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Abstract
In the last few years, there is a huge upsurge in the number of closed deals regarding
quantum technologies for materials, computing, communication and
instrumentation. Such a trend has inevitably affected the research funding market;
thus, large state initiatives are taken that are directly expected to drive the
formulation of novel research concepts and the development of quantum device
prototypes from sensors and circuitry to quantummemory and repeaters.
A fundamental operation behind all these applications is the effective steering of
electrons, constituting matter waves, along specific directions and with certain
magnitudes, due to development of various reflective and refractive orders. The
objective of this study is to optimize the simplest structure that supports such
anomalous diffraction, namely a quantummetasurface comprising cylindrical rods
embedded in suitable crystalline matter. Several highly-performing designs from
these minimal setups are proven to work exceptionally as multiport components,
employable to a variety of quantum engineering implementations.
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1 Introduction
Quantum technologies are today developing at a rapid pace and providing novel concepts
that address in a revolutionary manner multiple core scientific problems. Quite high on
this list one may find quantum sensing that boosts dramatically the optical resolution of
extremely close point-like sources [1] and sets new limits in spectroscopy and metrology
via quantum interpolation [2]. Such evolutions have led to demonstration of quantum
memory that enhances the interval over which phases are accumulated, beyond the coher-
ence lifetime [3]. Moreover, quantum communication technologies based on solid-state
devices enabling stogage of quantum entanglement have been proposed, paving the way
for building multiplexed repeaters for long-distance quantum networks [4]. Importantly,
whole classes of computational tasks have been found to be executed exponentially faster
on a quantum processor than on a classical one, regardless of the employed algorithm,
indicating a first realization of quantum supremacy [5, 6]. Even quantum network archi-
tectures have become feasible via interconnections that convert quantum states from one
physical system to those of another in a reversible way [7].
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All the aforementioned scientific breakthroughs leading to modules most of which are
at an infant stage, have ignited large quantum research investments from industry titans
and prioritized quantum information science in careful strategic plans [8, 9]. In particular,
several workshops on the future of quantum engineering as an emerging branch [10] and
brainstorming in roundtables on how the research competitiveness will be maintained
in quantum computing [11], culminated in impressive initiatives [12]. Such huge bills
are expected to further stimulate research on quantum technologies in the near future
even though the funding interest is already high. Only the last few years, several Multi-
University Research Initiatives (MURIs) have been approved from Army Research Office
(ARO) on ab-initio characterization of quantum materials [13], from Air Force Office of
Scientific Research (AFOSR) on certifying untrusted quantum devices [14] and from US
Department of Defense (DoD) on quantum state control of molecular collision dynamics
[15], all concerning the suitable pairing of matter waves with quantum texture.

A backbone operation behind all these fancy applications is the steering of quantum par-
ticle beams along specific routes and with certain intensities to be processed accordingly
for computation, simulation or memory purposes. It is usually achieved by crafting so-
phisticated paths of specific material on a host base, along which the quantum signals are
guided [16] or exploiting spin-orbit interaction into ring structures to make them work as
splitters [17]. Similarly, quantum interference is used for spectral demultiplexing with help
from directional couplers and add-drop filters, all these integrated on a single monolithic
silicon chip [18]. The same on-chip philosophy is adopted by solid-state quantum sensors
with applications in magnetometry, thermometry and chemical sensing [19]. Moreover, a
superconducting quantum processor with multiple transmon qubits coupled via coplanar
waveguide resonators has been proposed [20] while photonics quantum circuits enabling
generation, manipulation, and analysis of multidimensional quantum systems have been
experimentally tested [21].

One may accomplish efficient quantum signal steering alternative to opening guidance
paths into a background matrix [22], by developing a structure that diffracts the incom-
ing matter waves at controllable axes and pre-determined probabilities. Such an idea is
borrowed from Photonics, where suitable phase discontinuities to reflective or refractive
waves are imprinted through metasurfaces of optical resonators [23] to develop anoma-
lous diffractive phenomena that, in turn, formulate multi-port networks with tailorable
their overall response [24]. Anomalous effects, namely diffraction along counter-intuitive
directions, has been investigated in Quantum Mechanics but only in the context of mea-
suring the response for guessing the inhomogeneities size/shape into a host matrix; it aims
at recovering non-destructively the composition of embedded nanostructures and makes
a hard three-dimensional inverse problem [25, 26]. However, deliberately creating simply-
shaped inclusions, like cylindrical posts, into a background medium is a relatively feasible
task via several fabrication methods. In particular, one can engrave chemically nanowires
[27] or epitaxially grow radially inhomogeneous elongated heterostructures [28], either
following a bottom-up building [29] or top-down dipping [30] approach.

