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Abstract

SpinQ Gemini is a commercial desktop quantum computing platform designed and
manufactured by SpinQ Technology. It is an integrated hardware-software system.
The first generation product with two qubits was launched in January 2020. The
hardware is based on NMR spectrometer, with permanent magnets providing ~1T
magnetic field. SpinQ Gemini operates under room temperature (0-30°C),
highlighting its lightweight (55 kg with a volume of 70 x 40 x 80 cm?), cost-effective
(under 50k USD), and maintenance-free. SpinQ Gemini aims to provide real-device
experience for quantum computing education for K-12 and at the college level. It also
features quantum control design capabilities that benefit the researchers studying
quantum control and quantum noise. Since its first launch, SpinQ Gemini has been
shipped to institutions in Canada, Taiwan and Mainland China. This paper introduces
the system of design of SpinQ Gemini, from hardware to software. We also
demonstrate examples for performing quantum computing tasks on SpinQ Gemini,
including one task for a variational quantum eigensolver of a two-qubit Heisenberg
model. The next generations of SpinQ quantum computing devices will adopt
models of more qubits, advanced control functions for researchers with comparable
cost, as well as simplified models for much lower cost (under 5k USD) for K-12
education. We believe that low-cost portable quantum computing products will
facilitate hands-on experience for teaching quantum computing at all levels,
well-prepare younger generations of students and researchers for the future of
quantum technologies.

PACS Codes: 03.65.Wj; 03.67.Lx; 03.67.Pp

1 Introduction

SpinQ Gemini is a commercial desktop quantum computing platform designed and man-
ufactured by SpinQ Technology [1, 2], and the first generation product with two qubits was
launched in January 2020. It is an integrated hardware-software system as shown in Fig. 1:
the left figure shows the exterior look of the device, with a dimension of 70 x 40 x 80 cm?,
and a weight of 55 kg; the right figure shows the user interface software SpinQuasar.
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Figure 1 (a) The photo of Gemini and (b) the homepage of SPINQUASAR [1]. The Gemini connects with a
personal computer (PC) installed with SPINQUASAR. SPINQUASAR provides an interface for the users to
manipulate the desktop platform

The hardware part of Gemini is based on nuclear magnetic resonance (NMR) spectrom-
eter. NMR was among the very first systems developed for quantum computing [3-9]. De-
spite its limitations on scalability, a lot of pioneer research and techniques for quantum
computing were first demonstrated in NMR systems [10-22]. Notably, many quantum
control techniques developed in NMR can be readily applied to other quantum comput-
ing platforms [9, 23-31].

Traditional NMR quantum computing is performed on commercial spectrometers with
a superconducting magnet. Those spectrometers are expensive (almost 1 million USD),
large (can be as high as ~3 meters), and need to work in specially designed labs. They
also require regular liquid nitrogen and helium refills for maintenance. These issues on
cost, weight, volume and extreme physical conditions also in general exist on other sys-
tems for quantum computing, making them hard to be accessible for users in real life, but
instead with only possible access on cloud, such as IBM Q [32], IonQ [33] and Rigetti.! As
an example, superconducting qubits need to work in dilution fridges which usually cost
almost 1 million USD. Similar to the superconducting NMR systems, they require special
lab conditions and are not portable. Furthermore, special training is needed for operations
of dilution fridges [34—40].

With the development of permanent magnet technology in recent years [41], it is pos-
sible to bring down the size and cost of NMR spectrometers [42—46]. This then makes
the NMR technology an ideal choice for building portable quantum platforms. By using a
permanent magnet providing 1 T magnetic fields, SpinQ Gemini highlights its lightweight
(55 kg with a volume of 70 x 40 x 80 cm?) and cost-effective (under 50k USD) features,
and maintenance-free, making it portable almost like a desktop PC.

Customised quantum algorithm circuit design and programming are supported on
SpinQ Gemini using its software SpinQuasar (Fig. 1). SpinQ Gemini also provides demon-
strations of > 10 famous quantum algorithms, such as Deutsch algorithm [47], Grover al-
gorithm [48, 49], and HHL algorithm [50]. It also has build-in teaching examples for quan-
tum mechanic, such as Rabi oscillation observation and decoherence time measurement.

Gemini not only provides a very friendly platform for non-specialists who aim to learn

Lhttps://www.rigetti.com/.
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quantum computing basics and quantum programming fast, but also serves as a powerful
tool for quantum computing related research.

In this paper, we introduce the system of the first generation SpinQ Gemini. In Sec. 2,
we discuss the system design, from hardware to software. In Sec. 3, we discuss how to per-
form quantum computing with SpinQ Gemini. We give two concrete examples of quan-
tum computing tasks performed on SpinQQ Gemini, one on the measurement of geometric
phase of mixed state in Sec. 4, and the other on a variational quantum eigensolver for a
two-qubit Heisenberg model in Sec. 5. A discussion on future plans of next generations
products will follow in Sec. 6.

We believe that low-cost portable quantum computing products will facilitate hands-
on experience for teaching quantum computing at all levels, well-prepare younger gener-
ations for the future of quantum technologies. It will also be accessible to a wider range
of researchers to operate under real world conditions for quantum computers, benefiting
them for further studies on quantum control and quantum noise.

