
Miyamoto EPJ Quantum Technology (2022) 9:3
https://doi.org/10.1140/epjqt/s40507-022-00124-3

R E S E A R C H Open Access

Bermudan option pricing by quantum
amplitude estimation and Chebyshev
interpolation
Koichi Miyamoto1*

*Correspondence:
koichi.miyamoto@qiqb.osaka-u.ac.jp
1Center for Quantum Information
and Quantum Biology, Osaka
University, 1-3 Machikaneyama,
Toyonaka, Osaka, Japan

Abstract
Pricing of financial derivatives, in particular early exercisable options such as
Bermudan options, is an important but heavy numerical task in financial institutions,
and its speed-up will provide a large business impact. Recently, applications of
quantum computing to financial problems have been started to be investigated. In
this paper, we first propose a quantum algorithm for Bermudan option pricing. This
method performs the approximation of the continuation value, which is a crucial part
of Bermudan option pricing, by Chebyshev interpolation, using the values at
interpolation nodes estimated by quantum amplitude estimation. In this method, the
number of calls to the oracle to generate underlying asset price paths scales as˜O(ε–1),
where ε is the error tolerance of the option price. This means the quadratic speed-up
compared with classical Monte Carlo-based methods such as least-squares Monte
Carlo, in which the oracle call number is˜O(ε–2).

Keywords: Option pricing; Quantum amplitude estimation; Chebyshev
interpolation

1 Introduction
Following the recent advances of quantum computing technologies,1 many researches
have been done for the application to practical problems in various industries. One of
the promising targets is finance (see [2–4] for reviews). Financial firms have a lot of heavy
computational tasks in their daily business,2 and therefore the speed-up of such tasks by
quantum computers are expected to provide a large impact. For example, previous papers
studied option pricing [7–18], risk measurement [19–22], portfolio optimization [23–25],
and so on.

In this paper, we focus on Bermudan option pricing and consider how to speed it up by
quantum algorithms. Let us briefly describe the problem. An option is a financial contract
between two parties, the option buyer and seller, which conveys the option buyer the right

1As a standard textbook for quantum computing, we refer to [1].
2As standard textbooks for financial engineering, especially option pricing, we refer to [5, 6].

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-022-00124-3
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-022-00124-3&domain=pdf
https://orcid.org/0000-0003-2478-0841
mailto:koichi.miyamoto@qiqb.osaka-u.ac.jp

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 2 of 27

to buy some underlying assets such as stocks and bonds from or sell them to the option
seller, at some specified price on some date. Or, more generally, it can be regarded as a
contract, in which the option buyer receives some amount of money (payoff) determined
in reference to the underlying asset price, from the option seller. There are some kinds
of options with respect to timing of exercise of right. In an European option, the option
buyer can exercise the right at one predetermined date, which is called the maturity. On
the other hand, there are early-exercisable options, in which the option buyer can choose
the exercise date. In an American option, the option buyer can exercise the right at any
time before the final maturity T . In a Bermudan option, exercise of right is possible on any
of finite predetermined dates including T . We hereafter call such dates exercise dates.

Major financial firms hold large portfolios of a wide variety of options, and therefore
pricing them is an important task for business. However, it is also a difficult task. Basi-
cally, the option price is the expected value of the payoff under some stochastic model
describing random time evolution of the underlying assets. Although European options
can be sometimes priced easily, for example, by some analytic formulas, pricing Bermu-
dan and American options typically involves heavy numerical calculations. The difficulty
partly stems from the nature of the problem as dynamic programming. That is, pricing
early-exercisable options contains determining the optimal exercise time as a crucial part.
Although there are some kinds of methods which aim to reflect early exercise to the option
price, each one has pros and cons.

One major category of pricing methods is the Monte Carlo-based method,3 in which
we generate many sample paths of evolution of underlying asset prices, and estimate the
expected payoff as an averaged payoff over the paths. This approach has an advantage in
the case of multiple underlying assets. Namely, in this approach, the estimation error on
the option price decays as ˜O(N–1/2)4 when the sample number N increases, regardless of
the number of the underlying assets d. In other words, it suffices to take ˜O(ε–2) samples in
order to achieve the error tolerance ε on the option price. This contrasts to other meth-
ods, for example approaches based on solving partial differential equations [27, 28], whose
complexity is ˜O((1/ε)poly(d)). On the other hand, in the Monte Carlo-based methods, it is
difficult to precisely determine the optimal exercise time, and we have to approximate this
in some way. In many cases, this is done through approximation of the continuation value,
which is the option price at each exercise date in the case that the option buyer forgoes
the exercise. The option should be exercised if the payoff is larger than the continuation
value, and should not be exercised otherwise.

In this category, the least-squares Monte Carlo (LSM) [29] is widely used. LSM estimates
the continuation value at each exercise date by linear regression using the generated sample
paths as training data, and then, going backward from the final maturity to the present,
finds the present option price.

Note that this method can also price American options approximately, replacing ex-
ercisability at any point in the continuous time period with that at discrete dates with
sufficiently small intervals.

In this paper, we propose a new method for Bermudan option pricing, combining Cheby-
shev interpolation and quantum algorithm for Monte Carlo integration [30–32], which is

3We refer to [26] as a textbook on Monte Carlo simulation and its application to finance.
4
˜O(·) hides logarithmic factors in the ordinary big O notation O(·).

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 3 of 27

based on quantum amplitude estimation (QAE) [31, 33–42]. As far as the author knows,
this is the first proposal on the quantum method for Bermudan option pricing. Cheby-
shev interpolation is a widely used method for function approximation,5 and has already
been used in some (classical) methods for Bermudan option pricing [44–50]. In the pro-
posed method, given the access to the quantum circuit (or, the oracle) for time evolution
of underlying asset prices, we calculate the continuation values at the interpolation nodes
by the quantum algorithm, and find Chebyshev interpolation using these values. Impor-
tantly, this method outputs an estimation of the option price with the error at most ε, call-
ing the oracle only ˜O(ε–1) times. Thus, as we commonly observed in applications of QAE
to various kinds of problems, we obtain the quadratic speed-up compared with the clas-
sical Monte Carlo-based methods such as LSM and the Chebyshev interpolation-based
methods.

The rest of this paper is organized as follows. In Sect. 2, we briefly explain Chebyshev
polynomials and function approximation by them. We present how to calculate the coeffi-
cients of Chebyshev expansion in general and the upper bound for the approximation er-
ror. In Sect. 3, we present the general formulation of Bermudan option pricing and explain
LSM as a typical classical solutions. In Sect. 4, we explain QAE and QAE-based Monte
Carlo integration. Then, in Sect. 5, we present the new algorithm for Bermudan option
pricing based on Chebyshev interpolation and QAE. We also present an upper bound on
the price error in the method, and that on the complexity sufficient to achieve the given
error tolerance. In Sect. 6, we make some remarks: comparison with existing methods,
comments on exponential factors with respect to the exercise date number in the error
bound, and the possibility of quantization of LSM. Section 7 summarizes this paper. All
proofs are presented in the Appendix.

1.1 Notations
We here explain the notations used in this paper.
N denotes the set of all positive integers, andN0 := {0}∪N. We define [n] := {i ∈N | i ≤ n}

for any n ∈ N, and [n]0 := {i ∈ N0 | i ≤ n} for any n ∈ N0. We also define N≥n := {i ∈ N | i ≥
n} for n ∈N. Similarly, we define R>a := {x ∈R | x > a} and R≥a := {x ∈ R | x ≥ a} for a ∈R.
R+ denotes the set of all positive real number, that is, R>0.

For a, b ∈ N0, δa,b denotes the Kronecker delta, which is 1 if a = b or 0 otherwise. For
d ∈N and �l1,�l2 ∈N

d
0 , we also define δ�l1,�l2 , which is 1 if �l1 =�l2 and 0 otherwise.

For a measure space (�,F ,μ) and p ∈R≥1, Lp(�,μ) denotes the Lp space on it.
The indicator function 1C takes 1 if the condition C is satisfied, and 0 otherwise.
In this paper, we consider quantum states of systems consisting of some quantum reg-

isters with some qubits. For x ∈ R, |x〉 denotes one of the computational basis states on
some register, whose bit string corresponds to the binary representation of x with trun-
cation at some digit. For d ∈ N and �x = (x1, . . . , xd)T ∈ R

d , |�x〉 := |x1〉 · · · |xd〉 is the state on
the d-register system.

2 Approximation of functions by Chebyshev interpolation
For l ∈ N0, the l-th Chebyshev polynomial (of the first kind) is defined as

Tl(x) := cos
(

l · arccos(x)
)

, (1)

5See [43] as a textbook on this topic.

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 4 of 27

where x ∈ [–1, 1]. One of its important properties is the discrete orthogonality: for any
m ∈N0 and l1, l2 ∈ [m]0,

m
∑

j=0

Tl1 (xm,j)Tl2 (xm,j) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0; if l1 �= l2,

m + 1; if l1 = l2 = 0,
m+1

2 ; if l1 = l2 > 0.

