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Abstract
Combinatorial optimization models a vast range of industrial processes aiming at
improving their efficiency. In general, solving this type of problem exactly is
computationally intractable. Therefore, practitioners rely on heuristic solution
approaches. Variational quantum algorithms are optimization heuristics that can be
demonstrated with available quantum hardware. In this case study, we apply four
variational quantum heuristics running on IBM’s superconducting quantum
processors to the job shop scheduling problem. Our problem optimizes a steel
manufacturing process. A comparison on 5 qubits shows that the recent filtering
variational quantum eigensolver (F-VQE) converges faster and samples the global
optimummore frequently than the quantum approximate optimization algorithm
(QAOA), the standard variational quantum eigensolver (VQE), and variational quantum
imaginary time evolution (VarQITE). Furthermore, F-VQE readily solves problem sizes
of up to 23 qubits on hardware without error mitigation post processing.

Keywords: Combinatorial optimization; Variational quantum algorithms; Heuristics;
Quantum hardware

1 Introduction
One of the major drivers of industry’s recent interest in quantum computing is the promise
of improving combinatorial optimization. This could have a large impact across many
sectors including manufacturing, finance, logistics and supply chain management. How-
ever, most combinatorial optimization problems are NP-hard making it unlikely that even
quantum computers can solve them efficiently in the worst-case. Informally, NP-hardness
means that finding exact solutions is not more efficient than going through all potential
solutions—at a cost that grows exponentially with the problem size. Quantum algorithms
such as Grover’s perform exhaustive search with a quadratic speedup but require fault tol-
erant quantum hardware [1, 2]. Instead it is interesting to explore if quantum computers
could speed up the average-case or special cases of practical interest or, indeed, improve
approximate solutions in practice on non-fault-tolerant hardware.

A large body of research focuses on quantum-enhanced optimization heuristics for the
noisy intermediate-scale quantum (NISQ) era [3–5]. Typically, these algorithms don’t
come equipped with convergence guarantees and instead solve the problem approxi-
mately within a given computational budget. While many fault-tolerant optimization al-
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gorithms can also be formulated as heuristics [6], our focus is on variational quantum
algorithms (VQA). Typically VQA employ objective functions implemented with param-
eterized quantum circuits (PQCs) and update their parameters via a classical optimization
routine. In our context, a common approach for combinatorial optimization encodes the
optimal solution in the ground state of a classical multi-qubit Hamiltonian [7–9].

Studying the effectiveness of such heuristics relies on intuition and experimentation.
However, today’s quantum computers are noisy and fairly limited in size making such ex-
perimentation hard. Nevertheless it is important to gauge properties such as convergence
speed, scalability and accuracy from the limited hardware we have available. To make the
most of today’s NISQ computers it is reasonable to compare different VQA on concrete
problems.

We selected the popular quantum approximate optimization algorithm (QAOA) [10]
and the variational quantum eigensolver (VQE) [11] as well as the less well studied varia-
tional quantum imaginary time evolution algorithm (VarQITE) [12] and the filtering vari-
ational quantum eigensolver (F-VQE) [13] recently introduced by some of the present au-
thors. Despite its promising properties, such as supporting a form of quantum advan-
tage, [14–16] and considerable progress with regards to its experimental realization [17],
in general the QAOA ansatz requires circuit depths that are challenging for current quan-
tum hardware. VQE, VarQITE and F-VQE employ more flexible, hardware-efficient an-
sätze tailored for the particular quantum processor. Those ansätze feature high express-
ibility and entangling capabilities [18], which suggests that they can lead to genuinely dif-
ferent heuristics compared to classical ones. On the other hand, they are prone to barren
plateaus which could prevent the algorithms’ convergence at larger problem sizes [19, 20].
In addition, the classical optimizer can significantly affect the performance of quantum
heuristics on NISQ hardware, and the magnitude of this effect can vary between optimiza-
tion problems [21–25]. Those effects have made it difficult in the past to scale common
VQA beyond small-scale experiments. Here we compare VQA executed on IBM’s super-
conducting quantum computers with a view towards scaling up a particular optimization
problem of industrial relevance.

We compare the effectiveness of VQE, QAOA, VarQITE and F-VQE on the job shop
scheduling problem (JSP). The JSP is a combinatorial optimization problem where jobs
are assigned to time slots in a number of machines or processes in order to produce a final
product at minimal cost. Typically costs are associated with delivery delays or reconfigu-
ration of production processes between time slots. The JSP formulation considered herein
was developed by Nippon Steel Corporation and applies to processes typical of steel man-
ufacturing.

This article is structured as follows. Section 2 introduces the JSP formulation and the
four VQA employed in this work, highlighting their similarities and differences. Section 3
analyses the performance of all VQA and shows results of scaling up F-VQE on hardware.
We conclude in Sect. 4. Appendix A includes a derivation of the JSP formulation, App. B
discusses the scaling of the JSP, App. C lists key properties of the quantum processors used
for this work, and App. D provides several additional results from hardware experiments.

2 Methods
This section introduces the JSP and its mathematical formulation in Sects.2.1–2.2 and
introduces the VQE, QAOA, VarQITE and F-VQE with our choices for the various settings
of these algorithms in Sect. 2.3.
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2.1 Job shop scheduling in a steel manufacturing process
The general JSP is the problem of finding an assignment—also called a schedule—of J
jobs to M machines, where each job needs to be processed in a certain order across the
machines. Each job can carry additional data such as due time or processing time. A JSP is
typically described by two further components: processing characteristics and constraints
and an objective. The processing characteristics and constraints encode the specifics of
an application such as setup times of machines and job families or production groups.
Typical examples of objectives to minimise include makespan (total completion time) or
mismatch of the jobs’ completion and due times (for an overview of common scheduling
formulations, see Ref. [26]).

