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Abstract
We explore the optical response of a multimode optomechanical system with
quadratic coupling to a weak probe field, where the cavity is driven by a strong
control field and the two movable membranes are, respectively, excited by weak
coherent mechanical driving fields. We study the two cases that the two movable
membranes are degenerate and nondegenerate. For the degenerate case, it is shown
that only one transparency window occurs and the transition between
optomechanically induced transparency and Fano resonance can be realized by
tuning the cavity-control field detuning. For the nondegenerate case, two
transparency windows are observed and the absorption spectrum can switch
between a single Fano resonance and double Fano resonances. Furthermore, we
show that the output probe field can be greatly amplified or completely suppressed
due to the complex interference effect by tuning the amplitude and phase of the
mechanical driving fields. Our results can be extended to the optomechanical system
with multiple membranes, which enables us to control the light propagation more
flexibly.
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1 Introduction
Optomechanical system usually consists of the electromagnetic cavity and the mechan-
ical oscillator coupled by radiation pressure [1–3]. In the past decades, both linear and
quadratic optomechanical coupling have been under extensive exploration, where the cav-
ity resonance frequency linearly and quadratically depends on the displacement of the me-
chanical oscillator, respectively. In particular, tremendous progresses have been made in
optomechanical systems, such as ground state cooling of the mechanical oscillator [4, 5],
optomechanical squeezing of light and mechanical motion [6–9], quantum entanglement
between mechanical oscillators [10, 11]. Furthermore, the optical response of the op-
tomechanical system can exhibit some interesting phenomena by driving the cavity under
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different conditions, including optomechanically induced transparency (OMIT) [12–19],
optomechanically induced amplification (OMIA) [20, 21], and Fano resonance [22, 23].
OMIT is the analog of electromagnetically induced transparency (EIT) [24, 25], which re-
sults from the destructive interference between different excitation pathways in atomic
vapors and various solid-state systems [26–29]. Recently, different types of OMIT, such
as nonlinear OMIT [30–32], two-color OMIT [33], vector OMIT [34], reversed OMIT
[35–37], and nonreciprocal OMIT [38, 39], have been extensively explored. Besides the
nonreciprocal OMIT [39], the spinning optomechanical system also provides a platform
to study quantum effects such as nonreciprocal photon blockade [40] and nonreciprocal
optomechanical entanglement [41]. Closely related to EIT, the Fano resonance with asym-
metric line shape was first explained by Ugo Fano in terms of the interference of a narrow
discrete resonance with a broad spectral line or continuum [42, 43]. These phenomena
can have potential applications in slow light [44, 45], optical switching [46], sensing [47],
and so on.

In this work, we study the controllable optical response of a multimode optomechanical
system with quadratic coupling, where two movable membranes are placed in the middle
of an optical cavity with two fixed mirrors. Note that quadratic coupling has been experi-
mentally realized in a Fabry–Pérot cavity containing a SiN membrane [48, 49] or a cloud
of ultracold atoms [50, 51], a tunable photonic crystal optomechanical cavity [52], and a
microsphere-nanostring system [53]. Theoretical works have shown that quadratic cou-
pling can be exploited to investigate mechanical squeezing [54, 55], photon blockade and
phonon blockade [56–59], quantum nondemolition measurement of phonons [60], quan-
tum phase transition [61], a highly sensitive mass sensor [62], two-phonon OMIT [63],
and Fano resonance [64]. Different from the linearly coupled optomechanical systems,
the underlying physical mechanism in quadratically coupled optomechanical systems in-
volves a two-phonon process [63], where the square of the displacement of the mechanical
oscillator affects the response of the system. Advantages of quadratic over linear coupling
include quantum nondemolition readout of a membrane’s energy eigenstate [48, 49], more
persistent entanglement and higher spectral nonlinearity [65], and so on. If two or more
mechanical oscillators are involved, the multimode quadratic coupling optomechanical
system can exhibit multiple transparency windows [66–68].