(2)

Here, xm,j is the Chebyshev node defined as

xm,j = cos

(j + 1
2

m + 1
π

)

(3)

for j ∈ [m]0. xm,0, . . . , xm,m are the zeros of Tm+1(x).
We also define the tensorized Chebyshev polynomials on a general hyperrectangle in

R
d , where d ∈N. That is, given

D = [L1, U1] × · · · × [Ld, Ud], (4)

with L1, . . . , Ld, U1, . . . , Ud ∈R satisfying L1 < U1, . . . , Ld < Ud , we define

˜TD,�l (�S) :=
d

∏

i=1

Tli
(

θD,i(Si)
)

(5)

for every �l = (l1, . . . , ld)T ∈N
d
0 and �S = (S1, . . . , Sd)T ∈D, where

θD(�S) :=
(

2S1 – U1 – L1

U1 – L1
, . . . ,

2Sd – Ud – Ld

Ud – Ld

)T

. (6)

For the above polynomials, the orthogonality relation is now

∑

�x∈Gd,m
D

˜TD,�l1 (�s)˜TD,�l2 (�s) =

⎧

⎨

⎩

(m+1)d

2ℵ(�l1) ; if �l1 =�l2,

0; if �l1 �=�l2

(7)

for every m ∈ N and �l1,�l2 ∈ [m]d
0 , where ℵ(�l) := #{i ∈ [d] | li > 0} for �l = (l1, . . . , ld)T ∈ N

d
0 ,

and Gd,m
D is the set of points �SD,m

�j ∈D written in the form of

�SD,m
�j :=

(

U1 – L1

2
xm,j1 +

U1 + L1

2
, . . . ,

Ud – Ld

2
xm,jd +

Ud + Ld

2

)T

(8)

with �j = (j1, . . . , jd)T ∈ [m]d
0 .

We can use the above polynomials for function approximation. Given D as (4) and m ∈
N, we define the Chebyshev interpolation of a function f : D →R as

�D,m[f](�S) :=
∑

�l∈[m]d
0

af ,�l˜TD,�l (�S) (9)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 5 of 27

for every �S ∈D, where the coefficient af ,�l is calculated by

af ,�l :=
2ℵ(�l)

(m + 1)d

∑

�S∈Gd,m
D

f (�S)˜TD,�l (�S) (10)

for every �l ∈ [m]d
0 . This is in fact an interpolation, since �D,m[f](�S) = f (�S) for every node

�S ∈ Gd,m
D .

The error in the above approximation has been investigated in [47, 51]. They gave the
error bound, making an assumption on analyticity of the interpolated function f . We here
present the theorem on such a error in the case where we are given the values of f at the
Chebyshev nodes with some errors [47]. However, let us make some definitions prior to
the theorem. For ρ ∈ R>1, the Bernstein ellipse Bρ is defined as the open region in the
complex plane bounded by the ellipse { 1

2 (u + u–1) | u ∈ C, |u| = ρ}. We also define the
generalized Bernstein ellipse as BD,ρ := (η1 ◦Bρ) ×· · ·× (ηd ◦Bρ), where, for every i ∈ [d],
ηi(z) is the map from C to C defined as ηi(z) := Ui–Li

2 z + Ui+Li
2 . Furthermore, we define the

multivariate version of the Lebesgue constant of the Chebyshev nodes: for every m ∈ N,

d,m := max
(x1,...,xd)T ∈[–1,1]d

∑

(j1,...,jd)T ∈[m]d
0

d
∏

i=1

�m
ji (xi), (11)

where

�m
j (x) :=

∏

k∈[m]0\{j}

x – xm,k

xm,j – xm,k
(12)

for every j ∈ [m]0. As [47] showed,

d,m ≤
d

∏

i=1

(

2
π

log(m + 1) + 1
)

(13)

holds, which is derived from the well-known upper bound
1,m ≤ 2
π

log(m + 1) + 1 [43].
Then, the theorem is as follows.6

Theorem 1 Let d and m be positive integers. Let D be a hyper-rectangle like (4). Let f :
D → R be a function that has an analytic extension to BD,ρ for some ρ ∈ R>1. Besides,
assume that sup�s∈BD,ρ

|f (�s)| ≤ B for some B ∈R. Moreover, suppose that we are given a real
number f̂�j for every �j ∈ [m]d

0 , and that there exists ε ∈R such that

∣

∣f
(�SD,m

�j
)

– f̂�j
∣

∣ ≤ ε (14)

holds for every �j ∈ [m]d
0 . Then,

max
�S∈D

∣

∣f (�S) – f̃ (�S)
∣

∣ ≤ εint(ρ, d, m, B) +
d,mε (15)

6[47–50] considered the more general case, where the values of ρ and m are different for different directions in R
d . In this

paper, we take common values of ρ and m for every direction, for simplicity.

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 6 of 27

holds. Here, for every �S ∈D, f̃ (�S) is defined as

f̃ (�S) :=
∑

�l∈[m]d
0

ã�l˜TD,�l (�S), (16)

with the coefficients ã�l calculated by

ã�l :=
2ℵ(�l)

(m + 1)d

∑

�j∈[m]d
0

f̂�j˜TD,�l
(�SD,m

�j
)

(17)

for every �l ∈ [m]d
0 , and

εint(ρ, d, m, B) := 2
d
2 +1

√
dBρ–m(

1 – ρ–2)– d
2 . (18)

3 Bermudan option pricing
3.1 General formulation
In this paper, we consider pricing a Bermudan option with d ∈ N underlying assets and
K ∈ N exercise dates t1, . . . , tK , which satisfy t0 < t1 < · · · < tK with t0 := 0 being the
present and tK := T ∈ R+ being the final maturity. This is formulated as follows. Under
some filtered probability space (�,F , (Ft)t≤0,P), consider the S-valued Markov process
�S(t) := (S1(t), . . . , Sd(t))T , where S is a subset of Rd equipped with its Borel σ -algebra in-
herited from R

d , and �S0 := �S(0) is deterministic. �S(t) corresponds to the values of the un-
derlying asset prices at time t, or transformations of them by some function (for example,
the logarithms of the asset prices). We are mainly interested in its values at t1, . . . , tK , that
is, the discrete-time process �Sk = (S1,k , . . . , Sd,k) := �S(tk), k ∈ [K]0. We hereafter denote an
instance of this process, which is a (K + 1)-tuple of elements of S , as S = (�S0, �S1, . . . , �SK).
Besides, suppose that we are given the function f pay

k ∈ L2(S ,ρk) for every k ∈ [K], where
ρk is the image probability measure on S induced by �Sk . This corresponds to the payoff
which arises by the exercise at tk . Although we assume that the risk-free rate is 0 for sim-
plicity in this paper, we can consider that f pay

k is the discounted payoff, that is, the product
of the payoff and the discount factor. Then, the price of the Bermudan option at tk with
�Sk = �s ∈ S is given as

Vk(�s) := sup
τ∈Tk

E
[

f pay
τ (�Sτ) | �St = �s], (19)

where E[·] denotes the (conditional or unconditional) expected value with respect to P,
and Tk , k ∈ [K] is the set of all {k, . . . , K}-valued stopping times. In particular, the present
option price is

V0(�s) := sup
τ∈T

E
[

f pay
τ (�Sτ)

]

, (20)

where T = T1.
The problem to find V0 can be written as a kind of dynamic programming, that is,

Vk(�s) =

⎧

⎨

⎩

f pay
K (�s); k = K ,

max{f pay
k (�s), Qk(�s)}; k = 1, . . . , K – 1

(21)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 7 of 27

for every �s ∈ S , and

V0 = E
[

V1(�S1)
]

. (22)

Here, for every k ∈ [K – 1] and �s ∈ S ,

Qk(�s) := E
[

Vk+1(�Sk+1) | �Sk = �s] (23)

is called the continuation value. This corresponds to the option price at tk in the case that
the option has not been exercised at that time and that �Sk = �s.

Note that this problem can be seen as finding the optimal exercise date τop ∈ T , which
maximizes (20). This can be recursively determined as

τK = K ,

τk = k1f pay
k (�Sk)≥Qk (�Sk) + τk+11f pay

k (�Sk)<Qk (�Sk), k ∈ [K – 1]
(24)

and τop = τ1. Also note that

Qk(�s) = E
[

f pay
τk+1

(�Sτk+1) | �Sk = �s], (25)

for every k ∈ [K – 1], which means that Qk is the expected value of the payoff under the
exercise strategy τk+1.

3.2 Least squares Monte Carlo
We here explain LSM [29], as an algorithm for Bermudan option pricing. This is one of the
widely used methods in practical business, and the theoretical error bound on the price
in the method has been investigated [52–61].

Omitting some technical details, we describe the outline of LSM as follows. As a prepa-
ration, for every k ∈ [K – 1], we determine the set of functions Hk ⊆ L2(S ,ρk) for ap-
proximation of the continuation value Qk . One common choice is Hk = Rd,m, the set of
all real-coefficient polynomials on R

d of degree at most m ∈ N, and we hereafter con-
sider this. Next, we generate Nsamp ∈ N≥2 sample paths of underlying asset prices, which
are denoted as Si = (�S0, �S(i)

1 , . . . , �S(i)
K), i ∈ [Nsamp]. Then, we determine the stopping time,

which approximate the optimal one τop, by the following procedure. First, we set τ̂K ,i = K
for every i ∈ [Nsamp]. For k ∈ [K – 1], given τ̂k+1,i for every i ∈ [Nsamp], we determine the
approximate continuation value ̂Qk as the element gk in Rd,m, which minimizes

1
Nsamp

Nsamp
∑

i=1

(

gk
(�S(i)

k
)

– f pay
τ̂k+1,i

(�S(i)
τ̂k+1,i

))2, (26)

or, in other words, best fits to the realized payoffs under the stopping time τ̂k+1,i on the
sample paths. It is guaranteed by statistical leaning theory that fitting to the sample values
of the payoff, which distribute around the continuation value, yields the approximation of
the continuation value [55, 57, 59–61]. Then, we set

τ̂k,i =

⎧

⎨

⎩

k; if ̂Qk(�S(i)
k) ≤ f pay

k (�S(i)
k),

τ̂k+1,i; otherwise
(27)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 8 of 27

for every i ∈ [Nsamp]. By repeating this until we reach k = 1, we get τ̂1,i, and finally

̂V0 :=
1

Nsamp

Nsamp
∑

i=1

f pay
τ̂1,i

(�S(i)
τ̂1,i

)

(28)

as an approximation of V0.
Let us make some comments on the procedure. First, note that it is assumed that we can

generate sample paths Si. In the usual situation where the stochastic differential equation
(SDE) for �S(t) is given, we can use some method for numerical simulation of SDEs such
as Euler-Maruyama method. Second, we mention how to find gk minimizing (26). Note
that this is just least-squares linear regression, since Rd,m is a vector space. Therefore,
we can solve this by various methods, for example, solving the normal equation of linear
regression, some numerical optimization, and so on.