The JSP formulation we consider applies to general manufacturing processes and was
fine-tuned by Nippon Steel Corporation for steel manufacturing. We consider jobs j =
1, . . . , J assigned to different machines or processes m = 1, . . . , M at time slots tm = 1, . . . , Tm.
In this work, the processing times of all jobs for all processes are assumed to be equal.
Accordingly, time slots can be common across the multiple processes and thus tm is sim-
plified as t throughout the paper. The processing times of all jobs are equal and each job is
assigned a due time dj. Each machine m is allowed to idle for a total number of time slots
em ≥ 0 at the beginning or end of the schedule. This number is an input of the problem.
Hence, the maximum time slot for machine m is Tm = J + em.

The objective is to minimize the sum of early delivery and late delivery of jobs leaving the
last machine, and the production cost associated with changing the processing conditions
for subsequent jobs in each machine. Early (late) delivery is quantified by a constant ce (cl)
multiplied by the number of time steps a job finishes before (after) its due date, summed
over all jobs. To compute the production cost for each machine m each job j is assigned a
production group Pmj. The production cost is quantified by a constant cp multiplied by the
total number of times consecutive jobs j1, j2 in a machine m switch productions groups, i.e.
Pmj1 �= Pmj2 . Figure 1 illustrates these costs for the largest (20-job) JSP instance we consider
in this work.

We consider the following sets of constraints, which follow from the specifics of the
manufacturing process.

1. Job assignment constraints. Each job is assigned to exactly one time slot in each
machine.

2. Time assignment constraints. J jobs are distributed to J consecutive time slots in each
machine.

3. Process order constraints. Each job must progress from machine 1 to M in
non-descending order.

4. Idle slot constraints. Idle slots occur only at the beginning or end of a schedule.

2.2 Quadratic unconstrained binary optimization formulation of the JSP
We formulate the JSP defined in Sect. 2.1 as a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem. A feasible solution of the JSP is a set of two schedules (x, y) given by
binary vectors x ∈ B

Nx for the real jobs (those corresponding to jobs 1, . . . , J) and y ∈ B
Ny

for the dummy jobs introduced to fill idle time slots at the beginning and end of each ma-
chine’s schedule. Here B = {0, 1}, Nx =

∑M
m=1 J(J + em), and Ny =

∑M
m=1 em. Ny is indepen-

dent of J because, owing to the idle slot constraints, the optimization only needs to decide
on the number of consecutive dummy jobs at the beginning of the schedule per machine.
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Figure 1 20-job, 2-process JSP instance considered in this work and its optimal solutions. Colors at the
bottom of each box indicate whether early or late delivery costs apply for each time slot. Colors in the corners
of each box indicate whether the production cost applies for each machine and consecutive time slot. By
fixing some jobs to their optimal slots we generate instances with different numbers of free variables N. This is
indicated by the background color/pattern of a box: grey for fixed slots and jobs, white for free slots and jobs,
and dashes for free slots but fixed jobs. We generated instances with N = 5, 10, 12, 16, 23 free variables (see
Table 1). The figure shows N = 23

Table 1 Time slots and jobs needing assignment in each of the problem instances considered in this
work

Free variables N Machinem Time slots Jobs

5 2 1, 20–21 9–10
10 2 1, 19–21 9–11
12 2 19–22 9–11
16 2 18–21 9–11, 14
23 1; 2 17–20; 1, 19–21 9–11, 15; 9–10

A value xmjt = 1 (xmjt = 0) indicates that job j is assigned (is not assigned) to machine m
at time t. Similarly, for dummy jobs, value ymt = 1 (ymt = 0) indicates that a dummy job
is (is not) assigned to machine m at time slot t. With the cost and constraints of the JSP
encoded in a quadratic form Q : BNx ×B

Ny →R the JSP becomes

(
x∗, y∗) = arg min

(x,y)∈BNx ×B
Ny

Q(x, y). (1)

The binary representation makes it straightforward to embed the problem on a quantum
computer by mapping schedules to qubits.

The function Q for the JSP is

Q(x, y) = c(x) + p
M∑

m=1

J∑

j=1

(
gmj(x) – 1

)2 + p
M∑

m=1

Tm∑

t=1

(
�mt(x, y) – 1

)2

+ p
M–1∑

m=1

J∑

j=1

qmj(x) + p
M∑

m=2

em–1∑

t=1

rmt(y).

(2)

All terms are derived in more detail in App. A. c(x) is the cost of the schedule, Eq. (21),
gmj(x) encodes the job assignment constraints, Eq. (22), �mt(x, y) encodes the time assign-
ment constraints, Eq. (23), qmj(x) encodes the process order constraints, Eq. (24), rmt(x)
encodes the idle slot constraints, Eq. (25). The constraints are multiplied by a penalty p,
which will be set to a sufficiently large value. To ensure non-negative penalties some con-
straints need to be squared. Note that Q is a quadratic form because all terms can be
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written as polynomials of degree two in the binary variables x and y. To simplify notation
we often denote the concatenation of the two sets of binary variables with z = (x, y) and
Q(z) = Q(x, y). Figure 1 illustrates the largest JSP instance used in this work together with
its optimal solution obtained via a classical solver, and Table 1 specifies all instances used.
App. B derives the scaling of the total number of variables for this formulation.

Solving the JSP, Eq. (1), is equivalent to finding the ground state of the Hamiltonian

H = Q
(

I – Z(x)

2
,

I – Z(y)

2

)

= h0I +
N∑

n=1

hnZn +
N∑

n,n′=1

hnn′ZnZn′ , (3)

where the vectors of Pauli Z operators Z(x), Z(y) correspond to the binary variables in x, y,
respectively, Z corresponds to z, and h0, hn, hnn′ are the coefficients of the correspond-
ing operators. Note that this Hamiltonian is defined purely in terms of Pauli Z operators,
which means that its eigenstates are separable and they are computational basis states.