2 System
The overall schematic diagram is shown in Fig. 2. Gemini is composed of a PC with SpIN-
QUASAR, a control system on the master board, a radio frequency (RF) system, a temper-
ature control module, a pair of permanent magnets, a field shimming system, and a tube
of sample.

The PC with SPINQUASAR and the master board together realize the algorithms and
interfaces to all the functions. The magnets provide stable static magnetic field. The field
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Figure 2 The overview of the schematic diagram of Gemini system and the interface SPINQUASAR. The
master board equipped with an FPGA, provides the control logic of Gemini. SPINQUASAR communicates with
FPGA through USB so that the user can access Gemini. The magnets, together with the temperature control
unit and the field shimming system provide a stable static homogeneous magnetic field. The RF module
provides the function required to control and measure the qubits
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Figure 3 Software structure. The software could be divided into two parts: one (the left block) we called
SPINQUASAR provides an interface for users with access to all the functions of Gemini, the other (the right
block) realizes the algorithms and controls required for Gemini to function properly. These two parts
communicate with each other through USB

shimming system and temperature control system together make the field stable and ho-
mogeneous enough for nuclear magnetic resonance as well as quantum computing. The
RF system provides generation, modulation, amplification, transmission, detection and
reception of the RF pulses and signals so that we can control and measure the quantum
system.

The PC with SPINQUASAR and the master board altogether realize the software part.
The modules are shown in Fig. 3. The software SPINQUASAR provides an interface for
a user to communicate with Gemini. The master board, of which the core device is an
FPGA, realizes all the algorithms to control the pulses (hence control the quantum state),
the temperature and shimming of the field (hence generate a stable homogeneous field).

SPINQUASAR and the master board communicate with each other through USB.

2.1 SpinQuasar

The left half of Fig. 3 shows the structure of SPINQUASAR. It is composed of five mod-
ules: the quantum computing module, the NMR spectroscopy module, the instrument
calibration module, the task management module and the dynamic library module. These
modules can be easily accessed from the homepage of SPINQUASAR, as shown in Fig. 1(b).

The quantum computing module provides an interface of a two-qubit quantum com-
puter and will be discussed later in Sec. 3.

The NMR spectroscopy module provides an interface of direct accessing to the 'H and
31P nuclear magnetic resonance signal of our sample. It provides the direct control of the
pulse parameters on the two nuclei. Also, it provides both the free induction decay (FID)
signals and the spectra after fast Fourier transform (FFT). This interface provides a good
demonstration of a modern FFT based NMR spectrometer.

The instrument calibration module provides an interface for users to calibrate the pa-
rameters of the spectrometer, such as field shimming, phase calibration, and the temper-
ature control for the system.

Gemini also supports cloud quantum computing where one can access to it from the
Internet [51]. For cloud quantum computing, the tasks are managed by the task manage-

ment module. Also, to support more complicated control, such as the variational quantum
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eigensolver (VQE) which requires adjusting the parameters of the pulses, we provide the

APIs for programmable control, and embedded these into the dynamic library.

2.2 Master board

The master board integrates the digital parts of the hardware, including an FPGA, an
analog-digital converter (ADC) and a digital-analog converter (DAC). The digital parts,
as shown in the right block of Fig. 3, altogether realize the algorithms required to generate
the RF pulse, measure the readout signal, control the temperature and shimming. These
algorithms will be described further in the introduction of each module. The ADC con-
verts the readout signal from the RF part as measurement, while the DAC generates the

initial RF signal for state manipulation.

2.3 Magnets

The permanent magnets provide a stable static homogeneous magnetic field, which split
the nuclei with spin-half into two energy levels and therefore the spin becomes a qubit.
The permanent magnets are two NdFeB plates. The field generated is ~1 Tesla. The field
near the center of the two magnets is roughly homogeneous: the homogeneity generated
by such magnets can reach a level of ~20 ppm. Compared with modern commercial NMR
spectrometers, of which the magnet is generated by the superconducting coil that re-
quires a large cryogenic storage dewar and regular refilling of liquid helium and nitrogen,
the magnets of Gemini work under room temperature, hence are maintenance free and
portable. The disadvantages are that the magnitude of the magnetic field could only reach

about 2 T, and it is highly sensitive to the temperature of the magnets themselves.

2.4 Sample

The sample we use is Dimethylphosphite ((CH30),PH). The 3P and 'H atom are con-
nected directly and provide a two-qubit quantum processor. Both 3'P and 'H nuclei have
a 1/2-spin, and therefore have two energy levels. The Lamor frequency of 3P and 'H in
1 T magnetic field are 17.2 MHz and 42.6 MHz, respectively. The structure and the pa-

rameters of the sample are listed in Fig. 4.