In this work, we investigate the simplest version of this realistically constructable class
of quantum devices, namely a periodic metasurface comprising circular cylindrical cav-
ities of specific texture and large length, being embedded into a background host [31].
The structure is obliquely illuminated by a beam of electrons and explicit expressions
for the directions and the magnitudes of the developed diffraction waves are obtained.
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The analyzed effect is based on the interference of electron beams whose principles have
been formulated many decades ago [32]. However, our work differs from studies of simi-
lar objectives that use multiple gratings but do not solve analytically the boundary value
problems [33, 34] or employ isolated rods without collective operations [35]. Particular
emphasis is placed on the first anomalous order and various combinations of inclusion
materials and backgrounds are examined; for each of them, the incidence angle, the energy
of the incoming beam and the cylinders size are selected so that the anomalous reflection
or transmission is maximized. It is found that quantum well configurations give higher
scores than their quantum barrier counterparts [36] while the operation of the device as
a quantum multiport with several diffractive channels, is demonstrated. Therefore, this
study gives numerous alternative minimal designs for splitting and steering components
that may be utilized in various quantum setups from circuitry and memory elements to
signal processing and repeaters.

2 Mathematical formulation
2.1 Configuration and assumptions
Let us consider a plane matter wave created by an electron beam whose particles move
along a specific direction with equal probability of existence across the planes normal
to it. The beam is traveling into a host medium whose macroscopic potential energy is
denoted by V0 while the effective mass of an electron within equals m0; since the developed
matter wave is propagating, the kinetic energy of its particles is larger (by E) than the
local potential level V0. It should be declared that, in this model, the impurity of phonon
scattering is not taken into account and, accordingly, the electron wave is regarded as
coherent [37]; in other words, the particle beam can be represented by a specific wave
vector. Therefore, the incoming beam is characterized by a single energy E which is feasible
if passed through an energy-selective setup like tilted nanocavities [38] or planar layers
[39]. The impinging quantum wave meets obliquely (under angle θ , as in Fig. 1) a grating
with period 2b comprising cylindrical inclusions of radius a < b and filled with a different
quantum material of energy V = V0 – �V and effective mass m.

From fundamentals of Quantum Mechanics [40, pp. 11–15], we know that, the key quan-
tity determining the interaction of any e-beam with its environment is the wave function
�(r) whose squared magnitude is proportional to the probability of finding the electron
at a point with position vector r. The time-independent Schrödinger equation [41, p. 31]
respected by the wave function of any e-beam is written as:

∇ ·
[

1
m(r)

∇
]
�(r) +

E – V (r)
�2/2

�(r) = 0,

where E is the total energy of the beam, V (r) the local potential energy and m(r) the local
effective mass; obviously � stands for the reduced Planck constant.

Note that in Fig. 1, we assign to each of the cylindrical inclusions an integer number
n and we define infinite coordinate systems (rn,ϕn) ≡ (xn, yn) for n ∈ Z, each one cen-
tralized at one post. The global coordinate system (r,ϕ) ≡ (x, y) is assumed the one with
n = 0. The wave function describing the incoming matter wave, if the parallel wires were
absent, takes the form �back = e–ik0x cos θ–ik0y sin θ , where k0 =

√
2m0E/� is the wavenumber

of the impinging beam into background medium. On the contrary, by adopting partial
wave formalism [42, p. 596], the wave function into the central (n = 0) post is written
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Figure 1 Setup sketch: an incident matter wave traveling into a background texture meets obliquely a
periodic grating of cylindrical inclusions filled by another material. Various refractive channels are indicatively
depicted

as: �
(0)
int =

∑+∞
p=–∞ cpJp(kr)eipϕ , where cp are complex determinable constants (p ∈ Z), Jp

the Bessel function of pth order and k =
√

2m(E + �V )/� corresponds to the wave vector
norm into the cavity material. As far as the perturbation that �back feels due to the central
inclusion is concerned, it is given by: �

(0)
scat =

∑+∞
p=–∞ spHp(k0r)eipϕ where sp are complex

determinable coefficients (p ∈ Z) while Hp is the Hankel function of second type and pth
order.

Interestingly, due to the infinite front of the incident electron beam �back and the in-
finite extent of the grating along y axis, the wave function into any other (n �= 0) post
and its contribution to the overall scattering effect are written via no additional coeffi-
cients than the ones of the central cylinder {cp, sp}. Indeed, the response of the nth cav-
ity will be identical to that of the 0th one but expressed in its local coordinate system
(rn,ϕn) and multiplied by the term σn = e–ik02bn sin θ corresponding to the phase of the
incident wave at the center of nth inclusion; namely: �

(n)
int = σn

∑+∞
p=–∞ cpJp(krn)eipϕn and

�
(n)
scat = σn

∑+∞
p=–∞ spHp(k0rn)eipϕn .