Then, let us mention the relationship between the error and the sample number in LSM.
According to [61], under some technical assumptions, taking appropriately large m, we
obtain the error bound on the option price which scales as

Esamp
[|̂V0 – V0|

]

= ˜O
(

(Nsamp)– n(p–2)
2n(p+2)+d(p–2)

)

. (29)

Here, Esamp[·] denotes the expectation with respect to randomness of samples, and n and p
are the quantities which characterize smoothness of Q1(�S), . . . , QK–1(�S) and boundedness
of the norms of f pay

1 (�S), . . . , f pay
K (�S), respectively (see [61] for more details). For larger p and

n, the RHS of (29) decreases faster against the increase of Nsamp. In the limit of n, p → ∞,
which means that Qk ’s are highly smooth and the norms of f pay

k ’s are well-bounded, the
RHS of (29) becomes ˜O(N–1/2

samp), which coincides with the well-known error decay rate in
Monte Carlo integration. Conversely, in this limit, it is sufficient to take ˜O(ε–2) samples in
order to achieve the error tolerance ε.

4 Quantum amplitude estimation and quantum algorithm for Monte Carlo
integration

4.1 Quantum amplitude estimation (QAE)
We here briefly review QAE. Consider the system consisting of a quantum register R1 and
a qubit R2. Suppose that we are given the oracle A, which transforms |0〉|0〉, the state in
which all qubits in R1 and R2 are set to |0〉, into

A|0〉|0〉 =
√

a|ψ1〉|1〉 +
√

1 – a|ψ0〉|0〉 =: |�〉 (30)

with some a ∈ (0, 1). Here, the first and second kets correspond to R1 and R2 respectively,
and |ψ0〉, |ψ1〉 are some quantum states. Then, our goal is estimating a, which is the prob-
ability to obtain 1 in R2 when we measure |�〉, with the error tolerance ε. There exist some
algorithms which output such an estimation with O(ε–1) calls to A and its inverse A† in
total [31, 33–36]. Although these QAE algorithms output a number close to a not with cer-
tainty but with some probability, we can enhance the success probability by running QAE
many times and take the median of the outputs [30, 62]. Let us define the (NQAE, Nrep)-
QAE as the method for estimating a which runs Nrep rounds of QAE and makes NQAE

calls to A and A† in total in each round. Obviously, in the (NQAE, Nrep)-QAE, A and A† are

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 9 of 27

called NQAENrep times in total. Then, combining Theorem 12 in [33] and Lemma 6.1 in
[62], we obtain the following theorem.

Theorem 2 Suppose that we are given the accesses to A in (30) and its inverse A†. Then,
for any γ ∈ (0, 1) and ε ∈ (0, 0.1), a (NQAE, Nrep)-QAE, where the positive integers NQAE and
Nrep satisfy

NQAE ≥ 7
ε

(31)

and

Nrep ≥ 12
⌈

log
(

γ –1)⌉ + 1 (32)

respectively, outputs ã ∈R such that

|ã – a| ≤ 7
NQAE

≤ ε, (33)

where a is defined as (30), with probability higher than 1 – γ .

Here, (31) is derived from the inequality in Theorem 12 in [33] with k = 1, that is,

|ã – a| ≤ 2π
√

a(1 – a)
M

+
π2

M2 , (34)

where M = NQAE/2 under the current definition. Using
√

a(1 – a) ≤ 1
2 , we see that (34) im-

plies |ã – a| ≤ 7/NQAE for NQAE ≥ 70, which follows from (31) and 0 < ε < 0.1. In summary,
if NQAE satisfies (31) for ε ∈ (0, 0.1), the error in QAE is suppressed to at most ε with high
probability. Hereafter, we say that a (NQAE, Nrep)-QAE succeeded if it output ã such that
|ã – a| ≤ 7/NQAE.

4.2 Quantum algorithm for Monte Carlo integration
One application of QAE is the algorithm for Monte Carlo integration, that is, the method
to calculate expected values. Suppose that we want to calculate E[F(�X)], the expected
value of F(�X), where �X is some real vector-valued stochastic variable and F is a real-valued
function acting on �X. We also assume that the range of F is in [0, 1], and, if not, we make
this hold by adding and/or multiplying some constants to F . Furthermore, suppose that
we can use the following oracles O�X and OF . O�X is the oracle to generate the state in which
the distribution of �X is encoded. That is, O�X operates on a quantum register and transform
the state with all qubits set to |0〉 into

O�X |0〉 =
N�X
∑

i=1

√
pi|�xi〉, (35)

where �x1, . . . , �xN�X are N�X ∈ N possible values of �X and pi, i ∈ [N�X] is the probability that
�X = �xi. Here, we assume that the set of all the values that �X can take is finite. If �X is con-
tinuous, we need some discretization. How to create states corresponding to widely used

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 10 of 27

distributions such as normal distribution has been investigated [13, 63]. The second oracle
OF operates on a two-register system, and, using the first register as the input �x, outputs
F(�x) into the second register. That is, for any �x in the domain of F ,

OF |�x〉|0〉 = |�x〉|F(�x)〉. (36)

By these oracles, the following computation is possible. Preparing two registers R1, R2 and
a qubit R3, and initializing all of them to |0〉, we perform

|0〉|0〉|0〉

→
N�X
∑

i=1

√
pi|�xi〉|0〉|0〉

→
N�X
∑

i=1

√
pi|�xi〉

∣

∣F(�xi)
〉|0〉

→
N�X
∑

i=1

√
pi|�xi〉

∣

∣F(�xi)
〉(
√

F(�xi)|1〉 +
√

1 – F(�xi)|0〉), (37)

where the first, second and third kets correspond to R1, R2 and R3, respectively. We use O�X
and OF at the first and second arrows, respectively. The transformation at the third arrow
is done by arithmetic circuits [64] and controlled rotation gates. Note that the probability
to obtain 1 in R3 when we measure the final state in (37) is

∑N�X
i=1 piF(�xi), that is, E[F(�X)].

Therefore, using the whole operation in (37) as the oracle A, we can estimate E[F(�X)] by
QAE.

5 Bermudan option pricing by Chebyshev interpolation and QAE
Now, let us present the method for Bermudan option pricing by Chebyshev interpolation
and QAE.

5.1 Assumptions
We begin with making some assumptions necessary to execute the proposed method. The
first one is as follows.

Assumption 1 We are given the access to the oracle Ostep,k , which generates the state
corresponding to the probability distribution of �Sk+1 conditional on �Sk . That is, for every
k ∈ [K – 1]0 and �S ∈ S ,

Ostep,k : |�S〉|0〉 �→
∑

�s∈ ˜Sk+1(�S)

√

pk+1(�s; �S)|�S〉|�s〉, (38)

where ˜Sk+1(�S) is the set of possible values of �Sk+1 under the condition that �Sk = �S, and

pk+1(�s; �S) := P(�Sk+1 = �s | �Sk = �S). (39)

We here make comments on how to implement Ostep,k . As mentioned in Sect. 3, usu-
ally, following some SDE and some numerical method such as Euler-Maruyama, we can

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 11 of 27

generate random sample values of �Sk+1 with the given value of �Sk as the initial condition.
Implementations of such a calculation on quantum circuits have been discussed in the pre-
vious papers [7, 9, 13]. That is, we can prepare the states corresponding to some (discretely
approximated) random variables (e.g. standard normal) on the other registers, and, using
them at discretized time steps, generate the path of �S(t) from tk to tk+1. This yields the
state like (38). We should also note that, in Assumption 1, it is assumed that �Sk+1 can take
only a finite number of values for the fixed �Sk . This is not the case in the most models of
�S(t), in which it takes continuous values. However, under the aforementioned implemen-
tations for time evolution of �S(t), in which both time and random variables are discretely
approximated, the number of the possible values of �Sk necessarily becomes finite.

Hereafter, we are mainly interested in the number of calls to Ostep,k in calculating the
option price as a measure of complexity, since calculation for time evolution of underlying
asset prices is typically the most time-consuming part in option pricing.

The second assumption is as follows. Here, IA denotes the set of all real-valued func-
tions on a given subset A⊆R

d .