2.5 RF pulse generation

The states of the nuclei could be manipulated by irradiating electro-magnetic waves
(pulses) with frequencies close to there Larmor frequency (the physics behind this will
be described later). Since the Larmor frequencies of the two nuclei lie in the range of RF
range, an RF system is designed and manufactured to operate the quantum state and re-
alize the quantum gates. The largest RF power that can be applied is ~2 W, and the linear
range of the power amplifier is 0~1 W. Pulses as short as 10 us and 20 us can be applied
to realize 90 degree rotations of the 'H and 3!P spins. While the default built-in sample
in Gemini is Dimethylphosphite and the band-pass filters are optimized for 'H and 3'P
signals, the RF transmission and NMR reception parts as shown in Fig. 5 can work in the
frequency range of 0~100 MHz. This means it is possible to use this RF system to per-
form NMR spectroscopy on other nuclear species whose frequencies fall in this range after

adjusting the band-pass filters.
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Figure 4 (a) The molecule structure (left) and its parameter table (right). There are multiple "H nuclear spins.
Only the "H spin that is directly corrected to the 3'P spin is used as a qubit. The J coupling between the 'H
and 3'P nuclear spins is 697.4 Hz. The control pulses are on resonance with "H and 3'P spins and thus their
frequency offsets are both 0 Hz. The spin Hamiltonian is Hy = nJchHaZP/Z where J=697.4 Hz. (b) The Fourier
transform spectrum of the "H spin which is directly connected to *'P, obtained using Gemini. The small spikes
between the two major peaks are due to non-idea removal of the signals of the "H spins in the methy!
groups. The inset shows the thermal spectrum of all the 'H spins. The peaks (labeled as ‘P’) of methyl 'H spins
are fitted using Lorentzian line shapes and removed on purpose in signal processing to get a clear signal of
the "H of interest. (c) The Fourier transform spectrum of the 3'P spin obtained using Gemini
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Figure 5 RF pulse generation and signal readout. The upper half shows how an arbitrary wave is generated.
After the wave is generated, it is power amplified and sent to the control coil (see Fig. 2) so that the quantum
state can be manipulated. After the RF pulse irradiation, the electro-magnetic signal induced during spin
relaxation is picked up by the coil, and then is sent to the preamplifier. After the signal is amplified, it is sent to
the ADC and processed by the master board

2.6 Temperature control

The field generated by the permanent magnets is highly sensitive to the temperature of the
permanent magnets themselves. Therefore, a temperature control system is required to
guarantee that the field does not drift following the room temperature. The architechture

of the temprature control unit is shown in Fig. 6.
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Figure 6 Temperature control. The temperature control is realized by a famous feedback algorithm: the PID
algorithm. The temperature probe picks the temperature signal and send it to the FPGA. The FPGA decides
what to do next according to the temperature signal and then controls the power of the heating module
accordingly
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Figure 7 Shimming module. Currently, the field shimming is accomplished by measuring the FWHM of the
hydrogen signal. It is also a feedback algorithm by reading the FWHM information of the hydrogen signal and
adjusting the current of the shimming coils

2.7 Field shimming

The homogeneity of the static magnetic field generated by the permanent magnets is
~20 ppm, which is too large. To compensate this inhomogeneity, we designed a field shim-
ming system to reduce the homogeneity to less than ~1 ppm. The best homogeneity could
reach ~0.3 ppm. As a comparison, the homogeneity of a commercial NMR spectrometer
with a superconducting magnet is ~0.01 ppm. The struture of the shimming unit is shown
in Fig. 7.

3 Quantum computation

3.1 The spin system

Gemini contains two qubits which are the two connected 3!P and 'H nuclear spins in
Dimethylphosphite ((CH4O),PH) molecules (Fig. 4). The molecules are placed in the cen-
ter of the parallel permanent magnets. The 3P and 'H Larmor frequencies are 17.2 MHz
and 42.6 MHz, respectively. The 3!P spin has a T; and T, of 7.2 s and 0.5 s, respectively.
The 'H spin has a T; and T, of 4 s and 0.3 s, respectively. The ] coupling between the two

spins is 697.4 Hz. The control pulses are on resonance with 'H and 3! P spins and thus their
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frequency offsets are both 0 Hz. The spin Hamiltonian in the rotating frame is
Hp _ Ty H P
Ho =2m]II; = 2 Jo;'o;, 1
where J = 697.4 Hz.

3.2 The gate set

Single-qubit 90 degree rotation gates can be realized using square pulses of 20 us and 10 us
for 31P and 'H, respectively. The hardware-level pulse design and engineering are available
in later versions of Gemini which provide an arbitrary waveform generation function to
users. In the current paper, all quantum gates are realized using square pulses which are
resonant with 'H or 3P and combined with free evolution. The available quantum gates
contain single-qubit and two-qubit gates. The single-qubit gates are as follows:

¥ 0 1 v 0 —i 2 1 0
=0, = , =0, = , =0, = ,
\1 0 7"\i o 77\o -1

X90 = ¢4, Y90 = e %%, 790 =%,

e _iB iy
Rx=¢7"2%, Ry=e"2%, Rz=e"2%,

1 (1 1 1 0
H:E(l _1>, 1:(0 1). (2)

Here, o, B and y are the rotation angles defined by users. The two-qubit gates are as follows

1 0 0 O 1 0 0 O
1 1
CX = 0 0 0 ’ cy - 0 0 O ’
0 0 0 1 0 0 0 —-i
0 0 1 0 0 0 i O
1 0 0 O
01 0 O . o
CZ-= , delay = ™0 = ¢=it3/ oflof , (3)
0 01 O
0 0 0 -1

where CX gate is the famous control NOT (CNOT) gate. Here, the delay gate is a free
evolution gate with the duration ¢ defined by users. It should be noted that when ¢ is com-
parable to T3, noise plays a non-negligible role and the action of this gate is not ideal as
the form in the above equation. The single-qubit gate fidelity is estimated to be ~0.99 and
the two-qubit gate fidelity is estimated to be ~0.98.

