-number function Hbog.

This conclusion is exact in the limit (13) of infinite N . In this case, the gap collapses to
zero and the different quantum states that correspond to the different occupation numbers
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of the gapless modes become exactly degenerate. So the system can store an unlimited
amount of information within an arbitrarily small energy gap. Note that the fact that we
only make a statement about the expectation value of the Bogoliubov Hamiltonian in (25)
is not a restriction since it suffices for us to find states with degenerate expectation values
of the energy.

For finite N , corrections appear which scale as a power of 1/N . They come from higher-
order terms in the effective Hamiltonian (19) and from corrections to relation (17). So
in this case, the modes will only be nearly-gapless, with a gap that scales as a power of
1/N . Also the critical value �a◦ will receive 1/N-corrections. However, one can make all
these corrections arbitrarily small if one chooses N large enough. So also for finite N ,
the information stored in the various states of the �̂β-modes is energy cost-efficient. In
summary, we conclude that the critical point of the c-number function Hbog corresponds
to the appearance of nearly-gapless modes in the full quantum theory. Each nearly-gapless
mode corresponds to a zero eigenvalue of the second derivative matrix M.

We remark that our c-number method is conceptually similar to the study of the Gross-
Pitaevskii equation [21, 22], which corresponds to working in position space and expand-
ing the field operator ψ̂ around its classical value: ψ̂ = ψcl + δψ̂ . In this approach, one
can identify gapless modes by studying the spectrum of quantum fluctuations δψ̂ . Our c-
number method can be viewed as momentum space analogue of this technique. Namely,
we first go to momentum space by expanding ψ̂ in mode operators â. Then we proceed
analogously to the Gross-Pitaevskii method by expanding mode operators around their
classical values: �̂a = �a◦ + �̂α.

2.2.1 Coherent state basis
Finally, we note that an alternative proof of the enhanced memory capacity around the
stationary inflection point of Hbog consists of moving to the basis of coherent states, as
opposed to number eigenstates. We recall that coherent states |�a〉 are the eigenstates of
the destruction operators, i.e., for all modes we have âk |�a〉 = ak |�a〉, where ak is a complex
eigenvalue. Obviously, coherent states satisfy |ak|2 = 〈�a| n̂k |�a〉. It is clear that taking an
expectation value of the Hamiltonian (9) over a coherent state |�a〉 simply amounts to the
Bogoliubov approximation (10a) and (10b), i.e., to replacing the operators by c-numbers,
âk → ak . Therefore, we have the relation

〈�a| Ĥ |�a〉 = Hbog. (27)

This means that coherent states explicitly realize the replacement (12). Since this proce-
dure is exact also for finite N , it gives immediate meaning to the Bogoliubov Hamiltonian
from the perspective of the full quantum system.

In particular, this construction is relevant when the Bogoliubov Hamiltonian possesses
a stationary inflection point �a◦. If in this case the eigenvector with vanishing eigenvalue is
given by �δa, then we can consider the state |�a◦ + ε �δa〉. For small values of ε, it fulfills

〈�a◦ + ε �δa| Ĥ |�a◦ + ε �δa〉 = 〈�a◦| Ĥ |�a◦〉 . (28)

Thus, we have obtained a family |�a◦ + ε �δa〉 of quantum states with nearly degenerate ex-
pectation value of the energy. Information stored in them therefore occupies a narrow
gap.
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For quantifying the information storage capacity, we must take into account that coher-
ent states do not form a orthonormal basis and that only coherent states with large enough
differences in ak are nearly orthogonal. Indeed, the scalar product of two coherent states
|�a〉 and |�a′〉 is

∣
∣〈�a|�a′〉∣∣2 = e–

∑
k |ak –a′

k |2 . (29)

Because of this, although the coherent state parameter can take continuous values, only
sufficiently distant states, which satisfy

∑

k

∣∣ak – a′
k
∣∣2 
 1, (30)

contribute into the memory-capacity count. Due to this, the information storage capacity
in the coherent state basis is the same as in the basis of number eigenstates of the Bo-
goliubov modes.g However, the usefulness of the coherent state basis lies in the ability of
taking a smooth classical limit. This is convenient for the generalization of the enhanced
memory storage phenomenon to classical systems, such as e.g., classical neural networks
[1].

For an exemplary step-by-step application of the c-number method we refer the reader
to Appendix B. There we use it to study the periodic analogue of our prototype model,
i.e., the attractive one-dimensional Bose gas with periodic boundary conditions. For this
system, a complete analytic treatment is possible. This means that on the one hand, all
equations resulting from the c-number method can be solved easily and on the other hand,
the Bogoliubov transformation can be carried out explicitly. It is therefore a good starting
point to both familiarize oneself with the method and to check its validity on a concrete
example.

3 Prototype model: 3-mode system
3.1 Introduction of Bose gas with Dirichlet boundary conditions
We proceed to apply the c-number method to our prototype model, the one-dimensional
Bose gas in a box. Its Hamiltonian is given by

Ĥ =
∫ L

0
dz
[

�
2

2m
∂zψ̂

†∂zψ̂ –
�

2

2m
π2α

L
ψ̂†ψ̂†ψ̂ψ̂

]
, (31)

where α is a dimensionless, positive coupling constant describing the attractive four-point
interaction of the atoms and L is the size of the system. We impose Dirichlet boundary
conditions so that the free eigenfunctions read

ψ̂ =
√

2
L

∞∑

k=1

âk sin

(
kπz

L

)
. (32)
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Going to momentum space, we then obtain

Ĥ full =
4π2

�
2

2mL2

[ ∞∑

k=1

k2

4
â†

kâk –
α

8

∞∑

k,l,m=1

[(
â†

kâ†
l âmâk+l–m + 2â†

kâ†
l âmâk–l+m

)

– 2
(
â†

l+m+kâ†
l âmâk + â†

kâ†
l âmâk+l+m

)]
]

. (33)

Both analytically and numerically, however, it is difficult to obtain explicit solutions of the
full Hamiltonian (33). Therefore, we will truncate the system to the lowest three modes,
k ≤ 3. This is the smallest number of modes for which the non-periodic system behaves
qualitatively differently from its analogue with periodic boundary conditions. Explicitly,
we obtain after truncation:

Ĥ =
1
4

3∑

k=1

k2â†
kâk –

α

8
[
3â†2

1 â2
1 + 8â†

1â†
2â1â2 + 2â†2

1 â2
2 + 2â†2

2 â2
1

+ 8â†
1â†

3â1â3 + 2â†2
1 â2

3 + 2â†2
3 â2

1 – 2â†2
1 â1â3 – 2â†

1â†
3â2

1

+ 4â†
1â†

2â2â3 + 4â†
2â†

3â1â2 + 2â†
1â†

3â2
2 + 2â†2

2 â1â3

+ 3â†2
2 â2

2 + 8â†
2â†

3â2â3 + 2â†2
2 â2

3 + 2â†2
3 â2

2 + 3â†2
3 â2

3
]
. (34)

This Hamiltonian defines the prototype system that we shall study in the following. For
convenience, we set L = 2π and � = 2m = 1 from now on. Our subsequent task is to under-
stand the phase portrait of the Hamiltonian (34) with the aim of identifying an emergent
gapless mode that leads to enhanced entropy states with long decoherence time and large
information storage capacity.