In addition, more complex interference effect occurs in optomechanical systems if the
mechanical oscillator can be excited directly, which results in more interesting response
property [69–76]. Zhai et al. proposed that mechanical driving field can serve as a switch
of photon blockade and photon-induced tunneling [77]. In experiments, mechanical driv-
ing field has been exploited to realize electro-optomechanically induced transparency
[78], cascaded optical transparency [79], phase-sensitive parametric amplifier [80], in-
jection locking [81], and virtual exceptional points [82]. Recently, optomechanically in-
duced opacity and amplification of two-phonon higher-order sidebands have been studied
in a quadratically coupled optomechanical system with mechanical driving [83, 84]. It is
pointed out that mechanical driving in the quadratically coupled system can be realized
by parametrically modulating the spring constant of the membrane at twice the mem-
brane’s resonance frequency with an integrated electrical interface [80–83, 85, 86], which
generates the mechanical coherence via the two-phonon process. Here we discuss the op-
tical response properties of a multimode quadratically coupled optomechanical system to
a weak probe field in the presence of a strong optical control field and two weak mechan-
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ical driving fields. We show that this system can exhibit a series of unique phenomena by
tuning the optical control field and mechanical driving fields, including optomechanically
induced transparency, single and double Fano resonances, and selective amplification of
the weak probe field. Our results may find potential applications in optical switching based
on multimode optomechanical systems.

2 Model and theory
We consider the optomechanical system schematically shown in Fig. 1, where two mov-
able membranes with finite reflectivity Rk (k = 1, 2) are placed in an optical cavity with two
fixed mirrors. The cavity is driven by a strong control field with amplitude εc, frequency
ωc, and phase φc and detected by a weak probe field with amplitude εp, frequency ωp, and
phase φp. Moreover, two weak coherent mechanical driving fields with amplitude εk , fre-
quency �k , and phase φk are, respectively, applied to excite the two membranes. When
the membranes locate at the antinodes of the intracavity standing wave, the cavity field is
coupled to the square of the position of the membrane with the quadratic optomechan-
ical coupling strength gk = 8π2c

λ2L

√
Rk

1–Rk
, where c is the speed of light in a vacuum, λ is the

wavelength of the control field, and L is the length of the cavity. The Hamiltonian of the
multimode optomechanical system is given by

H = �ω0a†a +
2∑

k=1

(
p2

k
2mk

+
1
2

mkω
2
kq2

k

)
+

2∑
k=1

�gka†aq2
k + Hdr, (1)

where a† (a) is the creation (annihilation) operator of the cavity field with resonance fre-
quency ω0, while pk and qk are the momentum and position operators of the kth mem-
brane with effective mass mk and resonance frequency ωk . Therefore, the first and second
terms in Eq. (1) represent the energy of the cavity and mechanical modes, respectively, and
the third term corresponds to the quadratic coupling between the cavity and mechanical
modes. Hdr denotes the interaction between the driving fields and the optomechanical
system, which takes the form

Hdr = i�εc
(
a†e–iωct–iφc – aeiωct+iφc

)
+ i�εp

(
a†e–iωpt–iφp – aeiωpt+iφp

)

+
2∑

k=1

i�εk
[(

b†
k
)2e–i�k t–iφk – b2

kei�k t+iφk
]
. (2)

The first and second terms in Eq. (2) describe the interaction between the cavity and the
strong control field and the weak probe field. The amplitudes εc,p are related to their re-

Figure 1 Schematic diagram of the multimode
optomechanical mechanical system. The two
movable membranes can be treated as mechanical
modes with annihilation operators b1 and b2,
which are quadratically coupled to the common
cavity mode a. The cavity is driven by a control
(probe) field with amplitude εc(εp), frequency
ωc(ωp), and phase φc(φp). In addition, the two
membranes are excited by two weak coherent
mechanical driving fields with amplitudes ε1,2 ,
frequency � =ωp –ωc , and phases φ1,2
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spective powers Pc,p by the relation εc,p =
√