2.2 Near field and boundary conditions
If one employs the addition theorem for cylindrical coordinates [43, pp. 372–374], all scat-
tering components can be expressed in terms of the central polar coordinate system (r,ϕ).
In particular:

�scat(r,ϕ) =
+∞∑

p=–∞
eipϕ

{
spHp(k0r) + Jp(k0r)

+∞∑
q=–∞

sqKp–q

}
, (1)
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where the first term corresponds to the central inclusion (n = 0) and the second one to all
the others. Indeed, the symbol Kw is used for the following slowly-convergent series:

Kw =
+∞∑

0 �=n=–∞
σnHw

(
2k0b|n|)(–1)(1– sgn(n)

2 )w. (2)

By imposing the required boundary conditions only around the central cylinder r = a for
continuity of the complex-valued wave function �

(0)
int = �back + �scat and proportionality

of its normal derivative r̂ · ∇�
(0)
int /m = r̂ · ∇[�back + �scat]/m0, the following linear system

for the unknowns {cp, sp} is formulated:

cp
Jp(ka)
Jp(k0a)

– sp
Hp(k0a)
Jp(k0a)

–
+∞∑

q=–∞
sqKp–q

= i–pe–ipθ = cp
m0

m
k
k0

J ′
p(ka)

J ′
p(k0a)

– sp
H ′

p(k0a)
J ′
p(k0a)

–
+∞∑

q=–∞
sqKp–q, (3)

for p ∈ Z while the prime denotes the derivative with respect to the entire argument. The
only numerical issue that may emerge in solving (3), is the evaluation of the infinite sums
Kp–q which possess oscillatory and slowly decaying general terms (as 1/

√|n|) with respect
to n [44, p. 364]. To overcome such a computational snag, we exploit the analytical formula
[45, p. 6]:

∑+∞
n=1 e–2ik0b(|n|+n sin θ )/

√|n| = Li1/2(e–2ik0b(1+sin θ )), where Li1/2 is the polylogarithm
function of order 1/2. To put it more clearly, we subtract the asymptotic general terms of
Hankel-related functions from the corresponding series (2) and we simultaneously add the
aforementioned equivalent analytical result. The remainder sum converges much faster
since the higher order terms of the difference vanish rapidly [46].

2.3 Far field and diffractive channels
Once the linear system (3) gets properly truncated with respect to p, the values of the
angular spectral coefficients inside and outside the cylindrical inclusions {cp, sp} are rigor-
ously determined. Given the fact that the size 2a of the posts is small compared to the
spatial wavelength 2π/k0 of the impinging wave, it is reasonable to ignore the contri-
bution from azimuthal terms e–ipθ of higher angular momentum p. Importantly, we are
interested for the far field (r → +∞) and the infinite dimension of the structure, com-
bined with its symmetry, renders the effect of the scattering orders with |p| > 1 on the
final outcome, somehow less significant. More specifically, we keep the omni-directional
(p = 0) and the bipolar (p = ±1) variations in the scattering wave function. Let us con-
sider the general term Wp(k0a) = |Jp(k0a)/Hp(k0a)| corresponding to the solution of a
single impenetrable cylinder of radius a embedded into a background where the im-
pinging matter wave has wavenumber k0. The bipolar approximation is valid as long as
W2(k0a) 
 min{W0(k0a), W±1(k0a)}, namely when k0a < π/2.

If one defines s1C = s+1 – s–1 and s1S = i(s+1 + s–1), the quantity in (1) is written in terms
of the global Cartesian coordinates (x, y) for the far field (x → ±∞) as follows:

�scat(x, y) = s0G(x, y) – s1C
∂G/∂x

k0
– s1S

∂G/∂y
k0

, (4)

where G(x, y) =
∑+∞

n=–∞ σnH0(k0
√

x2 + (y – 2bn)2).
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If one applies Poisson summation formula [47, p. 467] for the sum defining the func-
tion G(x, y) and uses the Fourier pair for Hankel function indicated by [47, p. 823]:
H0(k0

√
x2 + y2) = i

π

∫ +∞
–∞ exp(–iβy – |x|

√
β2 – k2

0)/
√

β2 – k2
0 dβ , the wave function of (4),

is written as:

�scat(x, y) = e–ik0y sin θ

+∞∑
u=–∞

e– |x|
b κu–iuπ

y
b

κu

{
is0 + is1C

κu

k0b
sgn(x) – s1S

(
uπ

k0b
+ sin θ

)}
, (5)

where κu =
√

(uπ + k0b sin θ )2 – (k0b)2. For x < 0, we have reflective matter waves while for
x > 0, we obtain transmissive ones with complex amplitudes:

{
Ru

Tu

}
=

{
0

δu0

}
+ s0

i
κu

∓ s1C
i

k0b
– s1S

uπ
k0b + sin θ

κu
, (6)

respectively. The first term in (6) concerns the impinging wave function in the background
and δu0 is the Kronecker’s delta which equals one only for u = 0, otherwise zero.