To prepare the application of our analytic method, we now perform the Bogoliubov ap-
proximation. Clearly, since the conditions (14) and (15), which define critical points of the
Bogoliubov Hamiltonian, allow for a reparametrization of the complex variables contained
in �a and �a∗, we can use a different parametrization defined byh

â1 →√
N(1 – x) cos(θ ), â2 → √

Nxei�2 , â3 →√
N(1 – x) sin(θ )ei�3 . (35)

As it should be, this substitution already incorporates particle number conservation, i.e,
we replace three modes by only two complex numbers, or equivalently two moduli and
two phases. Here 0 ≤ x ≤ 1 is the relative occupation of the 2-mode and 0 ≤ θ ≤ π/2
characterizes how the remaining atoms are distributed among the 1- and 3-mode. More-
over, �2 and �3 are relative phases. The Bogoliubov Hamiltonian, which we obtain after
plugging in the replacements (35) in the Hamiltonian (34), reads:

Hbog

N
=

1
4
(
1 + 3x + 8(1 – x) sin2(θ )

)
–

λ

8

[
sin2(2θ )(1 – x)2

(
1
2

+ cos(2�3)
)

+ 3 + 2x – 2x2 + 4x(1 – x)
(
cos(2�2) cos2(θ ) + cos(2�2 – 2�3) sin2(θ )

)

+ 2 sin(2θ )(1 – x)
(
x cos(2�2 – �3) + cos(�3)

(
2x – (1 – x) cos2(θ )

))
]

. (36)
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3.2 Analysis of the ground state
As a preparatory exercise, we analyze the ground state of the Hamiltonian (34). We can
do so by finding the global minimum of the Bogoliubov Hamiltonian (36). It is evident
that the choices �2 = 0 as well as �3 = 0 or �3 = π are preferred since they minimize
each term separately.i It is straightforward to minimize the energy with respect to �3 and
the remaining two continuous parameters x and θ numerically.j The resulting occupation
numbers of the ground state as functions of the collective coupling λ are displayed in
Fig. 2. We observe that the occupation numbers change discontinuously at the critical
point λgs ≈ 3.5, where the subscript gs stands for ground state.

In order to understand this behavior better, we plot the Bogoliubov Hamiltonian as a
function of x and θ for the critical value λ = 3.5 in Fig. 3. Since we observe two discon-
nected, degenerate minima, we can explain the discontinuous change of the occupation
numbers as transition between the two minima. To analyze how the second minimum
develops, we marginalize over θ and �3, i.e., we only fix x and minimize the energy with
respect to the remaining parameters θ and �3. Fig. 4 shows the result for different values
of λ. We conclude that a local minimum exists at x = 0 for all values of λ and that another
local minimum at x = xmin(λ) �= 0 starts to exist for λ > λlm, where

λlm ≈ 1.8. (37)

Figure 2 Relative occupation numbers of the ground state of the Bogoliubov Hamiltonian as functions of λ.
The 1-mode is displayed in blue, the 2-mode in orange and the 3-mode in purple. There is a discontinuous
change in the occupation numbers at λgs ≈ 3.5

Figure 3 Bogoliubov energy (rescaled by the inverse particle number) for λ = 3.5 as a function of x and θ . The
red surface is the region where �3 = π minimizes the energy and in the orange surface, �3 = 0 is preferred.
We observe two disconnected, degenerate minima, one for x = 0 (green point) and one for x �= 0 (blue point)
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Figure 4 Minimal value of the Bogoliubov Hamiltonian (rescaled by the inverse particle number) subject to
the constraint that the relative occupation of the 2-mode is x. At λlm ≈ 1.8, a stationary inflection point
signals the appearance of a second minimum and at λgs ≈ 3.5, this second minimum becomes energetically
favorable

Here the subscript lm stands for light mode since we observe that the critical point λlm

corresponds to a stationary inflection point and will therefore be crucial for our discussion
of gapless modes in the next section. With regard to the ground state, we can conclude for
now that λgs corresponds to the point where the second minimum becomes energetically
favorable.

Thus, we expect from the analytic analysis that the ground state changes discontinu-
ously at the critical point λgs ≈ 3.5, i.e., that there is a first-order phase transition. We can
check that this indeed happens in the quantum Hamiltonian for finite N . To this end, we
diagonalize it numerically to find the true ground state. When we plot the expectation
values of the occupation numbers of the ground state as functions of λ, the result is indis-
tinguishable from Fig. 2 above already for N � 100. We therefore confirm that there is a
critical point at λgs, at which the ground state of the system changes discontinuously.
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This represents a marked difference to the periodic system, where the ground state
changes continuously, i.e., a second-order phase transition takes place (see Appendix B).
Because of the continuity of the transition, higher modes only get occupied slowly in that
case so that one can describe the full system solely in terms of the lowest three modes.
This makes it easy to obtain numerical results for the periodic system. As we have seen,
however, the occupation numbers change discontinuously for Dirichlet boundary con-
ditions. Therefore, the truncation to three modes is no longer justified already near the
critical point. For this reason, the full system (33) does not necessarily need to exhibit the
behavior which we observe for the truncated Hamiltonian (34).

4 Critical point with gapless mode
4.1 Application of C-number method
In this section, we perform a detailed analysis of the point λ = λlm. Our goal is to show
that it features a light mode and correspondingly an increased density of states, i.e., that
the phenomenon of assisted gaplessness takes place at this point. First, we will do so using
the analytic c-number method developed in Sect. 2. As explained there, it allows us to
forgo the involved analysis of the full spectrum. Instead, we are only faced with the much
simpler task of showing that the Bogoliubov Hamiltonian, which only depends on two
complex variables, possesses a stationary inflection point.

Since we already expect from Fig. 4 that a stationary inflection point appears at λ = λlm, it
remains to confirm that this is the case. To this end, we first study the first derivative of the
Bogoliubov Hamiltonian. Setting it to zero yields four equations, which we can solve for
the four Bogoliubov parameters x, θ , �2 and �3. We observe that the latter two parameters
behave as in the second minimum, �2 = �3 = 0. Only the derivatives with respect to x and
θ , which are displayed in equation (52a) in Appendix A, yield non-trivial conditions. As
we expect from the previous analysis, solutions, i.e., local extrema, only exist for λ > λlm,
which we determine as λlm = 1.792. Next, we compute the matrixM of second derivatives,
which is displayed in equation (53a). At the local minima, we plug in the above determined
values of the Bogoliubov parameters and then compute its determinant. We display the
result in Fig. 5(a) as a function of λ. We confirm that it vanishes as λ approaches λlm from

Figure 5 Excitation energy as a function of λ for N → ∞ derived in two different methods. In both cases, we
observe a gapless excitation at λlm ≈ 1.792. Stable excitations only exist for λ ≥ λlm . As is clear from the

Hamiltonian (33), the energy unit is 4π2
�
2

2mL2
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above. Therefore, λ = λlm corresponds to a stationary inflection point in the Bogoliubov
Hamiltonian and it follows from our c-number method that a nearly-gapless mode and
consequently an increased degeneracy of states exists in the full spectrum.

In order to confirm this finding, and also to make a more quantitative statement, we
explicitly perform the Bogoliubov transformation to obtain the full quantum spectrum
in the limit N → ∞. As explained in Sect. 2.2, the first step is to replace â1/â†

1 →√
N – â†

2â2 – â†
3â3 in the full Hamiltonian (34) to ensure that we only consider fluctuations

that respect particle number conservation. Then we expand to second order around the
point defined by the Bogoliubov approximation (35). We display the result in Appendix A
in equations (55) and (56). As before, we subsequently look for pairs (x, θ ) where the lin-
ear term (55) vanishes and stable fluctuations exist. We obtain the same values as above.
At those points, we calculate numerically the Bogoliubov transformation for the corre-
sponding quadratic Hamiltonian using the method described in [23, 24]. The so obtained
diagonal matrix contains the excitation energies associated to the Bogoliubov modes. The
smallest energy gap as a function of λ is shown in Fig. 5(b). As expected, the result is in
accordance with the previous one displayed in Fig. 5(a). Thus, this analysis confirms that
a gapless mode exists at λlm in the limit N → ∞. For finite N , we therefore expect that a
nearly-gapless mode, whose energy is suppressed as a power of 1/N , appears close to λlm.