3.3 The pseudo-pure state

The initial state of the two-qubit system is prepared to be a pseudo-pure state (PPS) [3].
The thermal equilibrium state of a liquid-state NMR system is subject to Boltzmann dis-
tribution and at room temperature can be expressed as follow:

e—Hs/kBT 1 o n 1 ‘
— ~ n _
Pea = ey il ; 2% @
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Figure 8 The pulse sequence for pseudo-pure state preparation. The first four pulses realize a basis
permutation gate. After it is a long delay within which the natural relaxation takes effect. By properly choosing
the repetition number, N, and the duration of the delay, t, the system can be steered to the pseudo-pure state
|00) from the thermal equilibrium state

Here, H; is the spin Hamiltonian in the lab frame, and # is the number of qubits. The part

5> is small and thus this is a

Y ke %ekazk gives NMR signals. At room temperature € ~ e~
highly mixed state. To implement quantum computation, researchers [3] proposed to use

PPS as the initial state which has the following form,

o = 1 1l (1, )
|) is a pure state. The PPS above has the same unitary dynamics and observable effects
as the pure state |/) except for the factor 5. PPS is widely used in NMR quantum compu-
tation.

Gemini utilizes the relaxation method in Ref. [52] to prepare the two-qubit PPS starting
from the thermal equilibrium state. As shown in Fig. 8, the first four pulses realize a basis

permutation gate which can be expressed as

-i 0 0 O
0O 0 0 -
Uermue: 6
permite =l o -1 0 0 (©)
0O 0 1 0

Upermute permutes the basis |01), [10) and [11) and leaves |00) unchanged upon a phase.
The relaxation method in Ref. [52] combines Upermute and a delay after it during which T1
relaxation takes effect. By properly choosing the number of the repetitions of this combi-
nation and the delay time ¢, the system can reach a state whose dominantly occupied basis
is |00) and the other three base have the same but smaller probability. This obtained state
is a PPS and can be used as the initial state |00) in NMR quantum computing.

3.4 Density matrix reconstruction
Gemini implements quantum state tomography [53] to reconstruct the density matrix of

the quantum state after a certain gate sequence is applied. Any two-qubit density matrix
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Exp# Readoutpulse Observed Spin Cij

1 Non H (1%t qubit) Cx0s Cxzs Cy0; Cyz

2 Y90 on H 1H (1%t qubit) €40, Czz

3 Y90 on 3P IH (1%t qubit) Gz Gz

4 X90 on 31p 1H (1%t qubit) Cys Cyy

5 Non 31 (2nd qubit)  Cox, Coxs Coys Cay

6 Y90 on 31p 31p (2nd qubit) Coz
Figure 9 The readout pulses, observed spins and the obtained ¢j of the six experiments needed to
reconstruct a density matrix in the form of Eq. (7)

can be expressed in the following way,

1 1
p= —1®2 + = ZC;‘;‘O’,’O’I‘,
4 4 y

i(j) =x,9,2,0, but (i,j) #(0,0). 7)

Here oy =1 is the 2 x 2 identity matrix. To reconstruct a density matrix, one need to mea-
sure all the ¢; which are ¢;; = Tr(p0,0;), in other words, the expectation values of the Pauli
matrices 0;0;. There are total 15 of 0;0;. But only {04I, 0.0, 0,1, 0,0, 104, 0,0x,10y,0,0,} are
observables in NMR. Additional readout pulses are needed to transform the unobservable
components to be observable. For example, by applying a readout pulse Y90 to the first
qubit prior to measurement, ¢, can be obtained, c,o = Tr(Y900Y 9070, I). In Gemini, the
reconstruction is realized by repeating an experiment six times, each time with a differ-
ent readout pulse and observing either 3'P or 'H. The readout pulses and ¢; obtained in
each of the six repetitions are listed in Fig. 9. The reconstructed initial PPS has a fidelity
of higher than 0.99.

3.5 Software interface

The user can use the quantum computing interface of SPINQUASAR to access the quantum
computing function of Gemini (Fig. 10). The structure and flow-chart of quantum com-
puting is shown in Fig. 11. This system wraps up the calibrated pulses into the quantum
gates aforementioned. Users can drag the supported gates into the circuits and press Run,
the two-qubit quantum computer will start running. The final result will be shown in the
form of density matrix which is reconstructed in the way discussed in last section. There
is also a noiseless simulator embedded in this system so that one can easily compare the

experimental results with theoretical results.