It should be stressed that the scattering component of the wave function comprises infi-
nite diffraction terms each characterized by an integer order u ∈ Z. In Fig. 1, we schemat-
ically show three of them, every single of which corresponds to an independent refractive
channel. Indeed, due to the infinite extent of the developed waves, they are linearly in-
dependent each other, namely

∫ +∞
–∞

∫ +∞
–∞ e–i(kx–k′

x)e–i(ky–k′
y) dx dy = (2π )2δ(kx – k′

x)δ(ky – k′
y),

where δ is the Dirac’s delta function and thus they can work as channels of a quantum
multiport networks where information is hidden in the magnitude or phase of the wave
function. The condition for the diffraction order u to give a propagating mode reads:

–
k0b
π

(1 + sin θ ) < u <
k0b
π

(1 – sin θ ), (7)

for which κu is purely imaginary. Note that the quantity at the left-hand side of (7) is
always negative and thus affects only the orders with u < 0, while the opposite hap-
pens for the right-hand side limit (concerns diffraction of u > 0). The angle at which
the waves of diffraction order u are traveling (either reflecting or refractive) is equal to:
θu = arcsin( uπ

k0b + sin θ ). In Fig. 2(a), we represent on the plane with horizontal axis the
incoming beam angle θ and with vertical axis the period of the grating divided by the
traveling wavelength k0b, the limits imposed by the inequality (7) for various positive and
negative orders. These lines indicate the k0b (at fixed angle θ ) beyond which the diffracting
channel of the related order carries a propagating wave. It is clear that responses of oppo-
site orders u are generated together (at normal incidence θ = 0◦) and as the incoming beam
gets more and more oblique, it becomes easier for an anomalous wave (smaller k0b limit
for u < 0) to exist compared to an ordinary one (larger k0b limit for u > 0). The non-blank
parametric region contains (θ , k0b) combinations supporting only the first anomalous or-
der u = –1, except of course the inevitable Snell’s response (u = 0). Across this “curved
parallelogram”, we represent the quantity (θ + θ–1) describing what is the direction spread
of the anomalous reflective wave compared to the incident ray. We notice that the differ-
ence in angle can belong to an extensive value range from an anomalous direction parallel
to negative y axis at normal incidence (θ = 0◦) to a vanishing θu at grazing ray incidence
(θ = 90◦). Remarkably, the two angles are opposite (θ–1 = –θ ) along the major diagonal
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Figure 2 (a) The quantity (θ + θ–1) represented with respect to incidence angle θ and the grating period k0b.
The red and black dashed lines denote the minimum k0b for each θ beyond which the corresponding
diffraction order gets activated. Contour plot concerns the scenario that only the orders u = 0, –1 are
propagated. (b) The upper and lower limits for the energy E of the impinging particle for which only the first
anomalous order u = –1 (plus the Snell’s one, u = 0) is guided according to (7), as function of incidence angle
θ for various host media (b = 2.5 nm)

of the colored domain defined by the limits of orders u = ±1 and u = –2; such a feature
means that the electron beam is reflected back to the source that created it (x < 0) and
negatively refracted [48] from the other side (x > 0) of the grating.

When it comes to the probabilities for the particle to travel along the reflective or trans-
missive direction defined via angle θu, they are given respectively by [49, p. 38]:

ρu = |Ru|2 cos θu

cos θ
, τu = |Tu|2 cos θu

cos θ
. (8)

Indeed, the normalization condition stands only along the direction being normal (x) to
the cluster of cylindrical cavities.

3 Numerical results
3.1 Optimization strategy
By inspection of (7), it is clear that the wave with u = 0 is always propagating since it is
dictated by the Snell’s law [42, pp. 187–191] formed for electromagnetic fields. However,
the response is quite trivial since it partially expresses the unhampered propagation of the
incoming e-beam in the absence of the grating and partially the reflection achieved with
a perfect mirror. On the contrary, when u �= 0, namely when the distance k0b or the an-
gle θ increases, we obtain modes steered at unconventional, counter-intuitive directions
that can be directly exploitable to quantum circuits and quantum signal processors. If one
keeps θ > 0 without losing the generality since the layout is symmetric with respect to x
axis, it is understood that the first diffraction wave that can be activated beyond ordinary
Snell’s response (as k0b or θ increases) is the one with order u = –1; usually this correspond
to negative diffraction direction (θ–1 < 0) and thus is called anomalous. Three character-
istic cases for the transmissive channels are indicated in Fig. 1, where the Snell (θ0 = θ ), an
ordinary (θu > 0) and an anomalous (θu < 0) refraction are sketched.