2.3 Variational quantum algorithms for combinatorial optimization problems
VQA are the predominant paradigm for algorithm development on gate-based NISQ com-
puters. They comprise several components that can be combined and adapted in many
ways making them very flexible for the rapidly changing landscape of quantum hard- and
software development. The main components are an ansatz for a PQC, a measurement
scheme, an objective function, and a classical optimizer. The measurement scheme speci-
fies the operators to be measured, the objective function combines measurement results
in a classical function, and the optimizer proposes parameter updates for the PQC with
the goal of minimising the objective function. As noted in Sect. 2.2, the JSP is equivalent
to finding the ground state of the Hamiltonian Eq. (3). VQA are well suited to perform this
search by minimising a suitable objective function. We focus on four VQA for solving the
JSP: VQE, QAOA, VarQITE, and F-VQE.

We use conditional Value-at-Risk (CVaR) as the objective function for all VQA [27]. For
a random variable X with quantile function F–1 the CVaR is defined as the conditional
expectation over the left tail of the distribution of X up to a quantile α ∈ (0, 1]:

CVaRα(X) = E
[
X|X ≤ F–1

X (α)
]
. (4)

In practice we estimate the CVaR from measurement samples as follows. Prepare a state
|ψ〉 and measure this state K times in the computational basis. Each measurement cor-
responds to a bitstring zk sampled from the distribution implied by the state |ψ〉 via the
Born rule, zk ∼ |〈z|ψ〉|2. We interpret each bitstring as a potential solution to the JSP with
energy (or cost) Ek = Q(zk), k = 1, . . . , K . Given a sample of energies {E1, . . . , EK }—without
loss of generality assumed to be ordered from small to large—the CVaR estimator is

ĈVaRα

({E1, . . . , EK }) =
1

�αK

�αK
∑

k=1

Ek . (5)

For α = 1 the CVaR estimator is the sample mean of energies, which is the objective func-
tion often used in standard VQE. The CVaR estimator with 0 < α < 1 has shown advan-
tages in applications that aim at finding ground states, such as combinatorial optimization
problems [27] and some of our experiments confirmed this behaviour.
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Table 2 VQA and settings used for the hardware experiments in Figs. 3–5. An initial parameter |+〉⊗N

means that the initial angles of all Ry in the first (second) layer of the ansatz are set to 0 (π /2). The last
line highlights some key findings from our experiments

N VQE QAOA VarQITE F-VQE

Ansatz 5
>5

Fig. 2 (p = 2)
–

Eq. (7) (p = 2)
–

Fig. 2 (p = 2)
–

Fig. 2 (p = 2)
Fig. 2 (p = 1)

Initial param. |+〉⊗N uniform in [0,π ] |+〉⊗N |+〉⊗N

Objective CVaR Eq. (6)
(α = 0.5)

CVaR Eq. (8)
(α = 0.5)

Mean energy Eq. (9) Custom Eq. (13)

Optimizer COBYLA COBYLA Eq. (12) Eq. (14)
No. shots 5

10
12
16
23

1000
–
–
–
–

1000
–
–
–
–

1000
–
–
–
–

1000
500
550
650
450

Quantum chip 5
10
12
16
23

multiple
–
–
–
–

multiple
–
–
–
–

multiple
–
–
–
–

multiple
ibmq_toronto
ibmq_guadalupe
ibmq_manhattan
ibmq_manhattan

Key findings Flexible ansatz;
converges slower
than F-VQE

Ansatz fixed by
problem topology;
poor convergence
likely due to noise

Flexible ansatz;
strongly varying
performance across
runs; converges
slower than F-VQE

Flexible ansatz;
fastest, most
consistent
convergence

Figure 2 (a) Parameterized quantum circuit ansatz |ψ (θ )〉 and (b) connectivity of the ibmq_casablanca
quantum processor used for the 5-qubit VQE, VarQITE and F-VQE results. Each Ry in (a) is a single-qubit
rotation gate rotating the qubit around the Y axis by an individual angle θ per gate, Ry = Ry (θ ) = exp(–iθY/2).
Gates in the dashed box are repeated p times, where p is the number of layers. In (b) each circle is a physical
qubit and lines indicate their physical connectivity

The difference between the considered VQA boils down to different choices of the
ansatz, measurement scheme, objective and optimizer. Table 2 compares the four algo-
rithms and our concrete settings and Sects. 2.3.1–2.3.4 detail the algorithms. Appendix C
lists the quantum processors used for the hardware execution.

2.3.1 Variational quantum eigensolver
VQE aims at finding the lowest energy state within a family of parameterized quantum
states. It was introduced for estimating the ground state energies of molecules described
by a Hamiltonian in the context of quantum chemistry. Exactly describing molecular
ground states would require an exponential number of parameters. VQE offers a way to
approximate their description using a polynomial number of parameters in a PQC ansatz.
Since the JSP can be expressed as the problem of finding a ground state of the Hamiltonian
Eq. (3), VQE can also be used for solving the JSP. This results in a heuristic optimization
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algorithm for the JSP similar in spirit to classical heuristics, which aim at finding good
approximate solutions.

Our VQE implementation employs the hardware-efficient ansatz in Fig. 2(a) for the
PQC. Hardware-efficient ansätze are very flexible as they can be optimized for a native
gate set and topology of a given quantum processor [28]. We denote the free parameters
of the single-qubit rotation gates in the ansatz with the vector θ . The PQC implements
the unitary operator U(θ ) and |ψ(θ〉) = U(θ )|0〉 denotes the parameterized state after ex-
ecuting this PQC.