Assumption 2 For every k ∈ [K – 1], we are given the following
• the hyper-rectangle Dk := [L1,k , U1,k] × · · · × [Ld,k , Ud,k] ⊆ S , with

L1,k , . . . , Ld,k , U1,k , . . . , Ud,k ∈R satisfying L1,k < U1,k , . . . , Ld,k < Ud,k ,
• V OB

k ∈ IS\Dk

such that the following (i) and (ii) are satisfied.
(i) There exists εOB

k ∈R+ such that either

∣

∣V OB
k (�s) – Vk(�s)

∣

∣ < εOB
k (40)

or

∣

∣Fk[Vk](�s) – Vk(�s)
∣

∣ < εOB
k (41)

is satisfied for any �s ∈ S \Dk . Here, Fk[·] is the ‘flat extrapolation operator’ defined
as

Fk[F](�s) := F
(

bk(�s)
)

, (42)

bk(�s) :=
(

min
{

U1,k , max{L1,k , s1}
}

, . . . , min
{

Ud,k , max{Ld,k , sd}
})T (43)

for any F ∈ IDk and �s = (s1, . . . , sd)T ∈ S .
(ii) If, for some G ∈ IDk , we have the access to the oracle OG such that

OG|�s〉|0〉 = |�s〉∣∣G(�s)
〉

(44)

for any �s ∈Dk , we also have the access to the oracle ˜OG, which acts as

˜OG|�s〉|0〉 = |�s〉∣∣Gk[G](�s)
〉

. (45)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 12 of 27

Here, Gk[·] is defined as

Gk[H](�s) :=

⎧

⎨

⎩

V OB
k (�s); if �s ∈Ak ,

Fk[H](�s); otherwise
(46)

for any H ∈ IDk and �s ∈ S , where Ak is a subset of S \Dk such that (40) and (41)
hold for any �s ∈Ak and any �s ∈ (S \Dk) \Ak , respectively.

We also define GK [H](�s) := H(�s) for any H ∈ IS and �s ∈ S .
Roughly speaking, this assumption means that, when some of underlying asset prices

are extremely large or small, we can approximate the option value Vk by some known and
easily computable function V OB

k or the flat extrapolation of Vk from moderate underly-
ing asset prices. Postponing explanation on why this assumption is necessary to Sect. 5.2,
we here see that it is actually satisfied in some typical settings in option pricing. For ex-
ample, let us consider a basket put option, whose payoff function is f pay

k ((s1, . . . , sd)T) =
max{κ – s1 – · · · – sd, 0} with some κ ∈ R for every k ∈ [K], under some model in which
S1(t), . . . , Sd(t) are unbounded from above but bounded from below, say, by 0, as the Black-
Scholes model. Then, in each of the following situations, (40) or (41) holds.

• If some of S1,k , . . . , Sd,k are extremely large, the option is far out-of-money, and
therefore its price is almost 0.

• If some of S1,k , . . . , Sd,k are smaller than the sufficiently small thresholds
L1,k , . . . , Ld,k ∈R+ respectively, but the others are not, setting the former to the
thresholds hardly affects the option price.

• If all of S1,k , . . . , Sd,k are sufficiently close to 0, the option is exercised at tk , and
therefore Vk(�Sk) = f pay

k (�Sk).
Thirdly, we make the following assumption, which is necessary for bounding the inter-

polation error in the proposed method.

Assumption 3 For every k ∈ [K – 1], Qk(�S) has an analytic extension to BDk ,ρk , where Dk

is given in Assumption 2 and ρk is some real number greater than 1, and

sup
�s∈BDk ,ρk

∣

∣Qk(�S)
∣

∣ ≤ Bk (47)

holds, where Bk is some positive real number.

5.2 The proposed method
Under these assumptions, we can construct the procedure for Bermudan option pricing
based on QAE and Chebyshev interpolation. This is also a backward calculation similarly
to LSM; we sequentially calculate the approximate continuation value ˜Qk and option price
˜Vk at tk , going from the final maturity to the present. Roughly, the outline is as follows. As
preparation, for every k ∈ [K – 1], we set mk ∈ N, the degree of Chebyshev polynomials
used for the approximation, and the hyper-rectangle Dk = [L1,k , U1,k] × · · · × [Ld,k , Ud,k] ⊆
S . We begin the iterative calculation by setting ˜VK (�S) := f pay

K (�S) for every �S ∈ S . Then, for
k ∈ [K – 1], given ˜Vk+1, we estimate the expected value of ˜Vk+1(�Sk+1) under the condition
that �Sk = �SDk ,mk

�j for every Chebyshev node �SDk ,mk
�j by QAE, and denote the estimation

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 13 of 27

as ̂QQAE
k,�j . Using these, we construct ˜Qk , the Chebyshev interpolation of the approximate

continuation value, and set ˜Vk(�S) = max{˜Qk(�S), f pay
k (�S)} for every �S ∈ S . We repeat these

steps until we reach k = 1. Finally, we estimate the expected value of ˜V1(�S1) by QAE again,
and let the result be an approximation of V0.

The fully detailed procedure is shown in Algorithm 1.
Some additional explanations should be made. The first one is on |�k,�j〉 in Step 4. For

every k ∈ [K – 1] and�j ∈ Jk , given the approximation ˜Vk+1 ∈ IDk+1 of Vk+1, we generate the
state |�k,�l〉 on the appropriate multi-register system with the last one being single-qubit,

Algorithm 1 The method for Bermudan option pricing based on Chebyshev interpolation
and QAE
Require:

• mk ∈N for every k ∈ [K – 1], the degree of Chebyshev polynomials.
• NQAE

k ∈N for every k ∈ [K – 1]0, the iteration number in each run of QAE in
calculating ̂QQAE

k,�j or ˜V0.

• N rep
k ∈N for every k ∈ [K – 1]0, the number of rounds of QAE in calculating ̂QQAE

k,�j
or ˜V0.

• ˜V max
k ∈R+ for every k ∈ [K], the upper bound of {|Gk[V̂k](�s)| | �s ∈ S}.

• Dk = [L1,k , U1,k] × · · · × [Ld,k , Ud,k] ⊆ S for every k ∈ [K – 1], the hyper-rectangle
for Chebyshev interpolation. Here, L1,k , . . . , Ld,k , U1,k , . . . , Ud,k ∈ S satisfy
L1,k < U1,k , . . ., Ld,k < Ud,k .

1: Set ˜VK (�S) := f pay
K (�S) for every �S ∈ S .

2: for k = K – 1 to 1 do
3: for all �j ∈ Jk := [mk]d

0 do
4: Using (NQAE

k , N rep
k)-QAE, obtain an estimation ˜Pk,�j of the probability Pk,�j to ob-

serve 1 on the last qubit in measuring |�k,�j〉 in (50), and let (2˜Pk,�j – 1)˜V max
k be

̂QQAE
k,�j .

5: end for
6: Set

˜Qk(�S) :=
∑

�l∈Jk

ãk,�l ˜TDk ,�l (�S) (48)

for every �S ∈Dk , with ãk,�l calculated as

ak,�l :=
2ℵ(�l)

(mk + 1)d

∑

�j∈Jk

̂QQAE
k,�j

˜TDk ,�l
(�SDk ,mk

�j
)

(49)

for �l ∈ Jk .
7: Set ˜Vk(�S) := max{f pay

k (�S),˜Qk(�S)} for any �S ∈Dk .
8: end for
9: Using (NQAE

0 , N rep
0)-QAE, obtain an estimation ˜P0 of the probability P0 to observe 1

on the last qubit in measuring |�0〉 in (53), and output (2˜P0 – 1)˜V max
1 as ˜V0.

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 14 of 27

by the following operation:

|0〉|0〉|0〉|0〉
→ ∣

∣�SDk ,mk
�j

〉|0〉|0〉|0〉

→ ∣

∣�SDk ,mk
�j

〉
∑

�s∈ ˜Sk+1(�SDk ,mk
�j)

√

pk+1
(�s; �SDk ,mk

�j
)|�s〉|0〉|0〉

→ ∣

∣�SDk ,mk
�j

〉
∑

�s∈ ˜Sk+1(�SDk ,mk
�j)

√

pk+1
(�s; �SDk ,mk

�j
)|�s〉∣∣Gk+1[˜Vk+1](�s)

〉|0〉

→ ∣

∣�SDk ,mk
�j

〉
∑

�s∈ ˜Sk+1(�SDk ,mk
�j)

√

pk+1
(�s; �SDk ,mk

�j
)|�s〉∣∣Gk+1[˜Vk+1](�s)

〉

⊗
(

√

1
2

+
Gk+1[˜Vk+1](�s)

2˜V max
k+1

|1〉 +

√

1
2

–
Gk+1[˜Vk+1](�s)

2˜V max
k+1

|0〉
)

=: |�k,�j〉, (50)

where Ostep,k in Assumption 1 and ˜O
˜Vk+1 in Assumption 2 are used at the second and third

arrows, respectively. Note that the probability to obtain 1 on the last qubit in measuring
|�k,�l〉 is

Pk,�j =
1
2

+
̂Qk(�SDk ,mk

�j)

2˜V max
k+1

, (51)

where

̂Qk(�S) := E
[

Gk+1[˜Vk+1](�Sk+1) | �Sk = �S]

=
∑

�s∈ ˜Sk+1(�S)

pk+1(�s; �S)Gk+1[˜Vk+1](�s). (52)

Therefore, as long as Gk+1[˜Vk+1] is close to Vk+1, (2Pk,�j – 1)˜V max
k+1 = ̂Qk(�SDk ,mk

�j) is close to

Qk(�SDk ,mk
�j). This is why we can obtain approximations of the continuation values at Cheby-

shev nodes by Step 4, with the errors from QAEs being also small.
Second, let us explain the state |�0〉 in Step 9. Given ˜V1, we can generate |�0〉 similarly

to |�k,�j〉 as

|0〉|0〉|0〉|0〉
→ |�S0〉|0〉|0〉|0〉

→ |�S0〉
∑

�s∈ ˜S1(�S0)

√

p1(�s; �S0)|�s〉|0〉|0〉

→ |�S0〉
∑

�s∈ ˜S1(�S0)

√

p1(�s; �S0)|�s〉∣∣G1[˜V1](�s)
〉|0〉

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 15 of 27

→ |�S0〉
∑

�s∈ ˜S1(�S0)

√

p1(�s; �S0)|�s〉∣∣G1[˜V1](�s)
〉

⊗
(

√

1
2

+
G1[˜V1](�s)

2˜V max
1

|1〉 +

√

1
2

–
G1[˜V1](�s)

2˜V max
1

|0〉
)

=: |�0〉, (53)

where the last ket corresponds to a single-qubit register. Since the probability P0 to obtain
1 on the last qubit in measuring |�0〉 satisfies

(2P0 – 1)˜V max
1 = ̂V0, (54)

where

̂V0 := E
[

G1[˜V1](�S1)
]

=
∑

�s∈ ˜S1(�S0)

p1(�s; �S0)G1[˜V1](�s), (55)

we can obtain an approximation of V0 by Step 9, as long as G1[˜V1] is close to V1 and the
QAE error is small.