Finally, we want to point out that this analysis also shows that the critical state, around
which the gapless mode emerges, is stable. This follows from the fact that the gaps of
all modes are positive and large in the relevant regime λ ≥ λlm, except for one almost flat
direction. We are interested in the latter because of its importance for information storage.

4.2 Slow mode in full spectrum
4.2.1 Outline of approach
Our goal is to confirm the existence of a light mode in the spectrum of the quantum system
for finite N . To this end, we will use the fact that modes with a small energy gap �E evolve
on the long timescale �/�E (see the discussion around Eq. (6)). When we consider a state
close to a critical point of enhanced memory storage, we therefore expect the appearance
of large timescales in its time evolution. So we will prove the existence of a light mode by
showing that quantum states with a drastically slower time evolution exist there.k As we
shall discuss in Sect. 4.4, we expect such states to have an experimental signature in the
form of absorption lines of low frequency.l

The timescale of evolution also determines how long a state can store information. We
can imagine that we experimentally prepare a state in such a way that we can choose its
components in a certain basis. Then it is possible to encode information in these compo-
nents. If we measure the state before it has evolved significantly, we can directly read out
the components and therefore the stored information. In contrast, if the state has already
evolved, it is practically impossible to retrieve the information since this would require
precise knowledge of the dynamics of the systems, in particular of its energy levels. In a
narrow sense, the timescale of evolution therefore determines a decoherence time. It is
the time after which the subset of nearly-gapless modes has been decohered by the rest of
the system.

Practically, we need to come up with a procedure to single out a quantum state, for which
we then analyze its time evolution. For λ = λlm, this quantum state should correspond to
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the stationary inflection point of the Bogoliubov Hamiltonian. In order to make a com-
parative statement, we moreover need to determine analogous quantum states at different
values of λ. We will achieve this by constructing a method to associate a quantum state
|Φinf〉 to the inflection point of the Bogoliubov Hamiltonian. This inflection point exists
for all λ � 1 but is stationary only for λ = λlm.

Our approach to determine |Φinf〉 is to define a subspace of states close to the inflection
point and then to select among those the state of minimal energy. On the one hand, this
subspace should not be too big in order to be sensitive to properties of the stationary
inflection point at λ = λlm. On the other hand, the subspace cannot be too small since
otherwise the energy of the state that we obtain by minimization is too high. Of course,
there is no unique way to determine this subspace and therefore no unique quantum state
|Φinf〉, but it suffices for us to come up with a method to find some quantum state with
drastically slower time evolution. In particular, we expect that there are many different
such quantum states corresponding to different occupation numbers of the light mode.

4.2.2 Concrete procedure
Concretely, we will construct the subspace using two conditions, which we derive from
properties of the inflection point xinf(λ) of the Bogoliubov Hamiltonian. First, we only con-
sider quantum states |Φinf〉 for which the expectation value of the relative occupation of the
2-mode, n2(t) := 〈Φinf| â†

2(t)â2(t) |Φinf〉 /N , is equal to xinf(λ). Secondly, we restrict the basis
used to form the quantum state |Φinf〉, where—as in all numerical computations—we use
number eigenstates of total occupation number N as basis. Namely, we determine from
the Bogoliubov Hamiltonian all relative occupation numbers at the inflection point. Then
we choose upper bounds δni on the spread of the different modes, i.e, we only consider
basis elements for which the relative occupation numbers deviate by at most δni from the
values determined from the Bogoliubov Hamiltonian. With the guideline that modes with
bigger relative occupation should have a bigger spread, we empirically determine δn1 = 0.4,
δn2 = 0.375 and δn3 = 0.225 to be a good choice.m

Once we have determined the state |Φinf〉, we study its time evolution. In doing so, we
use the full quantum Hamiltonian and therefore also the full basis. We show the result for
N = 60 for exemplary values of λ in Fig. 6, where we plotted n2(t). Clearly, drastically lower
frequencies dominate around λ = λlm. In order to make a quantitative estimate about the
coherence time as a function of the collective coupling λ, we extract a typical frequency
from the time evolution of |Φinf〉. To this end, we use a discrete Fourier transformation
with respect to the nmax frequencies f1, 2f1, . . . , nmaxf1 to obtain the Fourier coefficients
c1, c2, . . . , cnmax . With their help, we can define the mean frequency as

f̄ := f1

∑nmax
i=1 i|ci|2∑nmax
i=1 |ci|2 . (38)

As explained, the timescale of evolution can be interpreted as decoherence time, namely
as the timescale after which the subset of nearly-gapless modes has been decohered by the
other modes. In this sense, we get:

tcoh =
1
f̄

. (39)



Dvali et al. EPJ Quantum Technology             (2019) 6:1 Page 21 of 36

Figure 6 Time evolution of the quantum state
|Φinf〉, which corresponds to the inflection point of
the Bogoliubov Hamiltonian. The value of n2(t) is
plotted for N = 60. We observe that lower
frequencies dominate around λ ≈ 2.083

Figure 7 Estimate of the decoherence time tcoh associated to |Φinf〉 as a function of λ for N = 60. We observe
that it increases distinctly around λ ≈ 2.083

For f1 = 1/3000 and nmax = 12,000, we show tcoh as a function of λ in Fig. 7.n We observe
that it increases distinctly around λ ≈ 2.083.
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Figure 8 Critical value λ(N)
lm as a function of particle

number N. The positions obtained from numerical
simulations are plotted in blue. The fitted function
(40) is shown in red

The fact that for N = 60 a state with drastically slower time evolution appears at λ
(60)
lm ≡

2.083 is consistent with λlm = 1.792 since we expect that as in the periodic system, the
critical value λ

(N)
lm of the collective coupling at finite N receives 1/N-corrections:o

λ
(N)
lm = λlm + a · N–b, (40)

where a > 0 and b > 0 are two undetermined parameters. To confirm that this is the case,
we repeated the above analysis of the decoherence time as a function of λ for N between
40 and 90. This determines critical values λ

(N)
lm as the values of λ for which time evolution

is the slowest at a given N . Subsequently, we fit the function (40) to the result and thereby
determine a = 3.56 and b = 0.61. We note that b is close to 2/3, which was the result in the
periodic system [18]. As is evident from Fig. 8, the numerically determined values λ

(N)
lm are

well described by the fitted function (40). This is a clear indication that the slowed time
evolution we found is due to the nearly-gapless Bogoliubov mode that we predict from the
analytic treatment. So in summary, we observe the appearance of a nearly-gapless mode
around λ = λlm also for finite N .

As a final remark, we discuss the critical state |Φinf〉 for N = 60 and λ = 2.083 in position
space. Its particle density is given by

ρ(z) ≡ 〈Φinf| |ψ̂ |2 |Φinf〉 =
1
π

3∑

k,l=1

〈Φinf| â†
kâl |Φinf〉 sin

(
kz
2

)
sin

(
lz
2

)
. (41)

We display it in Fig. 9, where we also illustrate what the gapless mode looks like in position
space. To this end, we fix the critical value of the collective coupling, λ = 2.083, but slightly
vary the value of x used in the minimization procedure that determines the quantum state:
xi = xinf(λ)+δxi. This determines a family of quantum states |Φinf, i〉, where |Φinf, i〉 is a state
of minimal energy subject to the constraint that its relative occupation of the 2-mode is
xi. Their particles densities are also shown in Fig. 9.