4 Application: measurement of geometric phase of mixed state

Gemini provides demonstrations of > 10 famous quantum algorithms, such as Deutsch—
Jozsa algorithm [54], Grover search [48], and HHL algorithm [50]. In this paper, we provide
two more advanced examples that demonstrate Gemini’s ability on running quantum al-
gorithms. In this section, we will demonstrate the measurement of the geometric phase
of mixed states.
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Figure 10 The SPINQUASAR interface for quantum computing [1]. There is a quantum circuit composer
where users can drag and drop the supported quantum gates to construct a desired circuit. The
corresponding pulse sequence is shown below the quantum circuit. There are two buttons, ‘Run’ and
‘Simulate, for activation of the experiment and the simulation, respectively. The density matrices from the
experiment and the simulation are shown in the bottom half of the interface

Quantum circuit design
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Signal readout and processing
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Figure 11 Realization of the quantum computing system. It consists of the experiment on the two-qubit
processor and the numerical simulation

4.1 Theory

Geometric phase [55] is a very important concept in quantum mechanics. It is a type of
phase gained by a system that is determined by the geometry of the system’s evolution
path. The most famous geometric phase is Berry phase [56] which is associated with cyclic
adiabatic evolution. Here we use a spin half system as an example. A spin in a magnetic
field is aligned with the field and is in the state |0). If the field direction changes slowly and
the adiabatic conditions are satisfied, the spin direction changes also adiabatically and is
always along the field direction. When the magnetic field returns to its initial direction,
the spin returns to its initial direction as well. However, the spin state gains a global phase
and is €®*#)|0), where « is the dynamic phase and B is the Berry phase. « and 8 have

Page 11 of 23
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expressions as follows:

o= —% fOTE(t) dt, (8)
1
B :_59, )

E(¢) is the energy of |0) at the time ¢ and is determined by the instant Hamiltonian. Q is the
solid angle enclosed by the path. If the initial state is in |1), and the magnetic field changes
along the same path, then the geometric phase gained by the spin is €2/2. This is because
the spin is opposite in this case and hence its path encloses a solid angle of —2.

Berry phase is discussed above in the context of adiabatic evolution. Researchers have
proved that adiabatic evolution is not a necessary condition for geometric phase [57]. Ge-
ometric phase stays the same as long as the geometry of the evolution path stays the same,
and is not affected by the Hamiltonian that drives this evolution.

Geometric phase is believed to be robust to local noise and fluctuations of Hamilto-
nian parameters because of its connection with the path geometry. Therefore, geometric
quantum computation is proposed as a candidate for fault-tolerant quantum computation
[21, 58—-67]. Geometric phase in noisy environments is also studied. When the environ-
ment is noisy, quantum systems are always in mixed states due to the interaction with
the environment. The work in Ref. [68] provides a definition for the geometric phase of a
mixed state: It is the phase shift of the interference oscillations in interferometry gained
by the mixed state after a unitary evolution. The unitary evolution must satisfy the parallel
transport requirement [55, 68]: The state at any instant is in-phase with the state after an
infinitesimal time. It can be proved that the dynamical phase is 0 if the parallel transport
requirement can be satisfied. After such a unitary evolution, each eigen state of the density
matrix of the initial mixed state gains a phase denoted as y,, and has the interference vis-
ibility v,. The geometric phase y of the mixed state and its interference visibility v satisfy
the following equation:

vel? = anvneiy”. (10)
n

Here, p, is the eigen value of the nth eigen state of the density matrix.

4.2 Experimental protocol

We adapt the protocol used in Ref. [69] to measure the geometric phase in mixed states
as defined in Eq. (10). A two-qubit system is used in this protocol. The first qubit is an
ancilla qubit and the second qubit is in the mixed states whose geometric phase is to be
measured. The mixed state is a mix of [+) = +/2(]0) + |1))/2 and |-) = +/2(]0) — |1))/2. The

initial mixed state is:
1 O |
p0)=={U+r-0)==I-roy). (11)
2 2
Here F is the Bloch vector, and 7 is its length that corresponds to the purity of the state. If

r = 1, the state is a pure state which is |-). If 7 = 0, the state is totally mixed. |-) and |+) are
the two eigen states of the above density matrix with eigen values of (1 +r)/2 and (1 -7)/2.
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Figure 12 The unitary evolution path for the mixed state. The z
state vector of the initial mixed state is prepared to be along -x
axis pointing to A. It evolves along the path A-B-C-D-A to

return back to point to A. £ is the solid angle enclosed by this

path. 8 = /4 is the angle between the x-y plane and either of D/ > | A
the half paths (A-B-C or C-D-A) Q &<———::-<‘::: B .
B C y
X

Here we steer the state along the path (A—-B—C-D-A) which encloses a solid angle €2 as
shown in Fig. 12. Because the path is made up of geodesic curves, the parallel transport
requirement can be satisfied and thus the dynamical phase is zero. The |-) and |+) states
gain geometric phases of —Q/2 and ©/2, and change to e*?|—) and €"¥?|+), respectively.
It can be proved that the interference visibilities of the two eigen states are both 1. Then

the geometric phase y of the mixed state satisfies

) 1 . 1 . Q Q
ve” = —(1+ r)e”% +=(1- r)e‘% =08 — —irsin —, (12)
2 2 2 2

Q
y =—tan? (rtan 5) (13)

In order to measure y, the ancilla qubit is prepared in the state +/2(|0), + |1),)/2, which
has the density matrix (I + 0%)/2. We control the two-qubit system so that when the ancilla
qubitisin |1),, the mixed state undergoes the unitary evolution and when the ancilla qubit
is in |0), nothing happens. The phases gained by |-) and |+) in the mixed state (which are
F€2/2) are passed to the ancilla qubit. Thus after the controlled evolution, the state of the
ancilla qubit is +/2(|0), + eF*¥2|1),)/2. The weighted average phase gained by the ancilla
qubit has the form of Eq. (13).