To keep the objective of this study as simple as possible, we will confine ourselves to
designs supporting only the ordinary Snell-like response (u = 0) and the anomalous order
u = –1. In particular, we aim at finding gratings that suppress the conventional reflection
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and transmission (ρ0, τ0) and inevitably boost the matter wave steering along the anoma-
lous direction (ρ–1, τ–1). Note that the condition for zero Snell’s response reads:

ρ0 = τ0 = 0 ⇒ s0 = 2s+1 sin θ = 2s–1 sin θ . (9)

Our optimization scheme takes a long directory of M quantum media (with macroscopic
potentials and effective masses) containing from isolated elements (germanium, silicon,
carbon etc.) and semiconductors (arsenides, nitrides, tellurides etc.) to arbitrary alloys,
mixtures and heterojunctions [50, pp. 229–245]. Sophisticated computational simulation
models evaluating the effective parameters [51, pp. 75–80] that describe the transport of
quantum particles into them have been developed [52], being additionally validated by
high-fidelity measurements. It should be stressed that the effective masses of the mate-
rials are positive which means that the waves into them are either of purely propagating
or purely evanescent nature. Note that masses can be different when the particle moves
along different directions, namely the material is considered anisotropic, a property com-
mony assumed for similar setups in Electrodynamics [53]. Every single of the M2 > 1000
combinations is tried by assigning to each material from the list, both the role of back-
ground host and the filling to the cylindrical cavities. Every single of the M2 designs is
examined by carefully sweeping the angle of the incoming matter wave over an extensive
range excluding very oblique beams: 5◦ < θ < 85◦, the ratio between the inclusion radius
over the half-period of the grating: 0.1 < a/b < 0.4 and the kinetic energy E of the incident
particles by respecting (7) for single anomalous propagating diffraction order u = –1. If
one keeps the half-distance between the inclusions b fixed, the permissible value range
for E at a specific θ is given by the pair of lines of the same color in Fig. 2(b), each of which
corresponds to a different background medium with a different effective mass m0. Such
an interval of energies giving only anomalous diffraction of u = –1 (plus the Snell’s u = 0),
shrinks with the effective mass m0 (in the case of diamond, m0 is the highest) even though
it is not apparent due to the logarithmic scale of energy axis. Note that, exactly as happens
in Fig. 2(a), the vertical extent of the acceptable parametric domain initially increases with
θ up to the breaking point that the generating loci of the two diffraction orders (u = –2
and u = +1) cross each other, namely at θ = arcsin(1/3) ∼= 19.5◦. Beyond this point, the
considered E range becomes smaller with θ .

By using a tight brute-force optimization scheme, our aim is to determine the cylinder
size a/b (for constant b) that pairs better with the impinging beam of {θ , E} leading to
maximal anomalous reflection ρ–1 or transmission τ–1 from (8), by approximately obeying
the condition (9).

3.2 Optimal designs response
From all the parameters defining the configuration of Fig. 1, once the pair of materials has
been decided, the one changing less easily is the half-period of the grating b, since even
the size a of the cavities is controllable during fabrication process, let alone the incidence
angle θ and the impinging particles energy E. Indeed, regardless of the construction phi-
losophy (bottom-up [29] or top-down [30]) or the assembly nature (physical [29] or chem-
ical [27]), the grid at which the inclusions are planted is predetermined. Therefore, when
we implementing our optimization strategy, we assume a fixed b throughout (2b = 5 nm
in Figs. 3(a) and 3(b), 2b = 10 nm in Figs. 3(c) and 3(d)), without varying it simultane-
ously. More specifically, the results of the proposed inverse process are shown in Fig. 3,
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Figure 3 Percentage of anomalous diffraction of optimal designs for various cavities materials (horizontal
axis) and various background hosts (vertical axis). The media have been sorted with increasing potential
energy: larger potential, larger serial number (s/n). Designs supporting only two diffracted orders (u = 0, –1)
maximizing (a), (c) anomalous reflection probability ρ–1, (b), (d) anomalous transmission probability τ–1, with:
(a), (b) b = 2.5 nm and (c), (d) b = 5 nm

where to each quantum material from our list (with M = 32 entries) has been assigned a
serial number (s/n) in proportion to how big is its macroscopic potential energy (V or V0).
Along the horizontal axis, we show the serial number of the material filling the cylindrical
nanocavities, while the vertical axis determines the texture of the background host. In this
way, a square canvas of M2 = 322 = 1024 pixel is formed the lower right triangular part of
which corresponds to quantum barrier configurations while the upper left one describes
quantum well setups.

In Fig. 3(a), the represented quantity is the maximal anomalous reflection probability
ρ–1 when the rest of parameters {a/b, θ , E} are swept as indicated above; poor results
(ρ–1 < 50%) are omitted. We clearly observe that most of the successful designs appear
at the upper left region of our materials plane, namely concern quantum well configura-
tions giving quite high anomalous steering of the reflective wave (ρ–1 > 70%). However, the
best score is achieved for quantum barriers configurations, namely when the background
is the material of the lowest potential V (InSb); for certain inclusion media surpasses the
limit of 90%. In Fig. 3(b), we show the results of the optimization when maximizing the
transmissive probability τ–1; one directly observes much higher performances compared
to the case of ρ–1 in Fig. 3(a). Again the quantum well designs are much more efficient
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than the corresponding quantum barrier ones and in most examples the maximal per-
formance reach the perfect outcome of 100%. Overall there are more combinations of
materials that give significant anomalous transmission (τ–1 > 50%) compared to them ex-
celling at anomalous reflection (ρ–1 > 50%); however, the configurations hosted in InSb
exhibit much less granted response. In Figs. 3(c) and 3(c) we consider a larger period of
the cylinders grating (2b = 10 nm) and repeat the maximization process described above.
As far as the reflective probability is concerned, the average maximal score is lower than
those in Fig. 3(a); nonetheless, there are more alternative texture pairs that deliver above
the 50% threshold, most of which with low V0. Such a trend for more degrees of freedom
when b is larger, has been verified by Fig. 3(d), where the maximal τ–1 is shown; however,
the performance remains as high as in Fig. 3(b) this time. Importantly, multiple mate-
rial combinations corresponding to quantum barrier setups emerge and give acceptable
anomalous transmission, while the best results are recorded for those hosts of relatively
diminished potential energy.