4.3 Comparison with goldstone phenomenon
It may be useful to compare our effect with the well-known phenomenon of appearance of
gapless excitations in the form of Goldstone bosons. The latter modes emerge as a result
of a phase transition with the spontaneous breaking of a global symmetry. The crucial dif-
ference is that Goldstone modes consistently exist in a domain past the critical phase. This
is not the case in the present model. Our gapless modes only exist at the critical point and
they appear due to cancellation between the positive kinetic energy and a negative collec-
tive interaction energy with a certain highly-occupied master mode. It is therefore hard
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Figure 9 Variations of the critical state at λ = 2.083 for N = 60 in position space. The relative particle density
ρ/N is plotted. The green line corresponds to the critical state |Φinf〉 itself and the adjacent lines are variations
of it, which we obtained by slightly changing the value of x used in the minimization procedure that
determines the quantum state: xi = xinf(λ) + δxi . The values of δxi are indicated in the plot

to interpret the appearance of our gapless modes in terms of a Goldstone phenomenon of
spontaneous breaking of any global symmetry. This difference is what in particular makes
the phenomenon of assisted gaplessness interesting since there is no a priori symmetry
reason for the emergence of any gapless modes. This said, however, once assisted gapless-
ness takes place, the number of such modes can be highly enhanced by unbroken symme-
tries of the critical state, such as spherical symmetry [4].

4.4 Encoding information via coupling to an external field
We conclude by pointing out how the nearly-gapless mode emerging at the critical value
λlm of the collective coupling can be probed by an external field. This is of particular in-
terest with regard to the experimental realization of an attractive Bose gas at the critical
point. For simplicity, we will only consider the nearly-gapless mode of the Bose gas, which
we would obtain after a Bogoliubov transformation of the Hamiltonian (34). We will call
it b̂ and its gap �E. In the vicinity of the critical point, it is possible to neglect the effect
of all other modes of the Bose gas if the energy of the external mode is sufficiently small.
Following [9], the essential features of the coupling to an external field can be captured by
the simple Hamiltonianp

Ĥeff = �Eb̂†b̂ + Eγ ĉ†ĉ +
g
2
(
b̂ĉ† + b̂†ĉ

)
, (42)

where we added an external mode ĉ of energy Eγ , which could correspond to a mode of
the photon field in an experimental setup. The parameter g describes the coupling of the
external mode to the Bose gas. Note that the model (42) is a special case of the Hamiltonian
(6), which describes the general coupling of a nearly-gapless mode to an external one.

We can start with no excitations in the Bogoliubov mode and a coherent state of the
external field:

|Φ(t = 0)〉 = |0〉b ⊗ |γ 〉c , (43)
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where γ parameterizes the occupation of the external coherent state. Straightforward cal-
culation gives [9]:

〈
Φ(t)

∣
∣ĉ†ĉ
∣
∣Φ(t)

〉
= γ 2

(
1 –

g2

δ2
g

sin2
(

δg t
2

))
, (44)

where we defined

δg =
√

(Eγ – �E)2 + g2. (45)

Thus, the coupling to the critical system leads to a fluctuating occupation of the external
field. One has to choose Eγ ≈ �E to allow for an appreciable amplitude of the oscillation.
As discussed in the context of Eq. (6), this implies that the coupling has to be small, g � �E,
in order not to disturb the gaplessness of the mode b̂.

In this situation, the occupation number of the Bogoliubov mode evolves in time as,

〈
Φ(t)

∣∣b̂†b̂
∣∣Φ(t)

〉
= γ 2 g2

δ2
g

sin2
(

δg t
2

)
. (46)

This means that we can use soft excitations of an external field to bring the Bogoliubov
mode to a desired state. Correspondingly, information can be read out from soft ĉ-quanta
that are emitted due to the de-excitement of the Bogoliubov mode. We remark that equa-
tions (44) and (46) also show why soft external radiation is sensitive to the critical point. If
we are not at the critical point λ = λlm of light modes, the lightest mode has a much bigger
gap, i.e., �E 
 Eγ . In that case, the amplitude of fluctuations gets suppressed as g/�E.
This means that soft radiation stops interacting with the system. Thus, a critical point ex-
ists whenever soft radiation, whose energy Eγ is much smaller than the typical energy of
the system, i.e., Eγ � �

2/(2mL2), interacts significantly with the atoms.
The energy efficiency of the information storage within the gapless mode goes hand in

hand with the difficulty of the read-out of information. Since the gap is small, the different
information patterns are barely discriminable and the read-out time is correspondingly
very long. From the theoretical perspective of understanding black holes this is good news
as such a delay would naturally explain why the quantum information stored in black hole
modes cannot be resolved for a very long time. The answer to the above black hole puzzle
would be that information is unreadable because it is stored in nearly gapless modes (see
e.g., [9]).

Regarding a possible practical use of assisted gaplessness for the storage and read-out
of quantum information, the same constraints apply. Namely, if we would like to design
a device that could read out the information on a timescale shorter than the inverse gap,
such a reader must necessarily disturb the gap. In such a case, the reading device can be
included in an effective Hamiltonian in form of a time-dependent interaction term that is
switched on externally when needed. We shall not elaborate further on this issue in the
present paper.

Finally, we want to comment on the stability of the critical state, around which the gap-
less mode emerges. Of course, as we have explained, this state is not a ground state of
the system. Nevertheless, it exhibits no Lyapunov exponent in any direction of the en-
ergy landscape. This is most clearly demonstrated by the analytic studies performed in



Dvali et al. EPJ Quantum Technology             (2019) 6:1 Page 25 of 36

the limit of large N0. In particular, plot 5(b) of the gap of the lowest-lying Bogoliubov
mode as a function of λ shows that in the relevant regime λ ≥ λlm, all the gaps are positive
and only one becomes zero at criticality. Moreover, we see no signs of any decay in the
full numerical analysis of the system, which again confirms the absence of any instability.
Correspondingly, in the closed system with Hamiltonian (34) the critical state is stable.

Of course, the system can be destabilized by coupling it to external modes provided the
coupling is strong enough. But as we have discussed, any interaction to an external field
has to be weak anyhow in order not to disturb the gaplessness of the Bogoliubov mode.
We expect that the weakness of the external influence also ensures a sufficient stability of
the critical state, although the matter has to be studied on a case by case basis for potential
experimental setups. If the above requirements can be met, it would be highly interesting
to scatter an electromagnetic wave at the system of cold atoms that are in the critical state
and to see if it is experimentally possible to detect the emission of soft radiation resulting
from the de-excitement of the Bogoliubov mode. In this way, the quantum information
stored in the memory in the form of an excited state of the Bogoliubov mode could be
decoded by analyzing the emitted soft radiation.

5 Implications for neural networks
5.1 Mapping of bosonic system on neural network
We shall now show that the enhanced memory capacity phenomenon discussed above
has a direct application to quantum neural networks along the lines of [1, 2]. First, we will
introduce how neural networks can be described by an effective Hamiltonian and then we
will specialize to our prototype system (34), both on the quantum level and in the classical
limit.