Next, we discuss how to prepare a mixed state in the form of Eq. (11) from the initial PPS
state |00). The most used method in NMR to prepare such a mixed state is to use a pulsed
gradient field, which can dephase the spin polarization in the x—y plane fast. However,
there is no pulsed gradient field in Gemini. Considering the time scale of dephasing caused
by the static field inhomogeneity as well as T; is much smaller than T;, we exploit the
natural dephasing to remove the unwanted polarization. To prepare a state in Eq. (11),

first the state (I + ro,)/2 is prepared from |0):

|0):%(1+UZ)M %(1+raz—«/1—r20y). (14)

The —+/1 - 120, part in the above equation can be removed using natural dephasing and
we can get (I + ro,)/2. Then, rotate (I + ro,)/2 about y axis by - /2, we get (I — ro,)/2.

The |1),-controlled unitary can be realized using the following sequence:

R.(-0) - CZ— R,(20 — ) — CZ, (15)
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Figure 13 The experimental circuit for the measurement of the geometric phase for mixed states

0 is the angle between either of the two half paths and the x—y plane, 8 = Q/4. R,(-6)
operation rotates the first half of the path to the x < 0 half of the x—y plane. CZ is the
controlled-Z gate. When the ancilla qubit is in |0),, CZ does nothing; when the ancilla
qubit is in [1),, CZ rotates the mixed state about z axis by = counterclockwise, which
means the mixed state evolves along the first half of the path. R, (26 — i) rotates the second
half of the path to the x > 0 half of the x—y plane. The CZ after it realizes the evolution
of the mixed state along the second half of the path when the ancilla qubit is |1),. In this
way, the mixed state undergoes a closed path evolution conditional on the |1), state of the

ancilla qubit. CZ can be further decomposed as

R(Z)>r(Z) >R (-2 1 (16)
)26+

here 1/2] refers to the free evolution for a duration of 1/2J under the J coupling between
the two qubits. The R,(r/2) gate in CZ can be combined with the R,(-6) and R,(26 —
1) operations in Eq. (15) and simplified. After this simplification, the quantum circuit is
shown in Fig. 13. The first qubit is the ancilla qubit. ¢; = 7/2 — 0, ¢, = 260 — /2. The
geometric phase y can be measured by measuring the phase change of the ancilla qubit

after implementing the circuit in Fig. 13.

4.3 Results

Experiments with Q = 180° and €2 = 240° are carried out. In each situation, r is chosen to
be [0.26, 0.50, 0.71, 0.87, 0.97]. And for each of the r values, the experiment is repeated
for five times to get a mean value of the measured phases as the result of y (Fig. 14).
The main error sources are the non-ideal initial mixed state and RF pulse imperfections,
such as finite pulse width. The large fluctuations in the experimental results come from
the uncertainty in fitting the NMR spectra. In spite of those errors and imperfections in
experiments, the change trend of the geometric phase as a function of the purity and the

solid angle of the path can be observed from the results.

5 Application: variational quantum eigensolver
In this section, we implement a variational quantum eigensolver for a two-qubit Heisen-

berg model.
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Figure 14 The theoretical and experimental results of the mixed state geometric phase in two situations:
€2 =180° and 2 = 240°. For each situation, five purity values were chosen for the initial mixed state,
r=1[0.26,0.50,0.71,0.87,0.97]. For each experimental data point, the experiments were repeated for 5 times
and the mean value of the geometric phase was calculated. The error bar indicates the standard deviation of
the geometric phase in the 5 repetitions. The theoretical values of the geometric phase are also shown as
circles (€2 = 180°) and diamonds (£2 = 240°) in the figure

5.1 Background

Quantum algorithms such as the Grover search [48], Shor factorization [70, 71] and
HHL [50], have proven advantages over their best known classical counterparts. However,
these algorithms cannot be efficiently implemented on near-term quantum devices due
to inevitable physical noises in quantum gates. Variational quantum algorithms (VQA)
[72-78], a class of algorithms under the hybrid quantum-classical framework, are more
promising to have practical applications on noisy intermediate-scale quantum computers
[79]. VQA use a parameterized quantum circuit to estimate the cost function C() and
update 6 with a classical optimizer. Variational quantum eigensolver (VQE) [73, 80] is a
paradigmatic example of VQA that aims to find the ground state and ground state energy
of a given Hamiltonian H. In this section, we will demonstrate the experimental realization
of VQE on Gemini.

5.2 Algorithm

In classical computaitional physics (chemistry), we usually estimate the ground state en-
ergy of H through variational approaches: parameterize a wave function |¢) = [y(6)), up-
date @ to minimize the expectation value (¥ (0)|H|y¥(#)) until convergence. VQE facili-
tates the above procedure with a quantum computer. The wave function is parameterized
with a quantum circuit U(6) applied to the initial state |0) = |0)®”, and we optimize 6 to

minimize the expectation value,
E(8) = (0|U'(0)HUI(6)|0). (17)

The classical optimizer can either be gradient-based methods like SGD, Adam, RMSprop,
BEGD, or gradient-free methods like Nelder—Mead, Powell. Hardware-efficient ansatz
[73], unitary coupled clustered ansatz [81], and Hamiltonian variational ansatz [82, 83]
are common choices for U(#). In VQE, the gradient can be directly estimated via the
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parameter-shift rule [84, 85], i.e.,

OE(6)
90,

((H)gr — (H)a;)12, (18)

where O?E =0 & T e, e is the ith unit vector in the parameter space. Higher order deriva-

. 2 h 3 . . . . . . . . .
tives %(2”, 9 8595;0), which are required in some optimizers, can be estimated in a similar
i i
way [86].