Lastly, let us comment on the reason why Assumption 2 is necessary. This is because we
have to handle underlying asset prices out of Dk+1 in Steps 4 and 9, or, more specifically,
in generating |�k,�j〉 and |�0〉. In fact, when we generate |�k,�j〉, �Sk+1 can be out of Dk+1 with
some probability. In particular, when |�k,�j〉 corresponds to a Chebyshev node �SDk ,mk

�j close
to the boundary of Dk , or, in other words, the condition that �Sk is close to the boundary
of Dk is imposed, such a probability becomes non-negligible.

5.3 Evaluation of the error
Then, let us consider the error on the present option price in the proposed method. First,
we have the following theorem.

Theorem 3 Under Assumptions 1 to 3, consider Algorithm 1. Suppose that, for every k ∈
[K – 1] and �j ∈ Jk ,

∣

∣̂Qk
(�SDk ,mk

�j
)

– ̂QQAE
k,�j

∣

∣ ≤ ε
QAE
k (56)

is satisfied, where ε
QAE
k is some positive real number. Moreover, suppose that

|̂V0 – ˜V0| ≤ ε
QAE
0 (57)

is satisfied for some ε
QAE
0 ∈R+. Then,

|V0 – ˜V0| ≤
K–1
∑

k=1

˜
1,k–1ε
int
k +

K–1
∑

k=1

˜
1,k–1ε
OB
k +

K–1
∑

k=0

˜
1,kε
QAE
k (58)

holds, where, for k ∈ [K – 1] and k′ ∈ [K – 1]0,

εint
k := εint(ρk , d, mk , Bk) (59)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 16 of 27

and

˜
k,k′ :=

⎧

⎨

⎩

∏k′
i=k
i; if k ≤ k′

1; otherwise
(60)

k :=
(

2
π

log(mk + 1) + 1
)d

. (61)

The proof is presented in Appendix A.1.

5.4 Complexity
Based on Theorem 3, we can evaluate the complexity, that is, the number of calls to Ostep,k

sufficient to achieve the desired level of the error on the present option price.

Corollary 1 Let ε be a real number in (0, 0.1). Under Assumptions 1 to 3, consider Algo-
rithm 1 with the following parameters:

(i) mk , k ∈ [K – 1] satisfying mk ≥ mth
k with

mth
1 =

⌈

1
logρ1

log

(

2d/2+2
√

d(K – 1)(1 – ρ–2
1)–d/2B1

ε˜V max
1

)⌉

mth
k =

⌈

1
logρk

log

(2d/2+2
√

d(K – 1)(1 – ρ–2
k)–d/2

˜
th
1,k–1Bk

ε˜V max
1

)⌉

for k = 2, . . . , K – 1,

(62)

where ˜
th
1,k–1 is determined as ˜
1,k–1 in (60) with m1 = mth

1 , . . . , mk–1 = mth
k–1.

(ii) NQAE
k , k ∈ [K – 1]0 set as

NQAE
k =

⌈

7
ε̄k

⌉

. (63)

Here, ε̄0, . . . , ε̄K–1 are given by

ε̄0 =
1

1 +
∑K–1

k′=1

√

(mk′ + 1)d
˜
1,k′

· ε

4

ε̄k =

√

(mk + 1)d/˜
1,k

1 +
∑K–1

k′=1

√

(mk′ + 1)d
˜
1,k′

· ˜V max
1 ε

4˜V max
k

for k = 1, . . . , K – 1,

(64)

where m0, . . . , mK–1 are set as (i) and ˜
1,1, . . . , ˜
1,K–1 are given as (60) with such
m0, . . . , mK–1.

(iii) N rep
k set to

Nrep := 12
⌈

log

(

Nest

0.01

)⌉

+ 1, (65)

for every k ∈ [K – 1]0. Here, Nest := 1 +
∑K–1

k′=1(mk′ + 1)d with {mk} set as (i).

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 17 of 27

Moreover, suppose that εOB
1 , . . . , εOB

K–1 are 0. Then, Algorithm 1 outputs ˜V0 satisfying |V0 –
˜V0| ≤ ε˜V max

1 with probability higher than 0.99.

The proof is presented in Appendix A.2.
We here explain why the parameters are set as above. As we see in the proof in Ap-

pendix A.2, m1, . . . , mK–1 satisfying (62) make the first term in the RHS in (58) smaller
than ε˜V max

1 /2. Then, for such {mk}k=1,...,K–1, {NQAE
k }k=0,...,K–1 are determined as (63) so that

Ntot

Nrep
= NQAE

0 +
K–1
∑

k=1

(mk + 1)dNQAE
k , (66)

that is, the total number Ntot of calls to {Ostep,k}k=0,...,K–1 divided by the QAE repetition
number N rep, is minimized under the constraint that, if all the QAEs in Algorithm 1 suc-
ceed, the third term in the RHS in (58) is smaller than ε˜V max

1 /2. Finally, {N rep
k }k=0,...,K–1

are determined so that the probability that these QAEs all succeed becomes higher than
0.99 = 1– 0.01. In total, Algorithm 1 with the setting in Corollary 1 gives an approximation
of V0 with an error at most ε˜V max

1 with probability higher than 0.99.
Note that, in reality, it is difficult to set mk to mth

k , since ρk and Bk are usually unknown.
In practice, we might set them to some conservatively large values, based on, for exam-
ple, the calculation results of some benchmark pricing problems for various {mk}k=1,...,K–1.
Besides, note that, in the above setting, the half of the error tolerance ε is assigned to
the interpolation error and another half is assigned to the QAE error. Although we can of
course change this assignment ratio, it affects the complexity only logarithmically, since
the sufficient levels of {mk}k=1,...,K–1 are logarithmically affected by such a change and so
are {N rep

k } compensating the change of {mk}.
Let us consider the dependency of the total complexity on the error tolerance ε. We see

that

mk = O
(

log
(

ε–1)polyloglog
(

ε–1)), (67)

NQAE
k = O

(

ε–1 × polyloglog
(

ε–1)) (68)

for every k ∈ [K – 1], and that

NQAE
0 = O

(

ε–1 logd/2(ε–1)polyloglog
(

ε–1)), (69)

where polyloglog(·) means polylog(log(·)). Combining these with (66), we obtain

Ntot = O
(

ε–1 logd(ε–1)polyloglog
(

ε–1)), (70)

which eventually beats LSM’s complexity ˜O(ε–2) for small ε.

6 Discussion
6.1 Comparison with existing Chebyshev interpolation-based methods
In fact, the idea that we approximate the continuation value by Chebyshev interpolation
is not novel. There are some classical methods for Bermudan option pricing based on
Chebyshev interpolation [44–50]. However, in addition to whether we use QAE or other

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 18 of 27

classical methods for calculating the nodal continuation values, there are the following
differences between the above proposed method and the existing methods.

First, we note that we do not have to use Monte Carlo for calculating the continuation
value, and [44, 45] actually used other methods. These papers considered the situation
where the transition probability of the underlying asset prices can be easily calculated,
and computed the continuation value by the numerical integration of the product of the
transition probability and the option value at the next exercise date. Note that this way
is possible only for some simple models for underlying asset evolution such as the Black-
Scholes model. On the other hand, in more complicated settings where, for example, we
price a multi-asset option under the stochastic local volatility model, Monte Carlo can be
the sole solution, and such a time-consuming situation is a meaningful target for quantum
speed-up. However, combining Chebyshev interpolation with various methods might be
an interesting possibility also in the quantum setup, and worth to be investigated as a
future work.

Let us also mention the differences from [48]. The major difference is that, in the method
in [48], the continuation value is not the target of either Monte Carlo integration or Cheby-
shev interpolation. Instead, the method calculates the conditional expectations of Cheby-
shev polynomials by Monte Carlo or other methods, and find the Chebyshev interpolation
of not the continuation value but the option price at each exercise date. This approach
saves the computational time when we price many options under a same model, since
we can reuse the conditional expectations for interpolations in pricing different options.
Considering the quantum version of this approach might be interesting too.