κePc,p/�ωc,p, where κe is the external decay rate
of the cavity given by κe = ηcκ with κ being the total decay rate. The coupling parameter
ηc can be continuously adjusted, and we choose ηc = 0.5 throughout this work. The last
term describes the coherent mechanical driving of the two membranes. The creation (an-
nihilation) operator b†

k (bk) of the membrane is defined as bk = (b†
k)† =

√
mkωk/(2�)[qk +

ipk/(mkωk)].
In the rotating frame at the frequency ωc of the control field, the system Hamiltonian

can be rewritten as

H = �
ca†a +
2∑

k=1

(
p2

k
2mk

+
1
2

mkω
2
kq2

k

)
+

2∑
k=1

�gka†aq2
k + i�εc

(
a† – a

)

+ i�εp
(
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)

+
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k=1

i
mkωk

2
εk

[(
qk – i

pk

mkωk

)2

e–i�t–iφk –
(

qk + i
pk

mkωk

)2

ei�t+iφk

]
, (3)

where 
c = ω0 – ωc, � = ωp – ωc, φpc = φp – φc, and we have assumed that �1 = �2 = �.
The time evolution of the system operators can be derived by applying the Heisenberg

equation of motion and adding the damping and input noise terms phenomenologically,
which yield

da
dt

= –
[
κ/2 + i

(

c + g1q2

1 + g2q2
2
)]

a + εc + εpe–i�t–iφpc +
√

κain, (4)

dqk

dt
=

pk

mk
+ qkεk

(
e–i�t–iφk + ei�t+iφk

)
– i

pk

mkωk
εk

(
e–i�t–iφk – ei�t+iφk

)
, (5)

dpk

dt
=–mkω

2
kqk – 2�gka†aqk – γkpk – imkωkqkεk

(
e–i�t–iφk – ei�t+iφk

)

– pkεk
(
e–i�t–iφk + ei�t+iφk

)
+ ξ , (6)

where ain is the input vacuum noise entering the cavity with zero mean value and ξ is
the Brownian stochastic force acting on the membrane with zero mean value. Neglecting
the weak probe field and mechanical driving field, the expectation values of the system
operators at the steady state can be derived by setting the time derivatives in Eqs. (4)–(6)
to zero, which are given by

as =
εc

κ/2 + i(
c + g1〈q2
1〉s + g2〈q2

2〉s)
, qks = 0, pks = 0. (7)

Equation (7) shows that the steady-state solutions of the momentum and position of the
membranes equal to zero, and the cavity field depends on the square of the position of the
membranes at the steady state, which involves a two-phonon process. Consequently, we
turn to calculate the time evolution of the expectation values of the operators a, q2

k ≡ Qk ,
p2

k ≡ Pk , and qkpk + pkqk ≡ Xk . Using the factorization assumption 〈abc〉 = 〈a〉〈b〉〈c〉 for
the relevant operators, we can obtain

d
dt

〈a〉 = –
[

κ

2
+ i

(

c + ig1〈Q1〉 + ig2〈Q2〉

)]〈a〉 + εc + εpe–i�t–iφpc , (8)
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d
dt
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1

mk
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d
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2

mk
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mkω
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)
. (11)

The term γk(1 + 2nk)mk�ωk in Eq. (10) arises from the coupling of the membrane to the

thermal environment, where nk = [e
�ωk
kBT – 1]–1 is the mean phonon occupation number

of the membrane at the temperature T and kB is the Boltzmann’s constant. In this work,
both the optical probe field and the mechanical driving field are much weaker than the
strong control field, thus Eqs. (8)–(11) can be solved by writing each expectation value as
the sum of a steady-state solution and a small fluctuation, i.e.,

〈O〉 = Os + O+e–i�t + O–ei�t , (12)

where O represents any of these quantities a, Qk , Pk , and Xk . The steady-state solutions
Os are determined by the strong control field and are given by

as =
εc

β
, Pks = (1 + 2nk)

�mkωk

2
, Qks =

Pks

m2
kω

2
k(1 + αk)