The measurement scheme for VQE is determined by the Hamiltonian we wish to min-
imize. In the case of JSP this reduces to measuring tensor products of Pauli Z operators
given by Eq. (3). All terms commute so they can be computed from a single classical bit-
string zk ∼ |〈z|ψ(θ )〉|2 sampled from the PQC. Sampling K bitstrings and calculating their
energies Ek(θ ) = Q(zk(θ )) yields a sample of (ordered) energies {E1(θ ), . . . , EK (θ )} param-
eterized by θ . Plugging this sample into the CVaR estimator, Eq. (4), yields the objective
function for VQE

OVQE(θ ;α) = ĈVaRα

({
E1(θ ), . . . , EK (θ )

})
. (6)

We use the Constrained Optimization By Linear Approximation (COBYLA) optimizer
to tune the parameters of the PQC [29]. This is a gradient-free optimizer with few hyper-
parameters making it a reasonable baseline choice for VQA [23].

2.3.2 Quantum approximate optimization algorithm
QAOA is a VQA which aims at finding approximate solutions to combinatorial optimiza-
tion problems. In contrast to VQE, research on QAOA strongly focuses on combinatorial
optimization rather than chemistry problems. QAOA can be thought of as a discretized
approximation to quantum adiabatic computation [30].

The QAOA ansatz follows from applying the two unitary operators UM(β) = e–iβ
∑N

n=1 Xn

and U(γ ) = e–iγ H a number of p times to the N-qubit uniform superposition |+〉 =
1√
2N

∑2N –1
n=0 |n〉 in an alternating sequence. Here Xn is the Pauli X operator applied to qubit

n and H is the JSP Hamiltonian, Eq. (3). The QAOA ansatz with 2p parameters (β ,γ ) is

|ψ(β ,γ )〉 = UM(βp)U(γp)UM(βp–1)U(γp–1) · · ·UM(β1)U(γ1)|+〉. (7)

In contrast to our ansatz for VQE, in the QAOA ansatz the connectivity of the JSP Hamil-
tonian dictates the connectivity of the two-qubit gates. This means that implementing
this ansatz on digital quantum processors with physical connectivity different from the
JSP connectivity requires the introduction of additional gates for routing. This overhead
can be partly compensated by clever circuit optimization during the compilation stage.

We use the same measurement scheme, objective function and optimizer for QAOA and
VQE. Namely, we sample bitstrings zk(β ,γ ) from the PQC and calculate their energies
Ek(β ,γ ) = Q(zk(β ,γ )). The objective function is the CVaR estimator

OQAOA(β ,γ ;α) = ĈVaRα

({
E1(β ,γ ), . . . , EK (β ,γ )

})
(8)

and the optimizer is COBYLA.
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2.3.3 Variational quantum imaginary time evolution
Imaginary time evolution is a technique for finding ground states by evolving an initial
state with the Schrödinger equation in imaginary time τ = it. This technique has mainly
been applied to study quantum many-body problems [31] and a variant of the algorithm
shows promising results for combinatorial optimization [32]. Here we use a variational
formulation of imaginary time evolution dubbed VarQITE [12] to find approximate solu-
tions of the JSP.

Given an initial state |φ(0)〉 the imaginary time evolution is defined by |φ(τ )〉 =
e–Hτ |φ(0)〉/√Z(τ ) with a normalization factor Z(τ ) = 〈φ(0)|e–2Hτ |φ(0)〉. The non-unitary
operator e–Hτ cannot be mapped directly to a quantum circuit and is typically imple-
mented via additional qubits and post-selection. To avoid additional qubits and post-
selection, instead the VarQITE algorithm optimizes a PQC to approximate the action
of the non-unitary operator. This is achieved by replacing the state |φ(τ )〉 with a state
|ψ(θ )〉 = |ψ(θ (τ ))〉 = U(θ )|+〉 and the parameters are assumed to be time-dependent
θ = θ (τ ). We use the PQC ansatz in Fig. 2(a) and set initial parameters such that the re-
sulting initial state is |+〉.

We use the same measurement scheme as in VQE with the mean energy as the objective
function, i.e. CVaR with α = 1,

OVarQITE(θ ) =
1
2

ĈVaR1
({

E1(θ ), . . . , EK (θ )
})

. (9)

VarQITE updates parameters with a gradient-based optimization scheme derived from
McLachlan’s variational principle [31]. This lifts the imaginary time evolution of the state
|φ(τ )〉 to an evolution of the parameters in the PQC via the differential equations

A(θ )
∂θ (τ )
∂τ

= –∇OVarQITE(θ ), (10)

where A(θ ) is a matrix with entries

Aij = Re
(〈

∂ψ(θ )
∂θi

∣
∣
∣
∣
∂ψ(θ )
∂θj

〉)

. (11)

We assume small time steps δτ , denote τn = τn + nδτ , θn = θ (τn) and approximate the
parameter evolution Eq. (10) with the explicit Euler scheme

θn+1 = θn – A–1(θn)∇OVarQITE(θn)δτ . (12)

We estimate the entries of A and ∇OVarQITE with the Hadamard test. This requires an
additional qubit and controlled operations.

2.3.4 Filtering variational quantum eigensolver
F-VQE is a generalization of VQE with faster and more reliable convergence to the optimal
solution [13]. The algorithm uses filtering operators to modify the energy landscape at
each optimization step. A filtering operator f (H ; τ ) for τ > 0 is defined via a real-valued
function f (E; τ ) with the property that f 2(E; τ ) is strictly decreasing on the spectrum of
the Hamiltonian E ∈ [Emin, Emax].
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For F-VQE we used the ansatz in Fig. 2(a). In contrast to our VQE implementation, F-
VQE uses a gradient-based optimizer. At each optimization step n the objective function
is

O(n)
F-VQE(θ ; τ ) =

1
2
∥
∥
∣
∣ψ(θ )