6.2 Exponential factor with respect to the number of exercise dates in the error
bound

Now, let us make a comment on the factor ˜
1,K–1 in (58), which is reflected into the poly-
loglog factors in (70). This exponentially depends on the number of exercise dates K .
Therefore, it seems that the error on the option price exponentially grows as K increase,
and so does the complexity sufficient to achieve a given error tolerance. Similar situa-
tions arose in the error analyses for LSM [53, 55, 57, 59–61] and classical Chebyshev
interpolation-based methods [48].

However, we should note that (58) is an upper bound on the error, and that the actual
error might not necessarily grows exponentially against K . In fact, in the numerical exper-
iment in [48], where American options were approximately priced as Bermudan options
with a small exercise date interval, the error was suppressed even if hundreds or thousands
of exercise dates were set.

Let us now consider why the factor exponentially depending on K appears in (58). In
the derivation of (58) described in Appendix A.1, we make Assumption 3 on the analyt-
icity and boundedness of the continuation values Qk , and apply Theorem 1 to Chebyshev
interpolation of Qk in Algorithm 1. Since we use not Qk(�SDk ,mk

�j), the values of Qk at the

Chebyshev nodes, but ̂QQAE
k,�j , estimates on Qk(�SDk ,mk

�j) with some errors, in interpolation,
the term like the second term in the RHS in (1) arises in the upper bound of the difference
between Qk and the interpolant ˜Qk , and is amplified at every later interpolation.

On the other hand, we can consider that the actual target of Chebyshev interpolation is
not Qk but ̂Qk in (52). That is, we can regard ̂QQAE

k,�j as not an estimate on Qk(�SDk ,mk
�j) but

that on ̂Qk(�SDk ,mk
�j). Then, we can make an assumption not on analyticity and boundedness

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 19 of 27

of Qk but those of ̂Qk . This leads to a different error bound than Theorem 3. Actually, if we
make Assumption 4 instead of Assumption 3, we have an error bound with no exponential
factor as shown in Theorem 4.

Assumption 4 For every k ∈ [K – 1], ̂Qk(�S) has an analytic extension to BDk ,ρ̂k , where Dk

is given in Assumption 2 and ρ̂k is some real number greater than 1, and

sup
�s∈BDk ,ρ̂k

∣

∣̂Qk(�S)
∣

∣ ≤̂Bk (71)

holds, where ̂Bk is some positive real number.

Theorem 4 Under Assumptions 1, 2, and 4, consider Algorithm 1. Suppose that, for every
k ∈ [K – 1] and �j ∈ Jk , (56) is satisfied for some ε

QAE
k ∈ R+, and that (57) is satisfied for

some ε
QAE
0 ∈ R+. Then,

|V0 – ˜V0| ≤
K–1
∑

k=1

εOB
k +

K–1
∑

k=1

ε̃int
k +

K–1
∑

k=0

kε
QAE
k (72)

holds, where, for every k ∈ [K – 1],

ε̃int
k := εint(ρ̃k , d, mk ,˜Bk), (73)

and
k is defined as (61).

The proof is presented in Appendix A.3. Note that a similar point has been made for
LSM in [59] (Theorem 3.1).

Of course, ̂Qk is defined as (52) with ˜Vk+1, which is the intermediate output in Algo-
rithm 1, and making assumptions on such a thing does not lead to self-contained dis-
cussion. It is more desirable to derive the error bound under assumptions on Qk and/or
other quantities determined independently from pricing algorithms. We leave consider-
ing whether we can obtain an error bound similar to Theorem 4 under such assumptions
or not as a future work.

6.3 Quantization of LSM
Lastly, we make a comment on whether we can consider the quantum algorithm for LSM.
Since there are some quantum algorithms for linear regression [65–71], we naturally won-
der that we can apply these to LSM and then obtain speed-up. However, this is not so
straightforward, since most of these algorithms output the regression result as a quan-
tum state, in which the regression coefficients are amplitude-encoded. Fortunately, some
algorithms [67, 71] output the regression coefficient as classical data. In particular, the
algorithm in [71] has the complexity of ˜O(D7/2κ4/ε) with the tolerance ε, the explana-
tory variable number D, and the condition number κ of the design matrix, from which
we expect the quadratic speed-up of LSM with respect to ε. Nevertheless, applying this
algorithm to LSM is not immediate either, because of some points to be considered. For
example, the complexity has strong dependence on D and κ , which might make the al-
gorithm disadvantageous. Therefore, it will be crucial to evaluate these, especially κ , in

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 20 of 27

addition to finding the basis function set which makes κ as small as possible. We will con-
sider this direction in the future work.

7 Conclusions
In this paper, we considered application of quantum algorithms to Bermudan option pric-
ing. Since there are QAE-based algorithms for Monte Carlo integration, which provide
quadratic speed-up compared with the classical counterparts, and applications of them
to some option pricing problems have been investigated, it is natural to consider to apply
them to Bermudan option pricing. One crucial issue in this problem is how to approxi-
mate the continuation value Qk , which determines the optimal exercise date. In order to
cope with this, we considered combination of QAE and Chebyshev interpolation. That
is, the proposed method estimates the values of Qk on the interpolation nodes by QAE,
and, using such estimates, find a Chebyshev interpolation as an approximation of Qk . We
presented the calculation procedure in detail, along with the error bound and the com-
plexity, which corresponds to the number of calls to the oracle for underlying asset price
evolution, sufficient to achieve the desired error tolerance ε. As expected, this method has
the complexity depending on ε as ˜O(ε–1), which means the quadratic speed-up compared
with LSM, the typical classical algorithm for Bermudan option pricing.

As a future work, it is interesting to consider the quantum version of LSM, as mentioned
in Sect. 6.3. Besides, it is also meaningful to extend the proposed method to other types
of dynamic programming, which is ubiquitous in many fields of science and industry.

Appendix
A.1 Proof of Theorem 3
Proof First, we note that, for every k ∈ [K – 1],

εk ≤ ε̃k (74)

holds, where

εk := max
�S∈Dk

∣

∣Vk(�S) – ˜Vk(�S)
∣

∣, (75)

and

ε̃k :=

⎧

⎨

⎩

εint
K–1 +
kε

QAE
K–1 ; for k = K – 1,

εint
k +
k(εk+1 + εOB

k+1 + ε
QAE
k); for k = 1, . . . , K – 2.

(76)

The proof of this is as follows. We see that, for any k ∈ [K – 1],

∣

∣Vk(�Sk) – Gk[˜Vk](�Sk)
∣

∣ =
∣

∣Vk(�Sk) – ˜Vk(�Sk)
∣

∣ ≤ εk (77)

holds if �Sk ∈Dk , and, under Assumption 2, either

∣

∣Vk(�Sk) – Gk[˜Vk](�Sk)
∣

∣ =
∣

∣Vk(�Sk) – V OB
k (�Sk)

∣

∣ ≤ εOB
k (78)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 21 of 27

or

∣

∣Vk(�Sk) – Gk[˜Vk](�Sk)
∣

∣

=
∣

∣Vk(�Sk) – Fk[˜Vk](�Sk)
∣

∣

≤ ∣

∣Vk(�Sk) – Fk[Vk](�Sk)
∣

∣ +
∣

∣Fk[Vk](�Sk) – Fk[˜Vk](�Sk)
∣

∣

=
∣

∣Vk(�Sk) – Fk[Vk](�Sk)
∣

∣ +
∣

∣Vk
(

bk(�Sk)
)

– ˜Vk
(

bk(�Sk)
)∣

∣

≤ εOB
k + εk (79)

holds if �Sk ∈ S \Dk . Combining these, we obtain

∣

∣Vk(�Sk) – Gk[˜Vk](�Sk)
∣

∣ ≤ εk + εOB
k (80)

for any �Sk ∈ S . This leads to

∣

∣Qk(�S) – ̂Qk(�S)
∣

∣

=
∣

∣E
[

Vk+1(�Sk+1) – Gk+1[˜Vk+1](�Sk+1) | �Sk = �S]∣

∣

≤ E
[∣

∣Vk+1(�Sk+1) – Gk+1[˜Vk+1](�Sk+1)
∣

∣ | �Sk = �S]

≤ εk+1 + εOB
k+1 (81)

for any k ∈ [K – 2] and �S ∈Dk . Thus, with (56), we obtain

∣

∣Qk
(�SDk ,mk

�j
)

– ̂QQAE
k,�j

∣

∣

≤ ∣

∣Qk
(�SDk ,mk

�j
)

– ̂Qk
(�SDk ,mk

�j
)∣

∣ +
∣

∣̂Qk
(�SDk ,mk

�j
)

– ̂QQAE
k,�j

∣

∣

≤ εk+1 + εOB
k+1 + ε

QAE
k (82)

for every k ∈ [K – 2] and �j ∈ Jk . On the other hand, for k = K – 1, noting that QK–1(�S) =
̂QK–1(�S) for any �S ∈ S by definition, we see that

∣

∣QK–1
(�SDK–1,mK–1

�j
)

– ̂QQAE
K–1,�j

∣

∣ ≤ ε
QAE
K–1 (83)

for any �j ∈ JK–1. Then, under Assumption 3, invoking Theorem 1, we obtain

∣

∣Qk(�S) – ˜Qk(�S)
∣

∣ ≤ ε̃k (84)

for any k ∈ [K – 1] and �S ∈Dk , which immediately leads to (74) as

∣

∣Vk(�S) – ˜Vk(�S)
∣

∣

=
∣

∣max
{

f pay
k (�S), Qk(�S)

}

– max
{

f pay
k (�S),˜Qk(�S)

}∣

∣

≤ ∣

∣Qk(�S) – ˜Qk(�S)
∣

∣

≤ ε̃k . (85)

Here, we used |max{a, b} – max{a, c}| ≤ |b – c|, which holds for any a, b, c ∈ R.