The key ingredients of any neural network are on the one hand the neurons and on the
other hand the synaptic connections among them. Following [1, 2], it is possible to de-
scribe them by an effective Hamiltonian in which the neural excitations are the degrees of
freedom. The threshold excitations correspond to kinetic energies and the synaptic con-
nections translate as interaction terms. In this description, the time evolution of the ex-
citations is generated by the effective Hamiltonian. In particular, this framework enables
us to study the energetics of information storage. This is the aspect we shall focus on. So
we will not study any specific algorithm, but our goal is to investigate the energy cost of
recording and reading out information.

The synaptic connections can be either excitatory or inhibitory, i.e., an excitation of a
given neuron k can either decrease or increase the probability of the excitation of another
neuron j. In the effective Hamiltonian description of the network, the excitatory and in-
hibitory nature of the connections can be given an energetic meaning. This meaning is
defined by the sign of the interaction energy of two or more simultaneously excited neu-
rons. The negative and the positive signs of the interaction energy respectively translate
as excitatory and inhibitory connections in an energetic sense. Below, we shall denote the
parameter that sets the characteristic strength of these interactions by the same constant
α as we have used for the system of bosons.

As noticed in [1, 2], a neural network defined in this way in the case of negative (i.e.,
attractive and therefore “gravity-like”) synaptic connections exhibits the phenomenon of
assisted gaplessness with sharply enhanced memory storage capacity. For describing the
idea it suffices to consider the simple Hamiltonian (2) and to think of it as representing a
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quantum neural network. Thus, we consider a network for which the synaptic connection
energy of a set of inter-connected neurons is negative. This means that the excitation of a
given neuron lowers the threshold for the excitation of all the other neurons from this set,
i.e., for the ones that are connected to the former neuron by negative energy couplings. If
we normalize the characteristic step of the excitation to unity, then exciting a neuron to a
level N , in general, lowers the threshold for the others by the amount ∼ αN .

Due to this effect, there generically exist states in which the high excitation of a subset
of neurons assists other neurons in becoming gapless. Their gap is lowered to zero up to
an accuracy of order α. Correspondingly, we encounter the interesting situation that the
effect becomes stronger for weaker coupling. Namely we can shrink the gap by decreasing
the coupling strength α and simultaneously increasing the excitation level N in such a
way that their product αN is constant. In such states, the memory storage in the emerging
gapless neurons becomes energetically very cheap and one can store a large number of
patterns within a very narrow energy gap. By taking the double-scaling limit as defined in
(13), the gap can be made arbitrarily narrow and the number of stored patterns arbitrarily
large.

Furthermore, it was shown in [2] that such a neural network is isomorphic to the physical
system of a bosonic quantum field. In this correspondence, the neural degrees of freedom
are identified with the momentum modes of the field, whereas the synaptic connections
correspond to the couplings among the different momentum modes. This mapping allows
to give a unified description of the phenomena of enhanced memory storage capacity in
neural networks and in systems with cold bosons. This opens up an exciting experimental
prospect of simulating such neural networks in a system of cold atoms.

Using this dictionary, we shall represent the system studied in the present paper as a
neural network. Indeed, the truncated Hamiltonian (34) is fully isomorphic to a quantum
neural network with three neurons in which the excitations of neurons are described by
the momentum modes â†

k , âk , and the synaptic connections between the neurons are de-
scribed by the interaction terms in (34).q Fig. 10 shows the representation of Hamiltonian
(34) as neural network.

Figure 10 Representation of the Hamiltonian (34)
as neural network. The three neurons are displayed
as circles and diamonds represent interaction terms.
The number of lines to a diamond indicates how
many mode operators of the corresponding neuron
participate in the interaction
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To make a closer contact with the neural network language, it is useful to rewrite the
Hamiltonian as

Ĥ =
3∑

k=1

Ekâ†
kâk –

3∑

k,j=1

â†
kŴkjâj, (47)

where Ek = 1
4 k2 are the threshold excitation energies of the neurons and Ŵkj is a Hermitian

3 × 3 matrix operator of synaptic connections. Its elements are:

Ŵ11 =
3α

8
â†

1â1, (48a)

Ŵ22 =
3α

8
â†

2â2, (48b)

Ŵ33 =
3α

8
â†

3â3, (48c)

Ŵ12 =
α

8

(
4â†

2â1 + 2â†
1â2 +

4
3

â†
2â3 + â†

3â2

)
, (48d)

Ŵ13 =
α

8

(
4â†

3â1 + 2â†
1â3 +

4
3

â†
2â2 – 2â†

1â1

)
, (48e)

Ŵ23 =
α

8

(
4â†

3â2 + 2â†
2â3 +

4
3

â†
1â2 + â†

2â1

)
. (48f)

Now we can directly apply all our results to the above neural network. We shall all the
time assume the regime of very weak synaptic connections, i.e., we assume α � 1. In this
situation, we study the memory storage capacity of the network for various values of the
total excitation level N .

5.2 Enhanced memory storage
First, we examine the memory storage capacity of the neural network around a state in
which the total excitation level is well below the critical level, N � 1

α
. In such a regime, the

negative energy of synaptic connections is negligible and does not contribute to lowering
the energy gap. Note that the ability of the synaptic connection energy to lower the gap of
neurons is parameterized by the strength of the collective coupling λ = αN , which is very
weak in the considered regime, N � 1

α
.

Correspondingly, in such a regime the energy difference between different num-
ber eigenstates |N – n2 – n3, n2, n3〉 and |N – n′

2 – n′
3, n′

2, n′
3〉 mostly comes from the first

threshold energy term in the network Hamiltonian (47) and is very large

�Eλ�1 =
1
4
(
3
(
n′

2 – n2
)

+ 8
(
n′

3 – n3
))

+ O(λ). (49)

Hence, the patterns stored in such states occupy a very large energy gap. For example, in
order to redial a pattern stored in the state |N , 0, 0〉 into the state |N – 1, 1, 0〉, we need to
overcome an energy gap �E � 3

4 , i.e, an external stimulus that is needed for the redial of
information |N , 0, 0〉 → |N – 1, 1, 0〉 has to have an energy of order ∼ 3

4 .
Now we increase the total excitation level N . With this increase, the contribution of the

negative synaptic connection energy gradually lowers the gap between some neighboring
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states. The gap reaches the smallest value when the total excitation level N reaches the
critical point. As discussed above, this happens when αN = λlm. At this point, a state be-
comes available around which a gapless excitation emerges. This means that for a certain
relative distribution of excitation levels, the gap between the set of patterns collapses to

�Eλ=λlm ∼ 1
Nβ

, (50)

where β is a positive constant. By taking the double scaling limit (13), we can make the
gap arbitrarily narrow. In this situation, the storage of patterns in such states becomes
energetically cheap.

So far, we have described a quantum neural network. We can move to a classical neural
network by using the coherent state basis and replacing the Hamiltonian operator by its
expectation value over the coherent states. In this way, we obtain a classical neural network
described by the c-number energy function Hbog(�a, �a∗).

When discussing the storage of patterns in a neural network, we must introduce the
notion of the pattern vector. In general, this vector is different from the quantum state
vector of the system and may contain less information. This is determined by those char-
acteristics of the state to which an external reading device is sensitive. Indeed, when the
underlying quantum state characterizing the system is given by a coherent state, which is
labeled by three complex numbers |a1, a2, a3〉, the storage of a pattern and therefore the
pattern vector is determined by the combinations of these numbers to which the reader
is sensitive. If the reader is sensitive to the full quantum information, i.e., to the phases as
well as to the absolute values of aj, then the pattern vector can be identical to the quantum-
state vector. If instead the reader is only sensitive to the absolute values, the pattern vector
can be correspondingly chosen in the form (|a1|, |a2|, |a3|). Since we do not specify any ex-
ternal reading device, we shall keep the definition of the pattern vector flexible.