, Xks = 0 (13)

with 
 = 
c + g1Q1s + g2Q2s, αk = 2�gk |as|2
mkω2

k
, β = κ/2 + i
. Upon substituting Eq. (12) into

Eqs. (8)–(11) and equating the coefficients of e0, ei�t , e–i�t , we can obtain

a+ =
L1L2 – ig1asR1L2 – ig2asR2L1

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
εpe–iφpc

–
ig1asN1L2

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
ε1e–iφ1

–
ig2asN2L1

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
ε2e–iφ2 , (14)

where

Lk = –i�mk(γk – i�) + 2mkω
2
k(1 + αk) –

2i�mkω
2
k(1 + αk)

2γk – i�
,

Mk = –
2gk�

2a∗
s (1 + 2nk)

mkωk(1 + αk)
+

2gk�
2as(1 + 2nk)

mkωk(1 + αk)
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,

Nk =
�(γk – i�)(1 + 2nk)

ωk(1 + αk)
–

i�(1 + 2nk)
1 + αk

– i�(1 + 2nk),
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2gk�

2ak(1 + 2nk)
(β∗ – i�)mkωk(1 + αk)

, (15)

with k = 1, 2.
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The output field of the optical cavity can be derived according to the input-output rela-
tion [87]

aout + εc + εpe–i�t–iφpc = κe〈a〉. (16)

In order to investigate the optical response of the system to the probe field, we define the
corresponding quadratures of the output field oscillating at the frequency ωp of the probe
field as εT = κea+/(εpe–iφpc ) [69]. The real and imaginary parts of εT represent the absorp-
tive and dispersive behavior of the system to the probe field. In addition, the transmission
coefficient at the frequency ωp can be derived as

tp =
κea+ – εpe–iφpc

εpe–iφpc
= εT – 1 = t1 + t2, (17)

where

t1 =
L1L2 – ig1asR1L2 – ig2asR2L1

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
κe – 1, (18)

t2 = –
ig1asN1L2

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
κer1e–i�1

–
ig2asN2L1

L1L2(β – i�) + ig1asM1L2 + ig2asM2L1
κer2e–i�2 , (19)

with the amplitude ratio r1,2 = ε1,2/εp, and phase difference �1,2 = φ1,2 – φpc. Here t1 is the
contribution from the probe and control field, which results in the phenomena of OMIT
and Fano resonance. The two terms in t2 represent, respectively, the contributions from
the phonon-photon processes involving the mechanical driving on the two membranes
[83], which can lead to the amplification or suppression of the probe field. Interference
effect between t1 and t2 determines the transmission (absorption) spectrum of the probe
field, where the phase differences �1 and �2 play an important role.

3 Results and discussion
In this section, we numerically study the controllable optical response of the system us-
ing the above analytical expressions and the experimentally realizable parameters. The
parameters are chosen from the recent experimental [48] and theoretical works [63]: the
length of the cavity L = 6.7 cm, and the cavity decay rate κ = 2π × 104 Hz; the parameters
of the membranes are ω1 = ω2 = ωm = 2π ×105 Hz, γ1 = γ2 = 20 Hz, m1 = m2 = 10–9 g, and
R1 = R2 = 0.45. Here we have assumed that the two membranes are the same, and we will
study the case that the two membranes are nondegenerate in the following. In addition, the
wavelength of the control field λ = 2πc

ωc
= 532 nm and the temperature of the environment

T = 90 K.
We first consider the simple case that the two membranes are the same. The phe-

nomenon of OMIT has been observed in the probe transmission spectrum [13], and thus
we plot the power transmission coefficient |tp|2 versus the normalized detuning �/ωm

for different values of the mechanical driving fields in Fig. 2. Under the condition of two-
phonon resonance, i.e., 
 = 2ωm, Fig. 2(a) shows that the transmission spectrum can ex-
hibit the phenomenon of OMIT around � = 2ωm if r1 = r2 = 0. The underlying mecha-
nism of the OMIT can be explained as a result of the radiation pressure force at the beat
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Figure 2 The power transmission coefficient |tp|2 as functions of the normalized detuning �/ωm for
different values of the mechanical driving fields. Other parameters are λ = 532 nm, L = 6.7 cm,
κ = 2π × 104 Hz, ηc = 0.5, ω1 =ω2 =ωm = 2π × 105 Hz, γ1 = γ2 = 20 Hz,m1 =m2 = 10–9 g, R1 = R2 = 0.45,
T = 90 K, Pc = 90 μW, and 
 = 2ωm