〉
– |Fnψn–1〉

∥
∥2, (13)

where |ψn–1〉 = |ψ(θn–1)〉 and |Fnψn–1〉 = Fn|ψn–1〉/
√

〈F2
n〉

ψn–1
with Fn = f (H ; τn). We use

the inverse filter f (H ; τ ) = H–τ . It can be shown that the algorithm minimises the mean
energy of the system, i.e. CVaR with α = 1. The update rule of the optimizer at step n is

θn+1 = θn – η∇O(n)
F-VQE(θn; τ ), (14)

where η is a learning rate. The gradient in Eq. (14) is computed with the parameter shift
rule [33, 34]. This leads to terms of the form 〈F〉ψ and 〈F2〉ψ for states |ψ〉. They can be esti-
mated from bitstrings zψ

k (θ ) ∼ |〈z|ψ(θ )〉|2 sampled from the PQC. A sample of K bitstrings
yields a sample of filtered energies {f ψ

1 (θ ; τ ), . . . , f ψ

K (θ ; τ )} with f ψ

k (θ ; τ ) = f (Q(zψ

k (θ ); τ ).
Then all 〈F〉ψ are estimated from such samples via

〈F〉ψ (θ ; τ ) ≈ ĈVaR1
({

f ψ
1 (θ ; τ ), . . . , f ψ

K (θ ; τ )
})

(15)

and equivalently for 〈F2〉ψ . Our implementation of F-VQE adapts the parameter τ dynam-
ically at each optimization step to keep the gradient norm of the objective close to some
large, fixed value (see [13] for details).

3 Results and discussion
We have tested the algorithms in Sect. 2.3 on instances of the JSP on IBM quantum pro-
cessors. First we compared all algorithms on a 5-qubit instance to evaluate their conver-
gence. Then, based on its fast convergence, we selected F-VQE to study the scaling to
larger problem sizes. A comparison against classical solvers is not in scope of this work
(in fact, all instances can be easily solved exactly). Instead we focus on convergence and
scaling the VQA for this particular optimization problem of industrial relevance. All quan-
tum processors were accessed via tket [35]. Hardware experiments benefitted from tket’s
out-of-the-box noise-aware qubit placement and routing, but we did not use any other
error mitigation techniques involving additional post-processing.

All problem instances for the experiments have been obtained as sub-schedules of the
20-job 2-machine problem whose solution is illustrated in Fig. 1. Table 1 provides infor-
mation on which machine, time slot and job needed to be assigned a schedule in each of
the problem instances.

Throughout this section we plot average energies scaled to the range [0, 1]:

εψ =
〈H〉ψ – Emin

Emax – Emin
∈ [0, 1], (16)

where Emin, Emax are the minimum and maximum energy of the Hamiltonian, respectively,
and 〈H〉ψ = 〈ψ |H|ψ〉 for a given state |ψ〉. We calculated Emin, Emax exactly. A value εψ =
0 corresponds to the optimal solution of the problem. To assess the convergence speed
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to good approximation ratios we would like an algorithm to approach values εψ ≈ 0 in
few iterations. We also plot the frequency of sampling the ground state of the problem
Hamiltonian |ψgs〉:

Pψ (gs) =
∣
∣〈ψ | ψgs〉

∣
∣2. (17)

Ideally, we would like an algorithm to return the ground state with a frequency Pψ (gs) ≈ 1,
which implies small average energy εψ ≈ 0. The converse is not true because a superposi-
tion of low-energy excited states |ψ〉 can exhibit a small average energy εψ ≈ 0 but small
overlap with the ground state Pψ (gs) ≈ 0 [13].

3.1 Performance on 5-variable JSP
We analyzed all algorithms on a JSP instance with 5 free variables requiring 5 qubits. This
is sufficiently small to run, essentially, on all available quantum processors. We performed
experiments for all VQA on a range of IBM quantum processors. To make the results more
comparable, all experiments in this section use the same quantum processors, number
of shots, ansatz (VQE, VarQITE, F-VQE) and number of layers for each of the VQA (see
Table 2 for all settings). We chose to highlight the results from the ibmq_casablanca device
in the following plots since it showed the best final ground state frequency for QAOA
and good overall performance for VQE and VarQITE. Appendix D presents additional
hardware experiments for VQE, QAOA and F-VQE and also VQE and QAOA results for
CVaR quantile α = 0.2. The goal of these experiments is to analyse the general convergence
of the algorithms without much fine-tuning and to select candidate algorithms for the
larger experiments in Sect. 3.2.

First, we analyzed VQE. Due to its simplicity it is ideal for initial experimentation. We
compared the CVaR objective with α < 1 against the standard VQE mean energy objective
(α = 1). We observed that the CVaR mainly leads to lower variance in the measurement
outcomes.

Figure 3(a) shows the results for VQE using CVaR with α = 0.5 and 1000 shots and p = 2
layers of the ansatz Fig. 2(a). VQE on ibmq_casablanca converged after around 40 itera-
tions with a frequency of sampling the ground state of approximately 59%. The frequency
of sampling the ground state is approximately bounded by the value α of the CVaR. This is
because CVaR optimises the left tail of the empirical distribution up to quantile α. If all the
probability mass of the distribution up to quantile α is on the ground state, the cost func-
tion achieves its optimal value: the conditional expectation is the ground state energy. At
the same time, on average a fraction 1 – α of the distribution sits in the right tail of excited
states. Results for CVaR with α = 0.2 in Fig. 6(b) of App. D are consistent with this obser-
vation. All quantum processors showed similar final energies and ground state frequencies
for VQE (cf. Fig. 3(a)) with a moderate amount of variance across devices during the initial
iterations. Different choices of optimizers could potentially improve convergence rate of
VQE [22, 36] but their fine-tuning was not in scope of this study.