In Fig. 4, we show the response along the anomalous direction of certain designs from
Figs. 3(a), 3(b) for various incidence angles θ and variable impinging energies E; results
are shown for those (θ , E) combinations that only u = 0, –1 diffraction orders are excited.
In Fig. 4(a), we consider the anomalously reflecting design of InP posts embedded in BeTe

Figure 4 Anomalous diffraction probability of selected optimal designs of Figs. 3(a) and 3(b) (b = 2.5 nm) as
function of the angle of impinging electrons θ and their kinetic energy E. Only results at combinations (θ , E)
leading to exactly one anomalous diffraction order (u = –1) are shown. (a) ρ–1 for optimal InP inclusions in
BeTe background (Fig. 3(a), quantum well, a/b = 0.40, k0a ∼= 1.32), (b) ρ–1 for optimal CdO inclusions in InSb
background (Fig. 3(a), quantum barrier, a/b = 0.36, k0a ∼= 1.39), (c) τ–1 for optimal CdTe inclusions in AlN
background (Fig. 3(b), quantum well, a/b = 0.28, k0a ∼= 1.19), (d) τ–1 for optimal SiC inclusions in diamond
background (Fig. 3(b), quantum well, a/b = 0.36, k0a ∼= 1.63)
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(from Fig. 3(a)). The maximization of the represented quantity ρ–1 occurs in the middle of
the map, while it vanishes close to the borders generating diffraction of u = +1 or u = –2;
however, when one crosses parametrically such a boundary may experience huge increase
in high-order response. In Fig. 4(b), we regard the highest-performing quantum grating,
namely CdO cylinders into InSb (from Fig. 3(a)) with ρ–1 > 90%. The operational range of
energies E is much larger since the effective mass of InSb host m0 is tiny (see Fig. 2(b));
in addition, the resonance is substantially sharper than the one of Fig. 4(a) even though it
occurs in a similar E-interval.

In Fig. 4(c), we move to maximally-τ–1 setups and examine the optimal CdTe cavities in
AlN background (from Fig. 3(b)). We notice that the peak is exhibited for θ ∼= arcsin(1/3)
and close to the maximal permissible energy. Furthermore, the represented quantity does
not vanish when higher diffractive orders are developed while a secondary local maximum
appears at lower E for θ ∼= 45◦. Finally, in Fig. 4(d), we investigate the response of SiC rods
into diamond (from Fig. 3(b)). The resonance emerges at even more significant energies,
close to the point that the diffraction orders u = –2, +1 are simultaneously activated and
τ–1 drops more rapidly far from it.

In Fig. 5, we investigate the influence of incident energy E sweep on all the reflective and
transmissive probabilities for certain designs. Firstly, we consider the layout of Fig. 4(b)
supporting substantial ρ–1 and, indeed, the corresponding term gets sharply maximized
at E ∼= 6.5 eV. In Fig. 5(a), where the ρu = ρu(E) curves are represented, one can identify
the energy thresholds at which each diffraction order u gets activated. Moreover, the rapid

Figure 5 Reflective ρu and transmissive τu probabilities for various diffraction orders u as functions of energy
level E for: (a), (b) optimal CdO inclusions in InSb background (Fig. 4(b), maximal ρ–1) and (c), (d) optimal CdTe
inclusions in AlN background (Fig. 4(c), maximal τ–1). Incidence angles θ are selected so that maximal
anomalous diffraction is achieved
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variation of ρ0 is complementary to that of τ0 in Fig. 5(b) at low-E range, since the con-
figuration is lossless and the matter waves are not channeled towards alternative (except
for Snell’s) directions. By inspection of Figs. 5(a) and 5(b), one can understand that the
proposed structure can work as a multichannel functional quantum metasurface being
able to control incoming and outgoing matter waves in a number of propagation direc-
tions simultaneously. In this way, the concept of engineering multichannel reflectors [24]
that can control incoming and outgoing waves in a number of propagation directions si-
multaneously, which has been elaborated and established in Photonics, is translated into
quantum arena. In Figs. 5(c) and 5(d), we regard a design with substantial τ–1 and, once
again, the activation of more diffractive orders u for increasing E, is noticed. Furthermore,
highly selective responses are observed for {ρ0, τ0} and at energy levels that new orders are
generated, abrupt changes are exhibited. Finally, the maximum in τ–1 is more wide-band
compared to the corresponding one in ρ–1 of Fig. 4(a), which is also understood by com-
paring Fig. 3(b) with 3(c).