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 22 of 27

Next, let us note that, for k ∈ [K – 2],

εk ≤
K–1
∑

k′=k

˜
k,k′–1ε
int
k′ +

K–1
∑

k′=k+1

˜
k,k′–1ε
OB
k′ +

K–1
∑

k′=k

˜
k,k′εQAE
k′ , (86)

holds. We prove this by induction. For k = K – 2, (74) implies that

εK–2

≤ εint
K–2 +
K–2

(

εK–1 + εOB
K–1 + ε

QAE
K–2

)

≤ εint
K–2 +
K–2

(

εint
K–1 +
K–1ε

QAE
K–1 + εOB

K–1 + ε
QAE
K–2

)

=
K–1
∑

k′=K–2

˜
K–2,k′–1ε
int
k′ +

K–1
∑

k′=K–1

˜
K–2,k′–1ε
OB
k′ +

K–1
∑

k′=K–2

˜
K–2,k′εQAE
k′ . (87)

Similarly, if (86) hold for k ∈ {2, . . . , K – 2}, (74) implies that

εk–1

≤ εint
k–1 +
k–1

(

εk + εOB
k + ε

QAE
k–1

)

≤ εint
k–1 +
k–1

(K–1
∑

k′=k

˜
k,k′–1ε
int
k′ +

K–1
∑

k′=k+1

˜
k,k′–1ε
OB
k′ +

K–1
∑

k′=k

˜
k,k′εQAE
k′ + εOB

k + ε
QAE
k–1

)

=
K–1
∑

k′=k–1

˜
k–1,k′–1ε
int
k′ +

K–1
∑

k′=k

˜
k–1,k′–1ε
OB
k′ +

K–1
∑

k′=k–1

˜
k–1,k′εQAE
k′ . (88)

Therefore, (86) is proved for every k ∈ [K – 2].
Finally, the claim is proved as follows. We see that

|V0 – ̂V0|
=

∣

∣E
[

V1(�S1)
]

– E
[

G1[Ṽ1](�S1)
]∣

∣

≤ E
[∣

∣V1(�S1) – G1[Ṽ1](�S1)
∣

∣

]

≤ ε1 + εOB
1

≤
K–1
∑

k=1

˜
1,k–1ε
int
k +

K–1
∑

k=1

˜
1,k–1ε
OB
k +

K–1
∑

k=1

˜
1,kε
QAE
k , (89)

where we used (80) and (86) at the second and last inequalities, respectively. Combining
this and (57), we obtain

|V0 – ˜V0|
≤ |V0 – ̂V0| + |̂V0 – ˜V0|

=
K–1
∑

k=1

˜
1,k–1ε
int
k +

K–1
∑

k=1

˜
1,k–1ε
OB
k +

K–1
∑

k=0

˜
1,kε
QAE
k . (90)

�

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 23 of 27

A.2 Proof of Corollary 1
Proof By simple algebra, we see that m1, . . . , mK–1 satisfying (62) lead to

˜
1,k–1ε
int
k ≤ ε˜V max

1
2(K – 1)

(91)

for every k ∈ [K – 1].
On the other hand, Theorem 2 implies that, for every k ∈ [K – 1] and�j ∈ Jk , using NQAE

k
set as (63), Step 4 in Algorithm 1 gives us ˜Pk,�j, an estimate on Pk,�j in (51), satisfying

|Pk,�j –˜Pk,�j| ≤ ε̄k , (92)

and then ̂QQAE
k,�j satisfying

∣

∣̂Qk
(�SDk ,mk

�j
)

– ̂QQAE
k,�j

∣

∣

=
∣

∣(2Pk,�j – 1)˜V max
k – (2˜Pk,�j – 1)˜V max

k
∣

∣

≤ 2˜V max
k ε̄k

≤
√

(mk + 1)d/˜
1,k

1 +
∑K–1

k′=1

√

(mk′ + 1)d
˜
1,k′

· ˜V max
1 ε

2
=: ε̃QAE

k , (93)

with some probability. Similarly, it is implied that, with NQAE
0 set as (63), Step 9 gives us

˜P0, an estimation on P0, satisfying

|P0 –˜P0| ≤ ε̄0, (94)

and then ˜V0 satisfying

|̂V0 – ˜V0|
=

∣

∣(2P0 – 1)˜V max
0 – (2˜P0 – 1)˜V max

0
∣

∣

≤ 2˜V max
0 ε̄0

≤ 1

1 +
∑K–1

k′=1

√

(mk′ + 1)d
˜
1,k′

· ˜V max
1 ε

2
=: ε̃QAE

0 , (95)

with some probability. Therefore, when all of these succeed,

|V0 – ˜V0|

≤
K–1
∑

k=1

˜
1,k–1ε
int
k +

K–1
∑

k=1

˜
1,k–1ε
OB
k +

K–1
∑

k=0

˜
1,k ε̃
QAE
k

≤ ε˜V max
1
2

+ 0 +
ε˜V max

1
2

= ε˜V max
1 (96)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 24 of 27

holds, according to Theorem 3. Here, we used (91), (93), (95), and the assumption that
εOB

1 , . . . , εOB
K–1 are 0, along with simple algebra.

The remaining task is proving that the probability Pall that all of the estimations in Steps
4 and 9 succeed is larger than 0.99 under the setting of N rep

k as (65). Note that, according
to Theorem 2, with the setting as (65), the probability that Step 4 for a set of k ∈ [K – 1]
and �j ∈ Jk outputs ˜Pk,�j satisfying (92) is higher than

1 –
0.01
Nest

. (97)

Similarly, the probability that Step 9 outputs ˜P0 satisfying (94) is also higher than (97).
Besides, the total number of these estimations is Nest. Combining these, we obtain a lower
bound of Pall as

Pall ≥
(

1 –
0.01
Nest

)Nest

≥ 1 – 0.01 = 0.99, (98)

which completes the proof. �

A.3 Proof of Theorem 4

Proof Because of (56), Theorem 1 implies that

∣

∣̂Qk(�S) – ˜Qk(�S)
∣

∣ ≤ ε̃int
k +
kε

QAE
k (99)

for every k ∈ [K –1] and �S ∈Dk . Besides, for every k ∈ [K –2] and �S ∈Dk , |Qk(�S)–̂Qk(�S)| ≤
εk+1 +εOB

k+1 holds as (81), where εk is defined as (75) for every k ∈ [K – 1], whereas QK–1(�S) =
̂QK–1(�S) by definition of GK [·]. Combining these, we see that, for every k ∈ [K – 1] and
�S ∈Dk ,

∣

∣Qk(�S) – ˜Qk(�S)
∣

∣ ≤ ∣

∣Qk(�S) – ̂Qk(�S)
∣

∣ +
∣

∣̂Qk(�S) – ˜Qk(�S)
∣

∣

≤ εk+1 + εOB
k+1 + ε̃int

k +
kε
QAE
k (100)

holds with εK = 0 and εOB
K = 0, which leads to

∣

∣Vk(�S) – ˜Vk(�S)
∣

∣ ≤ εk+1 + εOB
k+1 + ε̃int

k +
kε
QAE
k (101)

similarly to (85). Therefore, for every k ∈ [K – 1],

εk = max
�S∈Dk

∣

∣Vk(�S) – ˜Vk(�S)
∣

∣ ≤ εk+1 + εOB
k+1 + ε̃int

k +
kε
QAE
k . (102)

This implies

ε1 ≤
K–1
∑

k=2

εOB
k +

K–1
∑

k=1

ε̃int
k +

K–1
∑

k=1

kε
QAE
k . (103)

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 25 of 27

Finally, combining (103) with (57) and |V0 – ̂V0| ≤ ε1 + εOB
1 , which we can see as (89), we

obtain

|V0 – ˜V0|
≤ |V0 – ̂V0| + |̂V0 – ˜V0|
≤ ε1 + εOB

1 + ε
QAE
0

≤
K–1
∑

k=1

εOB
k +

K–1
∑

k=1

ε̃int
k +

K–1
∑

k=0

kε
QAE
k . (104)

�

Acknowledgements
Not applicable.

Funding
This work was supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.

Abbreviations
LSM, least-squares Monte Carlo; QAE, quantum amplitude estimation; SDE, stochastic differential equation; RHS, right
hand side.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
KM as the sole author of the manuscript, conceived, designed and performed the analysis; he also wrote and reviewed
the paper. The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 August 2021 Accepted: 28 January 2022

References
1. Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press;

2010.
2. Orus R et al. Quantum computing for finance: overview and prospects. Rev Phys. 2019;4:100028.
3. Egger DJ et al. Quantum computing for finance: state of the art and future prospects. IEEE Trans Quantum Eng.

2020;1:3101724.
4. Bouland A, et al. Prospects and challenges of quantum finance. arXiv:2011.06492.
5. Hull JC. Options, futures, and other derivatives. New York: Prentice Hall; 2012.
6. Shreve S. Stochastic calculus for finance I & II. Berlin: Springer; 2004.
7. Rebentrost P et al. Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys Rev A.