We can explicitly write down the pattern vector for our concrete system (47). First, we
discuss the case in which the reader is sensitive to the full quantum information. Using
the notations (35), the pattern vector can then be parameterized as

⎛

⎜
⎝

a1

a2

a3

⎞

⎟
⎠ =

√
N

⎛

⎜
⎝

√
1 – x cos(θ )√

xei�2√
1 – x sin(θ )ei�3

⎞

⎟
⎠ , (51)

where as before 0 ≤ x ≤ 1. If in contrast the reader is only sensitive to the absolute values,
we can effectively describe this situation by neglecting the phases in (51), �2 = �3 = 0

As before, we can discuss states of enhanced memory capacity. Thereby, the role of the
negative synaptic connection energy in creating such a state is the same since, up to 1/N-
corrections, the energy expectation value is identical in a number eigenstate and in a co-
herent state. So for λ � 1, when the synaptic connection term is negligible and the energy
of the network is given by the threshold excitation energy, we obtain the energy gap (49).
When we remember that due to the properties of coherent states only patterns with large
parameter differences that satisfy (30) count as distinct patterns, we conclude that the
energy difference for distinguishable patterns is given by the threshold excitation energy
and therefore necessarily large, �E � 1. This situation changes dramatically in the critical
state, where a stationary inflection point appears in the energy function Hbog(�a, �a∗). Be-
cause of the corresponding flat direction, the energy difference between distinct patterns
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collapses to zero, as is evident from (50). Hence the system can store different patterns
within an arbitrarily narrow energy gap.

In order to attain such a critical state of enhanced memory storage, one has to proceed
as follows when one is given the system (47) with some small coupling α � 1. First, one
needs to go to a total excitation level of N = λlm/α ≈ 1.8/α. Then one has to distribute those
excitations so that the expectation values in the three neurons approximately match the
stationary inflection point of the Bogoliubov Hamiltonian. This means one has to choose
〈â†

2â2〉 = xinfN ≈ 0.32N as well as 〈â†
1â1〉 = (1 – xinf) cos2(θinf)N ≈ 0.67N and 〈â†

3â3〉 = (1 –
xinf) sin2(θinf)N ≈ 0.01N . Around such a state, an increased number of patterns exists in a
small energy gap, provided N is big enough.

One can also repeat this procedure for different, i.e., non-critical, values of λ. Then one
finds that the energy gap is not small, �E � 1. Determining in this way the minimal energy
for pattern storage as a function of λ, one reproduces Fig. 5(b). Of course, it is important
to note that this plot is only valid in the limit of infinite N . For finite N , corrections appear
that scale as a power of 1/N . In particular, the critical value of λ, at which the enhanced
memory storage takes place, deviates slightly from λlm. In Fig. 8, this critical value of λ is
shown for some exemplary finite excitation levels N .

A small energy gap has a direct implication on the longevity of states, i.e., on the
timescale tcoh on which excitation levels of the neurons start to change. As is exemplified
in Fig. 6, this timescale is short, tcoh ≈ 1, for states away from the critical point (Fig. 6(a)
and 6(c)). In contrast, it is long, tcoh 
 1, for critical states (Fig. 6(b)). If one investigates
this timescale of evolution for different values of λ, this leads to Fig. 7. We observe that
states that evolve significantly more slowly appear at the critical point.

The mechanism for memory storage, which is based on assisted gaplessness, can be
summarized as follows. In the presence of excitatory synaptic connections, we increase the
total excitation level to a point at which a flat direction appears in the energy landscape.
On this plateau, there exists a large number of distinct states within a small energy gap.
Those states are, however, very close, so typically one would expect that they mix very
quickly and information gets washed out. But the key point is that we can distinguish them
because they evolve very slowly. Thus, if we read out a state on a timescale smaller than
its timescale of evolution, we will encounter it precisely as we have put it in the system.

To conclude this section, we have seen that a simple system of cold bosons truncated
only to three modes effectively describes a neural network of remarkable complexity. Most
importantly, once excited to a critical level, it forms states of sharply enhanced memory
capacity in which a large number of patterns can be stored within an arbitrarily very nar-
row energy gap. This behavior also persists when taking the classical limit of the neural
network. The above connection opens up the possibility of simulating enhanced memory
capacity neural networks in laboratory experiments with cold bosons.

6 Summary
In this paper, we have studied a phenomenon which we call assisted gaplessness. Reduced
to its bare essentials, it can be described as a situation in which some highly-excited “mas-
ter” degrees of freedom assist others—connected with the master modes via negative en-
ergy couplings—in becoming effectively gapless [1, 2]. In this way, gapless degrees of free-
dom can emerge within a compact physical system.

The importance of these nearly-gapless modes lies in the fact that they increase the num-
ber of energetically-degenerate microstates. Consequently, a large amount of information
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can be stored within a small energy gap. Moreover, their time evolution becomes slower
and therefore the decoherence time increases. This effect becomes more pronounced for
a large excitation N of the master modes, i.e., the gap collapses to zero in this limit and
the decoherence time diverges. In this way, such critical states become ideal storers of
quantum information.

Thus, the above phenomenon has a number of important implications. First, it can serve
as an effective toy model for black hole microstate entropy and holography, as it was origi-
nally hypothesized in [3, 13]. This motivation is particularly strengthened by the model of
[4], in which the assisted gaplessness explicitly gives rise to holographic modes with their
number scaling as the area of a lower dimensional sphere and a corresponding microstate
entropy of similar scaling, in striking similarity to the Bekenstein entropy of a black hole.

Moreover, the assisted gaplessness mechanism leads to states of exponentially enhanced
pattern storage capacity in neural networks [1, 2]. On the one hand, this fact could hint to-
wards a possible unity of enhanced memory states in neural networks and in gravitational
and quantum field theoretic systems. On the other hand, it may allow to understand deep
quantum field theoretic (and quantum gravity) concepts, such as black hole entropy and
holography, in the language of neural networks. In particular, one could use neural net-
works as a toy laboratory for understanding gravity.r

In the above light, two important tasks are to come up with universal methods for iden-
tifying states of enhanced memory capacity in generic systems of interacting degrees of
freedom and to prepare a basis for a possible experimental realizations of such systems.
In this paper, we would like to contribute to achieving theses objectives. In particular, we
have developed a procedure, which we call c-number method, for finding critical states
with gapless modes and enhanced storage capabilities in a generic system of attractive
bosons.

We have applied our c-number method to a prototype model, which we obtained from
truncating a system of attractive cold bosons contained in a one-dimensional box with
Dirichlet boundary conditions. Our method enabled us to predict that at a certain critical
value of the collective coupling, states emerge in which a gapless collective mode leads to a
sharply enhanced memory capacity. We confirmed their existence by numerical analysis.
In particular, we were able to observe a distinct increase of the decoherence time already
for relatively small values of N .

That assisted gaplessness already occurs in such a simple system raises the hope that its
experimental realization is feasible. This could e.g., be achieved in experiments with cold
atoms. If one can bring them to the critical point, then information could be encoded and
retrieved in them by means of soft external radiation. On the one hand, such experiments
would be interesting from a general perspective of quantum information. On the other
hand, they could provide a framework to simulate other systems of enhanced memory
capacity, such as black holes and neural networks.