frequency � between the probe and control photons. The membranes can vibrate coher-
ently under the action of the radiation pressure, which in turn generates the Stokes- and
anti-Stokes scattering of light from the strong control field via the two-phonon process.
At 
 = 2ωm, the highly off-resonant Stokes scattering at frequency ωc – 2ωm is suppressed
and only anti-Stokes scattering at frequency ωc + 2ωm builds up inside the cavity. However,
if the incident probe field is nearly resonant with the cavity field, destructive interference
between the probe field and the anti-Stokes field can suppress the build-up of an intra-
cavity probe field, which results in a transparency window in the transmission spectrum.
Such a two-phonon OMIT has been extensively investigated in recent works by discussing
the absorption Re(εT ) [63, 66, 67]. Moreover, the transmission spectrum can be further
modified by the additional mechanical driving fields. If only one membrane is excited by
a coherent mechanical driving field (r1 = 10–5), the transparency window in Fig. 2(a) be-
comes a transmission peak with |tp|2 ≈ 2.4 for �1 = 0, as shown in Fig. 2(b). Therefore,
the weak probe field can be amplified due to the additional mechanical driving field, which
can be explained by the interference effect as follows. In the simultaneous presence of a
strong control field, a weak probe field, and a weak coherent mechanical driving field, the
energy level of the system can form a closed-loop transition structure, giving rise to the
phase-dependent optical response properties [69–75]. At �1 = 0, constructive interfer-
ence between t1 and the first term in t2 results in the amplification of the probe field [75].
If the phase difference �1 is tuned to be π , Fig. 2(c) shows that destructive interference be-
tween t1 and t2 results in the strong suppression of transmission with |tp|2 ≈ 0.04 around
�/ωm = 2. The interference effect in this system becomes more complicated when both
the membranes are excited directly. At r1 = r2 = 10–5 and �1 = �2 = 0, the peak transmis-
sion coefficient at �/ωm ≈ 2.0029 is further enhanced to be |tp|2 ≈ 5.3 because the two
terms in t2 interfere constructively. If �1 = 0 but �2 = π , the two terms in t2 interfere de-
structively, and the inset of Fig. 2(d) shows that the peak transmission coefficient around
�/ωm = 2 is almost equal to that in Fig. 2(a). Consequently, the optical response of this
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Figure 3 Contour plot of the power transmission
coefficient |tp|2 at � = 2.0029ωm versus the phase
difference �1/π and �2/π . The other parameters
are the same as those in Fig. 2 except r1 = r2 = 10–5

system can be controlled more flexibly when the mechanical driving field is modulated
independently.

In order to see the effect of phase difference more clearly, we plot the power transmission
coefficient |tp|2 at � = 2.0029ωm as functions of �1/π and �2/π in Fig. 3. It is shown that
the transmission coefficient |tp|2 reaches the maximum around �1 = �2 = 0 with peak
value |tp|2 ≈ 5.3, and the minimum value is obtained around (�1 = –0.75π ,�2 = 0.75π )
and (�1 = 0.75π ,�2 = –0.75π ) with |tp|2 ≈ 0. This phase dependent phenomenon arises
from the interference effect in that we consider ω1 = ω2 = ωm, �1 = �2 = � and r1 = r2

here. Moreover, the contour line with |tp|2 = 1 forms a “circular runway”. The transmitted
probe field can be amplified inside the contour line, otherwise it will be attenuated.