5.3 Experimental protocol
In this work, we apply VQE to find the ground state of 2-qubit Heisenberg model. The

Hamiltonian is
HH = X1X2 + Y1 Yz + ZlZz, (19)

where X}, Y}, Z; are the Pauli operators on the jth qubit. The hardware efficient circuit is
shown in Fig. 15.

We implement experiments on SpinQ Gemini and IBM Q Yorktown with initial param-
eter 6 = [10.2°,8.35°,108°,91.5°], learning rate « = 0.25, and carry out numerical simula-
tions.

IBM Q Yorktown is a superconducting quantum computer with 5 qubits [87], the struc-
ture is shown in Fig. 16. We only use the first two qubits Q; and Q,. The single-gate
error rates are 1.173 x 1073 and 9.810 x 1074, the readout errors are 2.280 x 1072 and
3.660 x 1072, and the CNOT error rate is 1.825 x 1072

Ry — Rx

-| = X

Ry Rx

Figure 15 The hardware efficient circuit for 2-qubit VQE. 6, -0, are the parameters to be optimized

Figure 16 The hardware structure of IBM Q Yorktown
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The experimental procedures are as follows:

« Initialize the circuit parameters 6,

« Estimate the derivatives of @ via parameter-shift rule, %él@ =((H dor — (H )9;)/2.
« Update the parameters with gradient descent, 8’ =0 —« - VE(0);

+ Estimate the expectation value (0|1 (9)HU(6)|0);

« Repeat steps 2—4 until convergence.

5.4 Results and simulation

Figure 17 (a) shows the original result of VQE experiment on SpinQ Gemini and IBMQ
Yorktown, respectively. The ground state energy of Hy is —3, which is shown by the red
line. SpinQ Gemini and IBM Q Yorktown perform similar, both converge to E(f) ~ -2.6
after enough iterations, as shown by the blue dot line and the green square line, respec-
tively. According to our simulations and analysis, the error for Gemini mainly comes from
the inhomogeneity of the magnetic field, while the error of IBMQ mainly comes from the
readout error.

The noise in quantum computer cannot be neglected. To study the noise effect and sta-
bility of SpinQ Gemini, we construct a noise model to capture the quantum error of the
SpinQ Genimi. In the realistic noisy NMR quantum device, the basic noise channels are
dephasing and amplitude damping. For an initial state p of the system and the quantum
circuit unitary transformation U, the local noise model for single-qubit and two-qubit

quantum gates can be described by the Kraus representation

0 — ZE/(U,OUTEIJ: = ZE](,O,E]L (20)
k k

(a) (b)

—e— SpinQ Gemini

—e— SpinQ Gemini - CEM
—— Ideal VQE simulation
—=— |BMQ Yorktown

—=— |BMQ Yorktown - REM

6 3
Iteration

SpinQ Gemini experimental parameters

—e— SpinQ Gemini

—e— 5SpinQ Gemini - CEM
Noisy circuit

—=— |deal circuit

s 10 15 20 25
Iteration

Figure 17 Results of VQE. (a) The VQE energy with respect to each iteration on different quantum platforms
and simulation. The blue dot line represents the experimental result on SpinQ Gemini. The purple dot line
reperents the CNOT error mitigated (CEM) result on SpinQ Gemini. The red triangle line represents the
numerical simulation without gate errors. The green square line represents the experimental result on IBM Q
Yorktown. The gray square line represents the readout error mitigated (REM) result on IBM Q Yorktown.
(b) Numerical simulation for quantum circuit in VQE experiment. The blue dot line represents the
experimental result on SpinQ Gemini. The purple dot line reperents the CNOT error mitigated result on SpinQ
Gemini. The orange triangle line represents the energy calculate by the noisy circuit with the SpinQ Gemini
experimental parameters. The brown square line represents the energy calculate by the ideal circuit with the

Page 17 of 23
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where Ejs are the Kraus operators and ), EkE,i = 1. The E;s act on the same single qubit
and two qubits as U acts on. The amplitude damping noise can be characterized by the
Kraus operators,

(1 o o P
o) ol 7)

where p € [0,1] is the probability of the noise. For amplitude damping noise on single-
qubit gate U, the Kraus operators Exs in Eq. (20) run over the set {Kj,K3}. The Kraus
operators Exs run over the set {K;, Ky} ® {K3, Ky} for two-qubit noisy gate. The dephasing
noise is characterized by the Kraus operators,