QAOA with p = 2 showed very slow convergence across all tested quantum proces-
sors. The optimizer COBYLA terminated after 47, 50, 48 iterations for ibmq_casablanca,
ibm_lagos and ibmq_montreal, respectively, when it was unable to improve results fur-
ther. Figure 3(b)shows the scaled energy and ground state frequency with 1000 shots and
CVaR α = 0.5 (same as VQE). In contrast to VQE, QAOA did not saturate the ground state
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Figure 3 VQE and QAOA scaled energy εψ (top panels) and ground state frequency Pψ (gs) (bottom panels)
for the JSP instance using 5 qubits and 1000 shots on the IBM quantum processors indicated in the legend.
The energy was rescaled with the minimum and maximum energy eigenvalues. Both VQA use the CVaR
objective with α = 0.5. Error bands are the standard deviation (top panels) and 95% confidence interval
(bottom panels) (for clarity, error bands only shown for the solid line)

frequency bound at α. We repeated QAOA experiments with CVaR α = 0.2 on several
quantum processors (see Fig. 7(b)). In this case the ground state frequencies saturated at
around α = 0.2 but final average energies showed similar performance as the α = 0.5 case.

Apart from the optimizer, a contributing factor of this poor performance is likely that
the QAOA ansatz is not hardware-efficient, i.e. the compiler needs to add SWAP gates for
routing. On ibmq_casablanca the compiler embedded the problem on qubits 1-3-4-5-6
(see Fig. 2(b) for the device’s connectivity). In our instance each layer p requires six 2-qubit
operations of the form e–iθZiZj each requiring 2 CNOTs. For p = 2 layers this is a total of 24
CNOTs to implement the unitaries U(γ1), U(γ2). Routing requires an additional 6 SWAPs,
which are implemented with 3 CNOTs each, for a total of 18 CNOTs for routing. In total
QAOA required 42 CNOTs. In contrast, the hardware-efficient ansatz Fig. 2(a) for the
other VQA can be embedded on a linear chain such as 0-1-3-5-6. This requires no SWAPs
and results in a total of 8 CNOTs for our VQE and F-VQE runs. The challenge of scaling
QAOA on quantum processors with restricted qubit connectivity was also highlighted in
[17] and our results appear to confirm that QAOA running on NISQ hardware requires
fine-tuned optimizers even for small-scale instances [23, 24].

VarQITE converged somehwat more gradually compared to VQE but reached similar
final mean energies as VQE. Figure 4(a) shows its performance on different quantum pro-
cessors with 1000 shots and p = 2 layers of the ansatz Fig. 2(a). In contrast to VQE, Var-
QITE exhibited a higher variance of the final mean energy and ground state frequency
across different quantum processors. One of the issues of VarQITE is inversion of the
matrix A in Eq. (12), which is estimated from measurement shots. This can lead to unsta-
ble evolutions. Compared to QAOA, for our problem instance VarQITE converged much
faster and smoother across all quantum processors.

F-VQE converged fastest on all quantum processors. Moreover, Fig. 4(b) shows that its
convergence is very consistent across devices and the final mean energies are closest to the
minimum compared to the other VQA. F-VQE also showed high probability of sampling
the optimal solution after just 10-15 iterations, and high final probabilities of 84%, 87%
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Figure 4 VarQITE and F-VQE scaled energy εψ (top panels) and ground state frequency Pψ (gs) (bottom
panels) for the JSP instance using 5 qubits and 1000 shots on the IBM quantum processors indicated in the
legend. The energy was rescaled with the minimum and maximum energy eigenvalues. Error bands are the
standard deviation (top panels) and 95% confidence interval (bottom panels) (for clarity, error bands only
shown for the solid line)

and 75% after 100 iterations on ibmq_casablanca, ibm_lagos and ibmq_montreal, respec-
tively. We repeated the F-VQE experiment with a single layer of an ansatz using a linear
chain of CNOTs instead of the CNOT pattern in Fig. 2(a) with, essentially, identical results
(not shown). This confirms the fast convergence of this algorithm first observed for the
weighted MaxCut problem in Ref. [13]. Another advantage of F-VQE compared to Var-
QITE is that F-VQE does not require inversion of the—typically ill-conditioned—matrix
A in Eq. (10), which is estimated from measurement samples. Based on these results we
chose to focus on F-VQE for scaling up to larger JSP instances.

3.2 Performance on larger instances
This section analyzes the effectiveness of F-VQE on larger JSP instances executed on
NISQ hardware. Figure 5 summarises the results for up to 23 qubits executed on sev-
eral IBM quantum processors. For practical reasons (availability, queuing times on the
largest device) we ran those experiments on different processors. However, based on the
results in Sect. 3 we expect similar performance across different quantum processors. F-
VQE converges quickly in all cases. All experiments reach a significant nonzero frequency
of sampling the ground state: Pψ (gs) ≈ 80% for 10 qubits, Pψ (gs) ≈ 70% for 12 qubits,
Pψ (gs) ≈ 60% for 16 qubits, and Pψ (gs) ≈ 25% for 23 qubits.

An interesting case is N = 12 (Fig. 5(b)). From iteration 10-30 F-VQE sampled the
ground state and one particular excited state with roughly equal probability. However,
the algorithm was able to recover the ground state with high probability from iteration 30.

The N = 23 results show convergence in terms of the scaled energy and ground state
frequency. F-VQE sampled the ground state for the first time after 45 iterations and grad-
ually builds up the probability of sampling it afterwards. This means F-VQE is able to
move to a parameter region with high probability of sampling the optimal solution in a
computational space of size 223 despite device errors and shot noise.