In Fig. 6(a), we examine an optimal layout from the ones reported in Fig. 3(c) (ZnTe
cavities hosted by SiC), where the period of the grating is larger (b = 5 nm). Similarly to
Figs. 4(a) and 4(b), the maximum occurs in the middle of the curved rectangle and di-
minishes rapidly when one moves towards the point of activation of the two higher-order
diffraction waves (u = +1, –2) at θ = arcsin(1/3). The huge decline pace for increasing en-
ergy E is potentially related to the fact that optimization gives an a/b = 0.1 corresponding
to an extremum of the considered interval (0.1 < a/b < 0.4); the same happens in Fig. 4(b)
where a/b = 0.4. In order to avoid reporting resonances appearing outside of the regarded

Figure 6 (a) Same as Fig. 4 but for ρ–1 in optimal ZnTe inclusions in SiC background (b = 5 nm, Fig. 3(c),
quantum well, a/b = 0.10, k0a ∼= 0.38). (b), (c) Reflective ρu and transmissive τu probabilities for various
diffraction orders u as functions of energy level E for the same design as in Fig. 6(a)
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parametric box, a refinement to the adopted optimization strategy should be performed as
in similar photonic studies [54]. In Fig. 6(b), we observe the variations of reflective proba-
bilities ρu for various orders u as functions of incoming particles energy E for the same de-
sign, while in Fig. 6(c), the corresponding transmissive probabilities τu = τu(E) are shown.
The utility of the proposed configuration as a multi-port quantum network that steers
the electron beams with controllable direction and intensity, is once again demonstrated;
note also the large values recorded for the transmissive probability τu for the orders with
u = +1, –2.

3.3 Performance robustness
As briefly mentioned above, there are several alternative fabrication methods for the setup
depicted in Fig. 1, namely growing multiple parallel nanowires into a specific host. Chem-
ical approaches constitute a major construction category containing vapor-liquid-solid
growth after injecting precursor gases leading to the nucleated development of cavities
from catalytic particles [55] and fast modulation of nanowire composition during bottom-
up engraving combined with wet-chemical etching [27]. In addition, a highly-efficient
solution-based method for the direct growth of core/shell nanowire arrays on various con-
ductive substrates is implemented [56] suitable for various applications in electrochem-
ical energy storage and optical devices. Epitaxial techniques are also utilized for physi-
cal creation of core–multishell structures of radial heterostructure growth for the devel-
opment of nanowire-based structures [28] or bottom-up syntheses of complex quantum
devices with a special focus on nanowire networks with a predefined number of super-
conducting islands [29]. Furthermore, top-down practices have been applied for realiz-
ing diamond cavities in bulk hosts with use of inductively coupled plasma etching [30],
while semiconductor processing techniques are implemented to give photonic crystal het-
erostructures and interfaces, namely the quantum analogue of metasurfaces [57]. Finally,
self-assembling design rules are being developed for the generation of complex hierar-
chical nanostructured systems by exploiting the analogy of nanoparticles with molecules
leading to robust and highly reproducible synthesis [58], while micromachined cavities
are successfully employed for the construction of superconducting resonators in various
quantum layouts [59].

However, all the aforementioned approaches are not flawless and thus the obtained de-
signs contain several size imperfections; either the radius a of the rods is not exactly equal
to the optimal one or (less frequently) the recommended half-period b is not properly
respected. In both cases, the duty cycle a/b is different from that indicated by the opti-
mization process; therefore, it is meaningful to examine the response of the device when
the ratio a/b is perturbed around the proposed value. In Fig. 7, we consider maximally
reflecting designs from Fig. 3(a) and show the trajectory on the reflection (ρ0,ρ–1) and
transmission (τ0, τ–1) plane where the horizontal axis corresponds to the Snell’s diffrac-
tion and the vertical the anomalous quantity of order u = –1. If further diffraction waves
are propagated, they are evaluated by subtracting the values {ρ0,ρ–1, τ0, τ–1} from unity
indicated by the dashed diagonal lines. In Fig. 7(a), where the reflective channels are ex-
amined, one notices the remarkable robustness of the design with InP cavities into BeTe
and the sharp change in the performance of BeTe cylinders into diamond; similar trends
are recorded in Fig. 7(b), where the transmissivities are represented. As far as the most
successful design is concerned (CdO rods in InSb), we observe a remarkable transition
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Figure 7 Trajectories of various designs (with a = 2.5 nm, Fig. 3(a), support maximal anomalous reflection)
response on the plane of Snell’s (horizontal) and first anomalous (vertical) diffraction as the duty cycle a/b
perturbs by ±10% around the optimal value. (a) Loci on (ρ0,ρ–1) plane and (b) Loci on (τ0,τ–1) plane. Markers
denote the optimal operation point and dashed lines indicate the maximum quantity, equaling to one

Figure 8 Same as in Fig. 7 for designs appearing in Fig. 3(b) that support maximal anomalous transmission

from a fully reflective regime (optimal operational point of Fig. 7(a)) to a fully matched
one at the point that the red curve touches the dashed line in Fig. 7(b).