We have shown that a symmetric peak locates around �/ωm = 2 in the transmission
spectrum under the two-phonon resonance condition. If the cavity-control field detuning

 �= 2ωm, asymmetric Fano line shape can be observed [64, 68]. Similar to previous works
about Fano resonance in optomechanical systems [22, 23, 64, 68, 76], we also study the
absorptive behavior Re(εT ) of the output probe field. At small coupling parameter ηc 	 1,
we can obtain |tp| 
 1 – Re(εT ) and arg(tp) 
 – Im(εT ) [69]. Therefore, both the trans-
mission |tp|2 and absorption Re(εT ) can reveal the same phenomena of the system. At

 = 1.9ωm, Fig. 4 plots the absorption Re(εT ) of the output probe field versus the normal-
ized detuning �/ωm when one membrane is excited with different phases. In the absence
of the mechanical driving field, the top panel in Fig. 4 shows that the absorption spec-
trum can exhibit an asymmetric Fano line shape around �/ωm = 2 and a broad absorption
peak around �/ωm = 1.9. The asymmetric Fano line shape results from the destructive
interference between the anti-Stokes field and the probe field at frequency ωp = ωc + 2ωm,
where the anti-Stokes field is not resonant with the cavity frequency ω0. The broad ab-
sorption peak at �/ωm = 1.9 is due to the resonant absorption of the probe photons by
the cavity. When the mechanical driving field is turned on, the absorption spectrum can
be modified, depending on the phase difference. At r1 = 10–5 and �1 = 0, the minimum
absorption Re(εT ) in the vicinity of �/ω2 = 2 is negative, which indicates the amplifica-
tion of the probe field. A transition between amplification and absorption occurs when
the normalized detuning �/ωm increases. At fixed amplitude ratio r1, Fig. 4 shows that
the asymmetric Fano line shape around �/ωm = 2 can be modulated effectively for vari-
ous phase difference �1, where the interference effect is evident. However, the absorption
spectrum in other parameter regime almost keeps the same.

We have assumed that the resonance frequencies of the two membranes are the same
in the above, but it is possible to tune the resonance frequency independently, which en-
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Figure 4 The absorption Re(εT ) of the output probe field as a function of the normalized detuning �/ωm for
different values of the mechanical driving field. The other parameters are the same as those in Fig. 2 except

 = 1.9ωm and r2 = 0

Figure 5 The absorption Re(εT ) of the output probe field versus the normalized detuning �/ω1 for different
values of the mechanical driving fields. The other parameters are the same as those in Fig. 2 except
ω1 = 2π × 105 Hz, ω2 = 2π × 0.94× 105 Hz, and 
 = 2ω1. In Figs. 5(c)–(d), we choose r1 = r2 = 10–5

ables us to control the optical response of the system more flexibly. For ω1 = 2π × 105 Hz
and ω2 = 2π × 0.94 × 105 Hz, we plot the absorption Re(εT ) of the output probe field
as a function of the normalized detuning �/ω1 in Fig. 5 with 
 = 2ω1. In this case, the
condition of two-phonon resonance is only satisfied for the membrane with resonance
frequency ω1. In the absence of the mechanical driving field, the absorption spectrum in
Fig. 5(a) exhibits a symmetric absorption dip around �/ω1 = 2, which indicates the ap-
pearance of optomechanically induced transparency (OMIT), and an asymmetric Fano
line shape near �/ω1 = 2ω2/ω1 = 1.88. OMIT and Fano line shape result from the de-
structive interference between the probe field and the generated anti-Stokes fields at fre-
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quency ωc + 2ω1 and ωc + 2ω2, respectively. When both the mechanical driving fields are
switched on with fixed amplitudes and various phases, the absorption spectra can be mod-
ified, as shown in Figs. 5(b)–5(d). At �1 = 0 and �2 = 0.5π , the absorption peak around
�/ω1 = 1.88 becomes larger than 1, which indicates the enhanced absorption due to the
mechanical driving field. However, the absorption dip around �/ω1 = 2 becomes negative,
which corresponds to the amplification of the probe field. By tuning the phase differences
�1 and �2 independently, we can see from Figs. 5(c)–5(d) that the two resonances around
�/ω1 = 1.88 and �/ω1 = 2 switch between the enhanced absorption and amplification.
Therefore, the output probe field can be selectively amplified by tuning the mechanical
driving fields. Different from the case that ω1 = ω2 = ωm, Fig. 5 demonstrates that the ab-
sorption curves around �/ω1 = 1.88 and �/ω1 = 2 are controlled independently by tuning
the phase differences. The two mechanical driving fields cannot interfere with each other
since the frequency difference |ω1 –ω2| is much larger than the linewidth of the absorption
peaks (dips) around �/ω1 = 1.88 and �/ω1 = 2.