Appendix A: Formulas
• First and second derivative of Bogoliubov Hamiltonian (36) for �2 = �3 = 0:

1
N

∂Hbog

∂x
=

1
16
[
–16λ sin(2θ ) – 2λ sin(4θ ) + 16 cos(2θ ) – 9λ + 28λx sin(2θ )

+ 2λx sin(4θ ) + 3λ(x – 1) cos(4θ ) + 21λx – 4
]
, (52a)
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1
N

∂Hbog

∂θ
=

1
4

(x – 1)
[
–8 sin(2θ ) + λ(x – 1) cos(4θ )

– λ cos(2θ )
(
3(x – 1) sin(2θ ) – 7x + 1

)]
, (52b)

1
N

∂2Hbog

∂x2 =
1

16
λ
(
28 sin(2θ ) + 2 sin(4θ ) + 3 cos(4θ ) + 21

)
, (53a)

1
N

∂2Hbog

∂x∂θ
=

1
4
(
–8 sin(2θ ) + 2λ(7x – 4) cos(2θ )

+ λ(x – 1)
(
2 cos(4θ ) – 3 sin(4θ )

))
, (53b)

1
N

∂2Hbog

∂θ2 =
1
2

(1 – x)
(
8 cos(2θ ) + λ

(
(7x – 1) sin(2θ ) + 2(x – 1) sin(4θ )

+ 3(x – 1) cos(4θ )
))

. (53c)

• Second-order expansion of the full quantum Hamiltonian (34) around the point
defined by the replacements (35) of macroscopic occupation for �2 = �3 = 0:

Hquad = H (1)
quad +

1
2

H (2)
quad, (54)

where we neglected the constant zeroth order. The first and second order are given by

H (1)
quad√
N

=
1

8
√

(1 – x) cos2(θ )

[

+ 6â2
√

x
(
3λ(1 – x)3/2 sin3(θ ) + λ

√
1 – x(4x – 3) sin(θ )

+
(
λ(2x – 1) + 1

)√
–(x – 1) cos2(θ ) + λ tan2(θ )

(
(1 – x) cos2(θ )

)3/2)

+ â3
(
λ(x – 1)2 cos(4θ ) + λ(7x – 1)(x – 1) cos(2θ )

+
√

4 – 4x sin(θ )
√

–(x – 1) cos2(θ )
(
3λ(x – 1) cos(2θ ) + 8

))]

+ h.c. (55)

and

H (2)
quad =

1
128((1 – x) cos2(θ ))3/2 [

+ 16â2â2λ
(√

1 – x
(
(23 – 16x)x – 4

)
sin(θ )

+ 4(4x – 1)
(
(1 – x) cos2(θ )

)3/2

– (1 – x)3/2 sin3(θ )
(
2(x – 1) cos(2θ ) + 21x – 6

))

+ 16â†
2â2(2 sec2(θ )

(
λ(10x – 1) + 3

)(
(1 – x) cos2(θ )

)3/2

+ sin(θ )
(
–14λ(1 – x)5/2 sin4(θ ) – 7λ(1 – x)3/2(7x – 4) sin2(θ )

– 6λ tan3(θ ) sec(θ )
(
–(x – 1) cos2(θ )

)5/2 + λ
√

1 – x
(
(49 – 32x)x – 14

)

– 2 tan(θ ) sec(θ )
(
λ(13x – 4) + 3

)(
(1 – x) cos2(θ )

)3/2))

+ 16â2â3λ
√

x
(
(1 – x) cos2(θ )

)(
8(x – 1) cos(2θ ) + 3x sec2(θ )

+ 10
√

1 – x sin(θ )
√

–(x – 1) cos2(θ ) – x + 1
)
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+ 16â2â†
3λ

√
x
(
(1 – x) cos2(θ )

)(
10(x – 1) cos(2θ ) + 3x sec2(θ )

+ 2
√

1 – x sin(θ )
√

–(x – 1) cos2(θ ) + x – 1
)

+ â3â3λ(x – 1)
(
32 cos(2θ )

√
(1 – x) cos2(θ ) + 32x

√
(1 – x) cos2(θ )

+ 32 cos(4θ ) sec2(θ )
(
(1 – x) cos2(θ )

)3/2

– 6
√

1 – x sin(θ )
(
4(3x – 2) cos(2θ ) + 3(x – 1) cos(4θ ) + 17x – 5

))

+ 16â3â†
3
(
(1 – x) cos2(θ )

)
sec2(θ )(2

(
λ(3x – 1) + 8

)√
(1 – x) cos2(θ )

+ sin(θ )
(
sin(θ )

(
λ sin(θ )

(
5(x – 1) sin(θ )

(
3
√

1 – x sin(θ )

+ 4
√

(1 – x) cos2(θ )
)

+ 9
√

1 – x(3 – 4x)
)

– 2
(
λ(13x – 11) + 8

)√
(1 – x) cos2(θ )

)
+ 12λ

√
1 – x(2x – 1)

)
)

+ h.c. (56)

Appendix B: Example: review of periodic Bose gas
B.1 Application of C-number method
In order to provide a detailed example, we apply the c-number method to the one-
dimensional Bose gas with periodic boundary conditions. For the repulsive case, in which
we are not interested, it goes under the name of Lieb-Liniger model [25, 26]. The attrac-
tive case was considered previously in [18]. Its quantum information features have already
been studied in a series of papers [3, 5–9, 27]. In particular, the replacement of the Hamil-
tonian by a c-number function has already been used to find its critical point in [7]. Except
for the boundary conditions, this system is the same as our prototype model studied in
Sect. 3. Its Hamiltonian is therefore identical to (31), but the free eigenfunctions change
according to the periodic boundary conditions:

ψ̂ =
√

1
L

∞∑

k=–∞
âk exp

(
2π ikz

L

)
. (57)

Consequently, we obtain the Hamiltonian in momentum space:

Ĥ =
4π2

�
2

2mL2

[ ∞∑

k=–∞
k2â†

kâk –
α

4

∞∑

k,l,m=–∞
â†

kâ†
l âm+kâl–m

]

. (58)

For convenience, we set L = 2π and � = 2m = 1 from now on.
For small coupling, we expect a regime where momentum modes with |k| > 1 are sup-

pressed due to their higher kinetic energy. Therefore, we first truncate (58) to the modes
with |k| ≤ 1. This assumption will be justified later. Following the method introduced in
Sect. 2, we then replace the creation and annihilation operators by c-numbers. As ex-
plained, we have to take into account symmetries in this procedure. The first one is conser-
vation of particle number, which is incorporated in the replacement rule of the 0-mode. An
additional symmetry of the system consists in momentum conservation. In the superselec-
tion sector of zero momentum, it implies that the expectation values of the particle num-
bers in the 1- and –1-mode have to be the same: 〈a†

1a1〉 = 〈a†
–1a–1〉. Moreover, the Hamil-

tonian is invariant under an additional phase symmetry, â1 → eiφ â1 and â–1 → e–iφ â–1. So
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in total, we have to eliminate an absolute value and a phase. In addition to the replacement
rule (10b) due to particle number conservation, we consequently get: a–1 → a1. Thus, the
Bogoliubov replacement (10a) and (10b) reads

�̂a =

(
â–1

â1

)

→
(

a1

a1

)

, �̂a† =

(
â†

–1

â†
1

)

→
(

a∗
1

a∗
1

)

, (59)

and

â0 →
√

N – 2|a1|2, â†
0 →

√
N – 2|a1|2. (60)

This gives the following Bogoliubov Hamiltonian:

Hbog = 2|a1|2 –
α

4
(
N2 + 2N

(
a1 + a∗

1
)2 – 2|a1|2

(
3|a1|2 + 2a2

1 + 2a∗2
1
))

. (61)

For this so obtained complex-valued function, we want to find a flat direction. First we
look for an extremal point by finding a solution to (14):

∂Hbog

∂a1
= 2a∗

1 – α
(
N
(
a1 + a∗

1
)

– 3a2
1a∗

1 – 3a1a∗2
1 – a∗3

1
)

= 0. (62)

An obvious solution is a1 = 0.s The second step is to evaluate the matrix M of second
derivatives at this point. We need to determine when it fulfills (15), i.e., when its determi-
nant vanishes:

detM = –4 + 4αN = 0. (63)

This is the case for a collective coupling λ = αN = 1. Therefore, we expect a critical mode
to appear for λlm = 1 in a state where all particles are in the 0-mode.