In Fig. 8, we show the same quantities as in Fig. 7 but for three maximally transmissive
designs appearing in Fig. 3(b). The optimal operational regimes are almost fully trans-
missive and that is why the markers are located around the origin in Fig. 8(a) and around
the upper left corner in Fig. 8(b). Similarly to Fig. 7, we notice the different robustness of
the three picked designs and the asymmetry of the curves around the maximal anomalous
transmission points; indeed, the response of the structure changes much more reluctantly
when a/b is selected bigger than the recommended compared to the opposite way. It must
be finally stressed that every single point on the curves corresponds to a distinct set of
probability separations along specific directions of space and thus defines a distinct point
of operation of the formed quantum multiport network.

Therefore, we are permitted to say that even when robustness of the design is not sub-
stantial, its utility gets not necessarily reduced: as long as the redistribution of probabilities
is rigorously computed, any combination of parameters can lead to a useful response pro-
file. In other words, not only the ratio a/b but even if the angle of incidence θ or the particle
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Figure 9 Spatial distribution of normalized |�(x, y)|2 for the design of Fig. 4(c) with (a) E ∼= 0.42 eV (optimal
anomalous transmission) and (b) E ∼= 0.62 eV. Same scale is used for both figures

energy E is misselected, can give modules with interesting channel outline serving alter-
native needs into a quantum circuit. In Fig. 9, we consider the design of Fig. 4(c), namely
CdTe cavities in AlN background, and show the spatial distribution of |�(x, y)|2, with help
from commercial software. In Fig. 9(a), the energy of the incoming particle is exactly equal
to that achieving maximal anomalous refraction and such an effect is fully demonstrated
by the abrupt turn of the propagation direction towards the same side that the metasurface
is illuminated. In Fig. 9(b), we have selected a different energy for the incoming particle
and we obtain multiple (4–5) refractive matter waves with different angles, waist widths
and intensities; in this way, the operation of the quantum grating as multiport channel
network with rich scattering matrix is shown. These “fringes”, namely the slightly “noisy”
pattern of Fig. 9, are attributed to the fact that both the front of the incoming beam and
the metasurface extent are finite.

A case of special interest in the normal incidence (θ = 0◦), which demands a specific level
of energy E � 1

2m0
(�π/b)2 for anomalous diffraction (this time both u = ±1 orders are ac-

tivated). In Fig. 10(a), we show the probability distribution |�(x, y)|2 for a normally excited
design which achieves an almost perfect splitting of the incoming beam along two sym-
metric directions corresponding to the two simultaneously (for θ = 0◦) generated diffrac-
tion orders with u = ±1. In this way, the functionality of the regarded layout as wave matter
splitter is fully demonstrated. Note that the intensity of the refractive beams is controllable
via the texture and the rest of the parameters of the configuration. In Fig. 10(b), we show
a scenario of splitting with reduced magnitude controlled by the mechanism of normal
reflections ρ0.

4 Conclusions
Diffraction of matter waves along various counter-intuitive directions with controllable in-
tensity is an important and general process behind numerous quantum systems. Perhaps
the simplest structure that such an anomalous effect may occur is a periodic metasur-
face comprising cylindrical posts embedded into a background host; thus, in this study its
optimal working regimes for various combinations of quantum media are reported. The
operation of the structure as a quantum multiport network, where each diffraction order
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Figure 10 Spatial distribution of normalized |�(x, y)|2 at normal incidence (θ = 0◦) for: (a) BP rods in MgO:
perfect beam splitting, (b) BAs rods in ZnTe: controllable partial beam splitting

plays the role of a channel of information, is demonstrated at an extensive range of incom-
ing e-beam angles and energies while the effect of the inclusions size on the re-distribution
of probabilities is examined.

The presented results are also useful to the interested experimentalist that aims at fab-
ricating steering modules for quantum circuits and signal processors, where the spatial
channeling of matter waves is required. In this way, multiple alternative materializations
for a fundamental and generic subsystem vital for several quantum engineering applica-
tions are provided, ready to respect the availability and feasibility constraints. Interesting
expansions of the present work may contain similar concepts already implemented in Elec-
tromagnetics like inhomogeneous cylinders [60], rods placed into a different host [61] or
wires of unknown texture that can be guessed [62] via external measurements.
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