When the cavity-control field detuning is tuned to be 
 = ω1 +ω2 with ω1 = 2π ×105 Hz
and ω2 = 2π × 0.8 × 105 Hz, the absorption Re(εT ) of the output probe field exhibits a
broad absorption peak in the center and two sideband peaks (dips). Figures 6(b) and 6(c)
are the enlargement of the two sideband peaks around �/ω1 = 1.6 and �/ω1 = 2, in which
the red solid curves correspond to the asymmetric Fano line shapes for r1 = r2 = 0. In this
case, both the generated anti-Stokes fields at frequencies ωc + 2ω1 and ωc + 2ω2 are not
resonant with the cavity frequency. The Fano resonance around �/ω1 = 2 is caused by
interference effect between the probe field and the anti-Stokes field at frequency ωc + 2ω1,
while the Fano resonance around �/ω1 = 1.6 is due to the interference effect at frequency
ωc + 2ω2. Therefore, the phenomena of a single OMIT and a single Fano resonance in
Fig. 5 can be switched to double Fano resonances by modulating the cavity-control field

Figure 6 The absorption Re(εT ) of the output probe field as a function of the normalized detuning �/ω1 for
different values of the mechanical driving fields. Figure 6(b) and 6(c) are the enlarged images of Fig. 6(a)
around �/ω1 = 1.6 and �/ω1 = 2.0, respectively. The other parameters are the same as those in Fig. 5 except
ω2 = 2π × 0.8× 105 Hz and 
 = 2ωm =ω1 +ω2. The dashed and dash-dotted curves correspond to
r1 = r2 = 10–5
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Figure 7 (a) The power transmission coefficient |tp|2 as functions of the normalized detuning �/ω1 for
different values of the amplitude ratio r1 with �1 = 1.5π . (b) The transmission coefficient |tp|2 at
� = 2.00362ω1 versus the amplitude ratio r1 with �1 = 1.5π , 0, and 0.5π , respectively. The other parameters
are the same as those in Fig. 6 except r2 = 10–5 and �2 = 0.5π

detuning 
. Moreover, the Fano line shapes can be modified by the mechanical driving
fields. At �1 = �2 = 0.5π , the peak value around �/ω1 = 1.6 becomes larger than 1 that
is an indication of enhanced absorption, but the absorption peak near �/ω1 = 2 becomes
an absorption dip with negative value of Re(εT ). The double Fano resonance is reversed if
�1 = �2 = 1.5π compared with �1 = �2 = 0.5π .

Finally, we study the effect of the amplitude of the mechanical driving field on the trans-
mission spectrum. Figure 7(a) plots the power transmission coefficient |tp|2 versus the
normalized detuning �/ω1 for r1 = 0, 0.5 × 10–5, 1.0 × 10–5, 1.5 × 10–5, and 2 × 10–5, re-
spectively. Here we keep �1 = 1.5π , r2 = 10–5, �2 = 0.5π fixed. For r1 = 0, the transmission
coefficient |tp|2 < 1 at �/ω1 ≈ 2 but |tp|2 > 1 at �/ω1 ≈ 1.6. For r1 = 0.5 × 10–5, the mini-
mum value of |tp|2 becomes smaller due to the interference effect induced by the mechani-
cal driving field. When the amplitude ratio r1 is increased to 10–5, the minimum transmis-
sion coefficient |tp|2 near �/ω1 = 2 becomes larger. At higher value of r1, the transmission
dip is switched to a transmission peak with |tp|2 > 1. Meanwhile, the transmission peak
around �/ω1 ≈ 1.6, which is determined by the interference effect at frequency ωc + 2ω2,
keeps almost the same when the amplitude ratio r1 increases. In Fig. 7(b), the transmis-
sion coefficient |tp|2 at � = 2.00362ω1 is plotted as a function of the amplitude ratio r1

for various values of phase difference �1. At �1 = 1.5π , the transmission coefficient |tp|2
decreases from an initial value to zero when the amplitude ratio r1 increases. With fur-
ther increasing the amplitude ratio r1, the transmission coefficient |tp|2 starts to increase
again and can be larger than 1. This phenomenon can be well explained in terms of the
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complicated interference effect induced by the mechanical driving field [75]. In addition,
the phase-dependent effect can be seen from the curves for �1 = 0 and �1 = 0.5π , where
the transmission coefficient |tp|2 increases monotonically with the enhancement of the
amplitude ratio r1.