2018;98:022321.
8. Martin A et al. Towards pricing financial derivatives with an IBM quantum computer. Phys Rev Res. 2021;3:013167.
9. Stamatopoulos N et al. Option pricing using quantum computers. Quantum. 2020;4:291.
10. Ramos-Calderer S et al. Quantum unary approach to option pricing. Phys Rev A. 2021;103:032414.
11. Fontanela F, et al. A quantum algorithm for linear PDEs arising in finance. arXiv:1912.02753.
12. Vazquez AC, Woerner S. Efficient state preparation for quantum amplitude estimation. Phys Rev Appl.

2021;15:034027.
13. Kaneko K, et al. Quantum pricing with a smile: implementation of local volatility model on quantum computer.

arXiv:2007.01467.
14. Tang H, et al. Quantum computation for pricing the collateralized debt obligations. arXiv:2008.04110.
15. Chakrabarti S et al. A threshold for quantum advantage in derivative pricing. Quantum. 2021;5:463.
16. An D et al. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in

mathematical finance. Quantum. 2021;5:481.
17. Gonzalez-Conde J, et al. Pricing financial derivatives with exponential quantum speedup. arXiv:2101.04023.
18. Radha SK. Quantum option pricing using Wick rotated imaginary time evolution. arXiv:2101.04280.

http://arxiv.org/abs/arXiv:2011.06492
http://arxiv.org/abs/arXiv:1912.02753
http://arxiv.org/abs/arXiv:2007.01467
http://arxiv.org/abs/arXiv:2008.04110
http://arxiv.org/abs/arXiv:2101.04023
http://arxiv.org/abs/arXiv:2101.04280

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 26 of 27

19. Woerner S, Egger DJ. Quantum risk analysis. npj Quantum Inf. 2019;5(1):1.
20. Egger DJ et al. Credit risk analysis using quantum computers. IEEE Trans Comput. 2021;70:2136.
21. Miyamoto K, Shiohara K. Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a

pseudo-random-number generator. Phys Rev A. 2020;102:022424.
22. Kaneko K et al. Quantum speedup of Monte Carlo integration with respect to the number of dimensions and its

application to finance. Quantum Inf Process. 2021;20:185.
23. Rebentrost P, Lloyd S. Quantum computational finance: quantum algorithm for portfolio optimization.

arXiv:1811.03975.
24. Kerenidis I et al. Quantum algorithms for portfolio optimization. In: Proceedings of the 1st ACM conference on

advances in financial technologies. 2019. p. 147.
25. Hodson M, et al. Portfolio rebalancing experiments using the quantum alternating operator ansatz. arXiv:1911.05296.
26. Glasserman P. Monte Carlo methods in financial engineering. Berlin: Springer; 2003.
27. Tavella D, Randall C. Pricing financial instruments: the finite difference method. New York: Wiley; 2000.
28. Duffy DJ. Finite difference methods in financial engineering: a partial differential equation approach. New York: Wiley;

2006.
29. Longstaff FA, Schwartz ES. Valuing American options by simulation: a simple least-squares approach. Rev Financ Stud.

2001;14:113.
30. Montanaro A. Quantum speedup of Monte Carlo methods. Proc R Soc Ser A. 2015;471:2181.
31. Suzuki Y et al. Amplitude estimation without phase estimation. Quantum Inf Process. 2020;19:75.
32. Herbert S. Quantum Monte-Carlo integration: the full advantage in minimal circuit depth. arXiv:2105.09100.
33. Brassard G et al. Quantum amplitude amplification and estimation. Contemp Math. 2002;305:53.
34. Aaronson S, Rall P. Quantum approximate counting, simplified. In: Symposium on simplicity in algorithms.

Philadelphia: SIAM; 2020. p. 24–32.
35. Grinko D et al. Iterative quantum amplitude estimation. npj Quantum Inf. 2021;7:52.
36. Nakaji K. Faster amplitude estimation. Quantum Inf Comput. 2020;20:1109.
37. Brown EG, et al. Quantum amplitude estimation in the presence of noise. arXiv:2006.14145.
38. Tanaka T, et al. Amplitude estimation via maximum likelihood on noisy quantum computer. arXiv:2006.16223.
39. Kerenidis I, Prakash A. A method for amplitude estimation with noisy intermediate-scale quantum computers. U.S.

Patent Application No. 16/892,229. 2020.
40. Uno S, et al. Modified Grover operator for amplitude estimation. arXiv:2010.11656.
41. Giurgica-Tiron T, et al. Low depth algorithms for quantum amplitude estimation. arXiv:2012.03348.
42. Wang G et al. Bayesian inference with engineered likelihood functions for robust amplitude estimation. PRX

Quantum. 2021;2:010346.
43. Trefethen LN. Approximation theory and approximation practice. Philadelphia: SIAM; 2013.
44. Sullivan MA. Valuing American put options using Gaussian quadrature. Rev Financ Stud. 2000;13:75.
45. Lim H et al. Efficient pricing of Bermudan options using recombining quadratures. J Comput Appl Math.

2014;271:195.
46. Mahlstedt M. Complexity reduction for option pricing. Ph.D. thesis. Technische Universität München; 2017.
47. Gaß M et al. Chebyshev interpolation for parametric option pricing. Finance Stoch. 2018;22:701.
48. Glau K et al. A new approach for American option pricing: the dynamic Chebyshev method. SIAM J Sci Comput.

2019;41(1):B153.
49. Glau K, et al. Fast calculation of credit exposures for barrier and Bermudan options using Chebyshev interpolation.

arXiv:1905.00238.
50. Glau K et al. Speed-up credit exposure calculations for pricing and risk management. Quant Finance. 2021;21:481.
51. Sauter S, Schwab C. Boundary element methods. Berlin: Springer; 2010.
52. Clement E et al. An analysis of a least squares regression method for American option pricing. Finance Stoch.

2002;6(4):449.
53. Glasserman P, Yu B. Number of paths vs. number of basis functions in American option pricing. Ann Appl Probab.

2004;14(4):2090.
54. Stentoft L. Convergence of the least squares Monte Carlo approach to American option valuation. Manag Sci.

2004;50(9):1193.
55. Egloff D. Monte Carlo algorithms for optimal stopping and statistical learning. Ann Appl Probab. 2005;15:1396.
56. Gobet E et al. A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann Appl

Probab. 2005;15(3):2172.
57. Zanger DZ. Convergence of a least-squares Monte Carlo algorithm for bounded approximating sets. Appl Math

Finance. 2009;16:123.
58. Gerhold S. The Longstaff–Schwartz algorithm for Levy models: results on fast and slow convergence. Ann Appl

Probab. 2011;21(2):589.
59. Zanger DZ. Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing.

Finance Stoch. 2013;17(3):503.
60. Zanger DZ. Convergence of a least-squares Monte Carlo algorithm for American option pricing with dependent

sample data. Math Finance. 2018;28(1):447.
61. Zanger DZ. General error estimates for the Longstaff–Schwartz least-squares Monte Carlo algorithm. Math Oper Res.

2020;45(3):923.
62. Jerrum M et al. Random generation of combinatorial structures from a uniform distribution. Theor Comput Sci.

1986;43:169.
63. Grover L, Rudolph T. Creating superpositions that correspond to efficiently integrable probability distributions.

arXiv:quant-ph/0208112.
64. Haner T, et al. Optimizing quantum circuits for arithmetic. arXiv:1805.12445.
65. Wiebe N et al. Quantum data fitting. Phys Rev Lett. 2012;109:050505.
66. Schuld M et al. Prediction by linear regression on a quantum computer. Phys Rev A. 2016;94:022342.
67. Wang G. Quantum algorithm for linear regression. Phys Rev A. 2017;96:012335.

http://arxiv.org/abs/arXiv:1811.03975
http://arxiv.org/abs/arXiv:1911.05296
http://arxiv.org/abs/arXiv:2105.09100
http://arxiv.org/abs/arXiv:2006.14145
http://arxiv.org/abs/arXiv:2006.16223
http://arxiv.org/abs/arXiv:2010.11656
http://arxiv.org/abs/arXiv:2012.03348
http://arxiv.org/abs/arXiv:1905.00238
http://arxiv.org/abs/arXiv:quant-ph/0208112
http://arxiv.org/abs/arXiv:1805.12445

Miyamoto EPJ Quantum Technology (2022) 9:3 Page 27 of 27

68. Yu C-H et al. Quantum algorithms for ridge regression. IEEE Trans Knowl Data Eng. 2019;29:37491.
69. Chakraborty S. The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian

simulation. In: Proceedings of the 46th international colloquium on automata, languages, and programming (ICALP).
2019. p. 33:1–33:14.

70. Kerenidis I, Prakash A. Quantum gradient descent for linear systems and least squares. Phys Rev A. 2020;101:022316.
71. Kaneko K, et al. Linear regression by quantum amplitude estimation and its extension to convex optimization.

arXiv:2105.13511.

http://arxiv.org/abs/arXiv:2105.13511

	Bermudan option pricing by quantum amplitude estimation and Chebyshev interpolation
	Abstract
	Keywords

	Introduction
	Notations

	Approximation of functions by Chebyshev interpolation
	Bermudan option pricing
	General formulation
	Least squares Monte Carlo

	Quantum amplitude estimation and quantum algorithm for Monte Carlo integration
	Quantum amplitude estimation (QAE)
	Quantum algorithm for Monte Carlo integration

	Bermudan option pricing by Chebyshev interpolation and QAE
	Assumptions
	The proposed method
	Evaluation of the error
	Complexity

	Discussion
	Comparison with existing Chebyshev interpolation-based methods
	Exponential factor with respect to the number of exercise dates in the error bound
	Quantization of LSM

	Conclusions
	Appendix
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References