To our knowledge, the 23-qubit experiment is one of the largest experimental demon-
strations of VQA for combinatorial optimization. Otterbach et al. [37] demonstrated
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Figure 5 F-VQE scaled energy (top panels) and ground state frequency (bottom panels) for different JSP
instances with (from left to right) N = 10 (ibmq_toronto, 500 shots), N = 12 (ibmq_guadalupe, 550 shots),
N = 16 (ibmq_manhattan, 650 shots) and N = 23 qubits (ibmq_manhattan, 450 shots). The energy was
rescaled with the maximum energy eigenvalue. Error bands are the standard deviation (top panels) and 95%
confidence interval (bottom panels)

QAOA with p = 1 on Rigetti’s 19-qubit transmon quantum processor. Pagano et al. [38]
demonstrated the convergence of QAOA (p = 1) for up to 20 qubits on a trapped-ion
quantum processor. In addition, they present QAOA performance close to optimal pa-
rameters with up to 40 qubits without performing the variational parameter optimiza-
tion. Harrigan et al. [17] demonstrated QAOA on Google’s superconducting quantum
processor Sycamore for up to 23 qubits when the problem and hardware topologies
match (p = 1, . . . , 5) and up to 22 qubits when the problem and hardware topologies differ
(p = 1, . . . , 3).

4 Conclusions
In this case study, we solved a combinatorial optimization problem of wide industrial
relevance—job shop scheduling—on IBM’s superconducting, gate-based quantum pro-
cessors. Our focus was on the performance of four variational algorithms: the popular
VQE and QAOA, as well as the more recent VarQITE and F-VQE. Performance metrics
were convergence speed in terms of the number of iterations and the frequency of sam-
pling the optimal solution. We tested these genuinely quantum heuristics using up to 23
physical qubits.

In a first set of experiments we compared all algorithms on a JSP instance with 5 vari-
ables (qubits). F-VQE outperformed the other algorithms by all metrics. VarQITE con-
verged slower than F-VQE but was able to sample optimal solutions with comparably high
frequency. VQE converged slowly and sampled optimal solutions less frequently. Lastly,
QAOA struggled to converge owing to a combination of deeper, more complex circuits
and the optimizer choice. QAOA convergence can possibly be improved with a fine-tuned
optimizer [24]. In the subsequent set of experiments, we focused on F-VQE as the most
promising algorithm and studied its performance on increasingly large problem instances
up to 23 variables (qubits). To the best of our knowledge, this is amongst the largest com-
binatorial optimization problems solved successfully by a variational algorithm on a gate-
based quantum processor.
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One of the many challenges for variational quantum optimization heuristics is solving
larger and more realistic problem instances. It will be crucial to improve convergence of
heuristics using more qubits as commercial providers plan a 2- to 4-fold increase of the
qubit number on their flagship hardware in the coming years.1 Our experiments suggest
that F-VQE is a step in this direction as it converged quickly even on the larger problems
we employed. Another challenge on superconducting quantum processors with hundreds
of qubits is sparse connectivity and cross-talk noise. F-VQE can address this concern with
ansätze that are independent of the problem’s connectivity and that can be embedded in
a quantum processor’s topology with lower or even zero SWAP gate overhead from rout-
ing. In addition, error mitigation post processing can be utilized [39], although recent
results show that this requires careful analysis as these techniques can either improve or
hinder trainability of VQA [40]. Trapped-ion quantum hardware may be soon equipped
with dozens of qubits. Their low noise levels and all-to-all qubit connectivity should be
more suitable for deeper and more complex ansätze. Hence, trapped-ion quantum pro-
cessors may benefit from the combination of F-VQE with causal cones [13]. Causal cones
can split the evaluation of the cost function into batches of circuits with fewer qubits [41].
This allows quantum computers to tackle combinatorial optimization problems with more
variables than their physical qubits and parallelize the workload.

The combination of the results of this case study together with the aforementioned algo-
rithmic and hardware improvements paint the optimistic picture that near term quantum
computers may be able to tackle combinatorial optimization problems with hundreds of
variables in the coming years.

Appendix A: Derivation of the QUBO formulation of the JSP
This appendix describes the derivation of the QUBO formulation of the JSP in Eq. (2).

The cost of a schedule comprises three parts: the early delivery cost, late delivery cost
and production cost. The early and late delivery costs are a penalty added when a job j
passes the last machine M before or after its due time dj, respectively:

uj(x) = ce

dj∑

t=1

(dj – t)xMjt + cl

TM∑

t=dj+1

(t – dj)xMjt ∀j = 1, . . . , J . (18)

The constants ce and cl determine the magnitude of the early and late delivery cost, respec-
tively. Figure 1 illustrates the 20-job instance used in our results together with its optimal
schedule.

The production cost is a penalty added for production group switches of two jobs en-
tering a machine at subsequent time slots. The production group of job j for machine m
is determined by a matrix with entries Pmj. For each machine m we define a matrix G(m)

with entries

G(m)
j1j2 =

⎧
⎨

⎩

0 if Pmj1 = Pmj2 ,

1 otherwise.
(19)

1See development roadmaps by IBM https://research.ibm.com/blog/ibm-quantum-roadmap and Quantinuum (formerly
Honeywell Quantum Solutions) https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-
quantum-computer-system-model-h1, for instance (accessed on 2022-02-04).

https://research.ibm.com/blog/ibm-quantum-roadmap
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1
https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1
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Hence, the production cost for machine m is given by

sm(x) = cp

J∑

j1,j2=1

Tm–1∑

t=1

G(m)
j1j2 xmj1txmj2(t+1) ∀m = 1, . . . , M. (20)

The constant cp determines the magnitude of the production cost.
The total cost of a schedule x is

c(x) =
J∑

j=1

uj(x) +
M∑

m=1

sm(x). (21)

We model the constraints of the JSP as additional cost functions. The job assignment
constraints enforces that each real job is assigned to exactly one time slot in each machine

gmj(x) ≡
Tm∑

t=1

xmjt = 1, ∀m = 1, . . . , M ∀j = 1, . . . , J . (22)

The time assignment constraints ensure that each time slot in each machine is occupied
by exactly one job:

�mt(x, y) =

⎧
⎪⎨

⎪⎩

ymt +
∑J

i=1 xmjt for 1 ≤ t ≤ em
∑J

j=1 xmjt for em < t ≤ J
1 – ym(t–J) +

∑J
j=1 xmjt for J < t ≤ Tm

⎫
⎪⎬

⎪⎭
= 1

∀t = 1, . . . , Tm,
∀m = 1, . . . , M.