4 Conclusion
In conclusion, we have studied the controllable optical response of a multimode optome-
chanical system with quadratic coupling, where two movable membranes are placed in an
optical cavity with two fixed mirrors. The response of the system to a weak probe field is
investigated when the cavity is driven by a strong control field and the membranes are,
respectively, excited by weak coherent mechanical driving fields. If the two membranes
have the same resonance frequency, a single optomechanically induced transparency win-
dow occurs in the transmission spectrum under the condition of two-phonon resonance,
which can be further modified by the two mechanical driving fields. When the condition
of two-phonon resonance is not satisfied, the absorption spectrum can exhibit a single
asymmetric Fano line shape. It is shown that the switch between the amplification and
enhanced absorption of the probe field can be realized by tuning the phases of the me-
chanical driving fields. If the frequencies of the two membranes are different, by tuning
the cavity-control field detuning, the absorption spectrum can exhibit the phenomenon
of a single OMIT and a single Fano line shape or the phenomenon of double Fano line
shapes, which results from the interference effect between the probe field and the two
generated anti-Stokes fields. Moreover, the line shapes around the two frequencies of the
anti-Stokes fields can be controlled independently by the phases and amplitudes of the
two mechanical driving fields.
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11. Riedinger R, Wallucks A, Marinković I et al. Remote quantum entanglement between two micromechanical

oscillators. Nature. 2018;556:473–7.
12. Agarwal GS, Huang SM. Electromagnetically induced transparency in mechanical effects of light. Phys Rev A.

2010;81:041803.
13. Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency. Science. 2010;330(6010):1520–3.
14. Safavi-Naeini AH, Mayer Alegre TP, Chan J et al. Electromagnetically induced transparency and slow light with

optomechanics. Nature. 2011;472:69–73.
15. Xiong H, Wu Y. Fundamentals and applications of optomechanically induced transparency. Appl Phys Rev.

2018;5:031305.
16. Chen HJ. Optomechanically induced transparency and nonlinear responses based on graphene optomechanics

system. EPJ Quantum Technol. 2019;6:3.
17. Karuza M, Biancofiore C, Bawaj M et al. Optomechanically induced transparency in a membrane-in-the-middle setup

at room temperature. Phys Rev A. 2013;88:013804.
18. Burek MJ, Cohen JD, Meenehan SM et al. Diamond optomechanical crystals. Optica. 2016;3(12):1404–11.
19. Shen Z, Dong CH, Chen Y et al. Compensation of the Kerr effect for transient optomechanically induced transparency

in a silica microsphere. Opt Lett. 2016;41(6):1249–52.
20. Massel F, Heikkilä TT, Pirkkalainen JM et al. Microwave amplification with nanomechanical resonators. Nature.

2011;480:351–4.
21. Singh V, Bosman SJ, Schneider BH et al. Optomechanical coupling between a multilayer graphene mechanical

resonator and a superconducting microwave cavity. Nat Nanotechnol. 2014;9:820–4.
22. Qu KN, Agarwal GS. Fano resonances and their control in optomechanics. Phys Rev A. 2013;87:063813.
23. Jiang C, Jiang L, Yu HL et al. Fano resonance and slow light in hybrid optomechanics mediated by a two-level system.

Phys Rev A. 2017;96:053821.
24. Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev

Mod Phys. 2005;77:633.
25. Wu Y, Yang XX. Electromagnetically induced transparency in V-, �-, and cascade-type schemes beyond steady-state

analysis. Phys Rev A. 2005;71:053806.
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