B.2 Accordance with previous findings
In the following, we want to confirm the existence of this critical point by reviewing the
findings previously obtained in [3, 5–9, 18, 27]. First, still working in the limit of large
N , we directly determine the spectrum of quantum fluctuations. Thus, we expand the
Hamiltonian (58) to second order in creation and annihilation operators around the point
defined by the Bogoliubov approximation. Focusing on states in which only the 0-mode is
occupied, â0 → √

N , we therefore obtain:

Ĥ =
∑

k �=0

(
k2 –

λ

2

)
â†

kâk –
1
4
λ
∑

k �=0

(
â†

kâ†
–k + âkâ–k

)
, (64)

with the collective coupling λ = αN . Now we perform the Bogoliubov transformation

âk = ukb̂k + v∗
kb̂†

–k , (65)

where we have

u2
k =

1
2

(
1 +

k2 – λ
2

εk

)
, v2

k =
1
2

(k2 – λ
2

εk
– 1
)

. (66)
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Figure 11 Numerical analysis of the periodic system for N = 1000. The Hamiltonian (58) is truncated to the 0-
and ±1-modes. At λlm = 1, a gapless mode appears in the spectrum and the ground state undergoes a
second-order phase transition

We obtain the diagonalized Hamiltonian

Ĥ =
∑

k �=0

εkb̂†
kb̂k , εk =

√
k2
(
k2 – λ

)
. (67)

This analysis confirms that a gapless mode exists at λlm = 1.
Finally, we also study the system at finite N . We do so by numerically diagonalizing the

full Hamiltonian. Then we obtain the spectrum of fluctuations as the energy gap between
the lowest-lying eigenstates. Fig. 11(a) shows that also this analysis leads to a critical point
at λlm = 1. Of course, corrections appear for finite N which scale as a power of 1/N : The gap
scales as 1/N1/3 and moreover, the critical value of λ is no longer at 1, where the deviation
scales as 1/N2/3 [18].

For the system with periodic boundary conditions, the critical point λlm = 1 has a sec-
ond meaning. As is evident from Fig. 11(b), it corresponds to a second-order phase tran-
sition of the ground state: For λ < λlm, only the 0-mode is macroscopically occupied in
the ground states whereas also the other modes get populated for λ > λlm. Since the oc-
cupation numbers of the ground state change continuously, higher modes get populated
slowly for λ � λlm. In this regime, it is therefore possible to truncate the system to the 0-
and ±1-modes, as was shown explicitly in [5]. This allows for a straightforward numerical
analysis.

One can also analyze the generation of entanglement in this system. For an initial state
in which only the 0-mode is occupied, it was shown the time required to generate one-
particle entanglement is long (∼N ) for λ < λlm and short (∼ ln N ) for λ > λlm [6, 8]. By cou-
pling the quantum gas to an external system, one can moreover use it to perform quantum
computing [8, 9].
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Endnotes
a On the order of magnitude, the Bekenstein bound coincides with the previously discovered limit on information

capacity by Bremermann [28].
b A simple example of this sort, which has been explicitly solved, is given by a gas of bosons with four-point

interaction in D = 1 (see [18]). It is the model that we use in Appendix B to demonstrate our c-number method.
c We could try to understand the disturbance effects due to the environment as a fluctuation δN of the particle

number. Since we expect it to grow slowly with the total number N of bosons, it is clear that the relative disturbance
δN/N shrinks when we increase N. This suggests that choosing a large number of bosons, which is required in any
case for decreasing the gap of the light modes, could also help to suppress disturbance effects from the
environment.

d The simplest example is the Hamiltonian of a non-interacting mode, Ĥ = â†â, which possesses a global
U(1)-symmetry, â→ eiϕ â, due to particle number conservation. So the states |Ψ (â)〉 and |Ψ (eiϕ â)〉 have the same
expectation values of the energy, but this is not connected to attractive interaction.

e Note that example (2) is a special case in which all K modes become gapless. In general, conditions (14) and (15)
only imply at least one gapless mode.

f Following [23], we can infer the determinant of the matrix T from the relation T JT † =J , where J = diag(1, –1)
and 1 is a unit matrix of dimension K . The equality T JT † =J in turn is a consequence of the Bogoliubov
conditions (23).

g Relation (30) implies that coherent states can be counted as different as soon as |nk – n′
k| 


√
nk , where nk = |ak|2

and n′
k = |a′

k|2 . So there are on the order of
√
nk different possible expectation values of the particle number. In

addition, however, there is the freedom of choosing a phase ϕk . Taking into account the uncertainty, �nk�ϕk � 1,
this gives

√
nk different phases for each modulus nk . In sum, this gives nk different states, the same result as in the

basis of number eigenstates.
h The equivalence of the vanishing of the second derivatives in �a and x is non-trivial and only holds if there are no

unoccupied modes, ak �= 0. Schematically, the reason is that
∂Hbog

∂a = a
∂Hbog

∂x and therefore
∂2Hbog

∂2a
= a2

∂2Hbog
∂2x

+
∂Hbog

∂x .
i This follow from the last line of the Hamiltonian (36). For 3n2 > n1 , �3 = 0 is preferred and otherwise �3 = π .
j All numerical computations in this work are performed with the help of Mathematica [29].
k For the periodic system, it was shown explicitly that the time evolution is significantly slower at the critical point [7].
l We remark that it does not suffice to look for eigenstates in the spectrum whose energies only differ by a small
value �E. The reason is that even when eigenstates have a similar energy, the transition between them can
nevertheless be a suppressed higher-order process, i.e., it can be very hard to transit from one to the other. In this
case, no light mode exists and a soft external stimulus cannot induce the transition.

m We compared the results obtained in this truncation with the ones derived using the full basis. For N ≤ 50, we
observed that their qualitative behavior, which we shall discuss in a moment, is identical whereas this no longer
seems to be the case for higher N. However, the only important point for us is to come up with some recipe to find
the slowly evolving states.

n We checked that different choices of f1 and nmax lead to the same result. Therefore, cutting off low and high
frequencies, which is required in a numerical treatment, has no influence on our findings.

o In contrast, note that we do not expect tcoh to diverge for infinite N because |Φinf〉 generically contains an
admixture of non-gapless modes.

p In the expansion of the Hamiltonian around the critical point, the coupling in (42) is expected to be the leading
order term coming from the interaction term â†â(ĉ + ĉ†) of the original â-modes, which conserves their number
and momentum.

q We remark that this system only represents a part of a neural network that can be used for actual memory storage.
In a realistic situation, one needs a first device to input information, a second one to store it and a third one to
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retrieve it. However, our system solely realizes the second part. So we only study situations in which no input or
output operations take place.

r Another important aspect that will not be discussed here is the understanding of quantum transitions to classical
states of enhanced memory capacity (such as black hole creation in the collision of elementary particles) in the
language of neural networks [30].

s There are two other solutions at a1 ≈ ±0.5345
√

αN–1
α

. However, the determinant of the second derivative matrixM
never vanishes at these points, i.e., there is no flat direction.
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