I(l =+ 1 —p[z, [(2 = ﬁﬂz, (21)

where I, is the two dimensional identity matrix and o is Pauli operator. For dephasing
noise on single-qubit gate U, the Kraus operators Exs in Eq. (20) run over the set {K3, K;}.
The Kraus operators Egs run over the set {K7, K} ® {K7, K;} for two-qubit noisy gate.
We model the noise consisting of single-qubit thermal relaxation error and two-qubit
thermal relaxation error. The thermal relaxation error model applies the amplitude damp-
ing noise and dephasing noise after each one- or two-qubit gate. This thermal relaxation
error model is characterized through the parameters (T}, T3, t;) and the noise probability

is formulated by

Iq

pdamping =1- 6_ i ) (22)

1
Pdephasing = 2 (1 - e—2y)’ (23)
where y = ;—qf - ;—;1. When the thermal relaxation error model is applied to single-qubit

gates, t; = t1, and £; = ty,; for two-qubit gates. The final noise model to approximate the
noise of NMR quantum device is characterized by the parameters {1, T5, t14, t24}. We set
{Th =5.65, T =0.025 5,1, = 25 s, tpg = 800 s} in the noise simulation for the NMR plat-
form. In NMR system, the dephasing effect is caused by both the spin relaxation and the
field inhomogeneity. T; is used to measure the spin transversal relaxation rate, while T’
is used to measure the field inhomogeneity. The T, data is measured using the technique
called spin echo, which can refocus the magnetisation and remove the effect of inhomoge-
neous field. In our VQE experiment, we did not use such technique, so we use T instead
of T,.

With the noise model described above, we first record every parameters 6 in each it-
eration of the SpinQ Gemini VQE experiment. Then we take these parameters # as the
parameters of quantum circuit ansatz (Fig. 15) and calculate the energy of the Hamilto-
nian with respect to the ideal circuit and noisy circuit output in each iteration. As shown
in Fig. 17 (b), the noisy circuit result shows great consistancy to the experiment data. The
paramaters @ found by SpinQ Gemini is close to the parameters for ground state. These
results indicate that our desktop quantum computing platform can run VQE algorithm

well.
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5.5 Error mitigation
Quantum error mitigation [88—90] is a technique to diminish the influence of errors from
the statistical perspective.

From the comparison and the simulation described above, we can see that the dephasing
error caused by the inhomogeneous magnetic field is dominant. Our circuit consists of
four single-qubit rotations and one CNOT gate. The time for a CNOT gate is about 800 s
and for single-qubit gates is ~20 us. Therefore, the imperfections of the CNOT gate causes

primary error. Consider the error model:

p— pr=Y EUpU'El =Y Ep'E, (24)
k k

where E;s are the Kraus operators, p’ is the ideal density matrix, and py is the measured
density matrix. Error mitigation is a procedure that for a given py obtained from the ex-
periment, finds a density matrix pg, which is as close to p’ as possible, so that the final
experiment result could be improved. Here, we employ the superoperator formalism to
obtain pg. This formalism works as follows. First, let us rewrite the density matrix p’ from

an 7 X n matrix into an #? x 1 vector p':
P = oyl = "= D plil). (25)
i ij
Then the final state pj, which is also an n? x 1 vector is
Py = g’pﬁ (26)
where § is the superoperator. With known Kraus operators Ey, it can be obtained as

§=) E®E. (27)
k

Therefore, with known p; and S, we can get

o = S‘lpf. (28)

The original result and the mitigated result of Gemini is shown in Fig. 17(b). The blue
line and the purple line show the original result and the CNOT error mitigated result. We
can see that the error mitigated result of the ground state of Hy; could reach about —2.98,
much closer to the ideal result. With both the simulation result and the error mitigated
result, we can see that the error model we used is a good approximation.

For the IBMQ devices, the readout errors are dominant. Here we consider the simplest
linear algebra measurement error mitigation scheme. On IBMQ Santiago we do projective
measurement and obtain one of the strings {0, 1}*2. Through tomography of measurement
process, we get the probability of string S; becoming Si, denoted by P;. Suppose we repeat
the same measurement many times and have the string probability distribution Csy, then

Cmitigated = P71 Cnoisy (29)
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provides the probability distribution with measurement error mitigated, although P! is
not a physical operation. Measurement error mitigation can efficiently improve the per-
formance of VQE on IBMQ Santiago, as shown in Fig. 17(a).

6 Discussion

For the next generations of SpinQ desktop quantum computing products, we will develop
products running with more qubits (3~4). Currently, the design of a 3-qubit machine is
underway and the product is expected to be released in the second quarter of 2021, with
a comparable price as SpinQ Gemini (i.e. under 50k USD). Along the way, compatible
software modules with advanced pulse control functions will also be developed, providing
more powerful abilities for quantum algorithm/control/error mitigation designs to meet
the research needs of advanced users. Meanwhile, another direction is to make a simplified
version of the current model, making it more portable with much lower cost (under 5k
USD). This simplified version is expected to be released in the fourth quarter of 2021,

such that it can be more affordable for most K-12 schools around the world.

7 Conclusion

In this work, we described a desktop and maintenance free quantum computing platform:
SpinQ Gemini. We discussed the technique details for both hardware and software parts
of it. We demonstrated how quantum computation is accomplished by Gemini, and re-
alized measurement of geometric phase of mixed states as well as variational quantum
eigensolver. To obtain a better accuracy in VQE, we also developed an error mitigation al-
gorithm and realized it. In a word, we think SpinQ Gemini is a powerful tool for quantum

computation education as well as research.
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