(23)

The process order constraints ensure that the processing time of a real job does not de-
crease from one machine to the next:

qmj(x) =
Tm∑

t=2

t–1∑

t′=1

xmjtx(m+1)jt′ = 0 ∀m = 1, . . . , M – 1 ∀j = 1, . . . , J . (24)

The idle slot constraints ensure that dummy jobs are placed before all real jobs in each
machine. Due to constraints �mt in Eq. (23) we only need to enforce that the transition
from a real job to a dummy job is prohibited at the beginning of a schedule:

rmt(y) = (1 – ymt)ym(t+1) = 0 ∀t = 1, . . . , em – 1 ∀m = 2, . . . , M. (25)

Note that constraints of this form are not required for machines with em = 1.

Appendix B: Worst-case scaling of the JSP
The total number of variables in the JSP formulation of Sect. 2.2 is

N =
M∑

m=1

J(J + em) + em. (26)

The best-case scaling O(J2M) is achieved for fixed em. In the worst case the number of
dummy jobs needs to grow by J – 1 per machine to allow for a complete reordering of all
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Table 3 Hardware devices used in this study

Device No. of qubits Quantum volume Connectivity

ibmq_belem 5 16 T-shaped
ibmq_casablanca 7 32 Fig. 2(b)
ibmq_guadalupe 16 32 Heavy-hexagon [42]
ibmq_jakarta 7 16 Fig. 2(b)
ibm_lagos 7 32 Fig. 2(b)
ibmq_manhattan 65 32 Heavy-hexagon
ibmq_montreal 27 128 Heavy-hexagon
ibmq_sidney 27 32 Heavy-hexagon
ibmq_toronto 27 32 Heavy-hexagon

Figure 6 VQE scaled energy εψ (top panels) and ground state frequency Pψ (gs) (bottom panels) for the
5-qubit JSP instance with CVaR (a) α = 0.5 and (b) α = 0.2. For other settings, see Table 2. The energy was
rescaled with the minimum and maximum energy eigenvalues. Error bands are the standard deviation (top
panels) and 95% confidence interval (bottom panels) (for clarity, error bands only shown for the solid line)

jobs. With the convention that e1 = 0 this leads to em = (m – 1)(J – 1) and the worst-case
scaling O(J2M2).

Note that the dummy variables ym1 can be dropped from the problem for every machine
with em = 1. For em = 1 the constraints �m1(x, y) and �m(J+1)(x, y) are automatically satisfied
given the rest of constraints for em = 1. First, from the rest of constraints �mt(x, y) the J – 1
time slots t = 2, . . . , J contain one job. Second, from the constraints gmj(x) there are J jobs.
Therefore, exactly one job is placed either in the time t = 1 or in the time t = J + 1 without
the need of forcing the constraints �m1(x, y) and �m(J+1)(x, y).

It is possible to cut down the worst-case scaling to O(J2M) with an alternative formula-
tion of the JSP. This alternative uses a binary encoding for the em dummy jobs. However, in
this work we focused on fixed em for all instances, which leads to the same scaling. Further-
more, we fix most of the time slots to the optimal solution and only leave the positions of
a few jobs free. This way we can systematically increase problem sizes and analyse scaling
of the algorithms.
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Figure 7 QAOA scaled energy εψ (top panels) and ground state frequency Pψ (gs) (bottom panels) for the
5-qubit JSP instance with CVaR (a) α = 0.5 and (b) α = 0.2. For other settings, see Table 2. The energy was
rescaled with the minimum and maximum energy eigenvalues. Error bands are the standard deviation (top
panels) and 95% confidence interval (bottom panels) (for clarity, error bands only shown for the solid line)

Figure 8 F-VQE scaled energy εψ (top panels) and ground state frequency Pψ (gs) (bottom panels) for the
5-qubit JSP instance. For other settings, see Table 2. The energy was rescaled with the minimum and
maximum energy eigenvalues. Error bands are the standard deviation (top panels) and 95% confidence
interval (bottom panels)

Appendix C: Quantum hardware
Table 3 lists the quantum processors used in this work and some of their basic properties
at the time of execution. More information is availale at https://quantum-computing.ibm.
com/services.

Appendix D: Additional experiments
Figure 6 shows results of additional hardware experiments for VQE with CVaR quantiles
α = 0.5 (Fig. 6(a)) and α = 0.2 (Fig. 6(b)) for the 5-qubit JSP instance discussed in Sect. 3.1.
For all other parameters see Table 2. In both cases VQE reaches a ground state frequency of
approximately α indicating that the CVaR objective was achieved. Generally, the α = 0.2

https://quantum-computing.ibm.com/services
https://quantum-computing.ibm.com/services
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case converged to a mean energy considerably further from the optimal value than for
α = 0.5.

Figure 7 shows results of additional hardware experiments for QAOA with CVaR quan-
tiles α = 0.5 (Fig. 7(a)) and α = 0.2 (Fig. 7(b)) for the 5-qubit JSP instance discussed in
Sect. 3.1. For all other parameters see Table 2. QAOA with α = 0.2 reaches a ground state
frequency of approximately α indicating that the CVaR objective was achieved in this case.

Figure 8 shows results of one additional hardware experiment for F-VQE on ibmq_
guadalupe for the 5-qubit JSP instance discussed in Sect. 3.1. For all other parameters
see Table 2. The overall performance is comparable to its performance on other quantum
processors in Sect. 3.1.
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