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aﬁg”(;i(j,?{u?n”g[jj;";y',"g’;g‘g'()“ Pricing of “nancial derivatives, in particular early exercisable options such as
University, 1-3 Machikaneyama, Bermudan options, is an important but heavy numerical task in “nancial institutions,
Toyonaka, Osaka, Japan and its speed-up will provide a large business impact. Recently, applications of

quantum computing to “nancial problems have been started to be investigated. I
this paper, we “rst propose a quantum algorithm for Bermudan option pricing. Thi
method performs the approximation of the continuation value, which is a crucial gart
of Bermudan option pricing, by Chebyshev interpolation, using the values at
interpolation nodes estimated by quantum amplitude estimation. In this method, the
number of calls to the oracle to generate underlying asset price paths scal¥s af
where is the error tolerance of the option price. This means the quadratic speediup
compared with classical Monte Carlo-based methods such as least-squares Monte
Carlo, in which the oracle call numbeQg 3.

(*2
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1 Introduction
Following the recent advances of quantum computing technologi&snany researches
have been done for the application to practical problems in various industries. One of
the promising targets is “nance (se€?[ .4] for reviews). Financial “rms have a lot of heavy
computational tasks in their daily busines$and therefore the speed-up of such tasks by
guantum computers are expected to provide a large impact. For example, previous papers
studied option pricing [7..18], risk measurement19..22], portfolio optimization [ 23..25],
and so on.

In this paper, we focus orBermudan option pricingand consider how to speed it up by
guantum algorithms. Let us brie”y describe the problem. Aoptionis a “nancial contract
between two parties, the option buyer and seller, which conveys the option buyer the right

1As a standard textbook for quantum computing, we refer ti |

2As standard textbooks for “nancial engineering, especially option pricing, we refebt6][
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to buy someunderlying assetsuch as stocks and bonds from or sell them to the option
seller, at some speci“ed price on some date. Or, more generally, it can be regarded as a
contract, in which the option buyer receives some amount of monegdyo ) determined

in reference to the underlying asset price, from the option seller. There are some kinds
of options with respect to timing of exercise of right. In arfEuropeanoption, the option
buyer can exercise the right at one predetermined date, which is called thaturity. On

the other hand, there aresarly-exercisabl@ptions, in which the option buyer can choose

the exercise date. In a\merican option, the option buyer can exercise the right at any
time before the “nal maturity T. In aBermudanoption, exercise of right is possible on any

of “nite predetermined dates includingT . We hereafter call such datesxercise dates

Major “nancial “rms hold large portfolios of a wide variety of options, and therefore
pricing them is an important task for business. However, it is also a di cult task. Basi-
cally, the option price is the expected value of the payo under some stochastic model
describing random time evolution of the underlying assets. Although European options
can be sometimes priced easily, for example, by some analytic formulas, pricing Bermu-
dan and American options typically involves heavy numerical calculations. The di culty
partly stems from the nature of the problem as dynamic programming. That is, pricing
early-exercisable options contains determining traptimal exercise times a crucial part.
Although there are some kinds of methods which aim to re”ect early exercise to the option
price, each one has pros and cons.

One major category of pricing methods is the Monte Carlo-based methddn which
we generate many sample paths of evolution of underlying asset prices, and estimate the
expected payo as an averaged payo over the paths. This approach has an advantage in
the case ofmultiple underlying assetsNamely, in this approach, the estimation error on
the option price decays a®(N -3* when the sample numbeN increases, regardless of
the number of the underlying assetd. In other words, it su ces to take O( 3 samples in
order to achieve the error tolerance on the option price. This contrasts to other meth-
ods, for example approaches based on solving partial di erential equatio8g,[28], whose
complexity isO((1/ )P°Y@). On the other hand, in the Monte Carlo-based methods, it is
di cult to precisely determine the optimal exercise time, and we have to approximate this
in some way. In many cases, this is done through approximation of thentinuation value
which is the option price at each exercise date in the case that the option buyer forgoes
the exercise. The option should be exercised if the payo is larger than the continuation
value, and should not be exercised otherwise.

In this category, thdeast-squares Monte Carlfl. SM) [29] is widely used. LSM estimates
the continuation value at each exercise date liyear regressionising the generated sample
paths as training data, and then, going backward from the “nal maturity to the present,
“nds the present option price.

Note that this method can also price American options approximately, replacing ex-
ercisability at any point in the continuous time period with that at discrete dates with
su ciently small intervals.

Inthis paper, we propose a new method for Bermudan option pricing, combini@heby-
shev interpolationand quantum algorithm for Monte Carlo integration B0..32], which is

3We refer to [26] as a textbook on Monte Carlo simulation and its application to “nance.
4Q(-) hides logarithmic factors in the ordinary big O notatioX-).
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based on quantum amplitude estimation (QAERL, 33..42). As far as the author knows,
this is the “rst proposal on the quantum method for Bermudan option pricing. Cheby-
shev interpolation is a widely used method for function approximatiohand has already
been used in some (classical) methods for Bermudan option pricidgt[.50]. In the pro-
posed method, given the access to the quantum circuit (or, tbeacle for time evolution

of underlying asset prices, we calculate the continuation values at the interpolation nodes
by the quantum algorithm, and “nd Chebyshev interpolation using these values. Impor-
tantly, this method outputs an estimation of the option price with the error at most, call-

ing the oracle onlyO( -} times. Thus, as we commonly observed in applications of QAE
to various kinds of problems, we obtain thguadratic speed-upcompared with the clas-
sical Monte Carlo-based methods such as LSM and the Chebyshev interpolation-based
methods.

The rest of this paper is organized as follows. In Se@t.we brie”y explain Chebyshev
polynomials and function approximation by them. We present how to calculate the coe -
cients of Chebyshev expansion in general and the upper bound for the approximation er-
ror. In Sect.3, we present the general formulation of Bermudan option pricing and explain
LSM as a typical classical solutions. In Sedt. we explain QAE and QAE-based Monte
Carlo integration. Then, in Sect5, we present the new algorithm for Bermudan option
pricing based on Chebyshev interpolation and QAE. We also present an upper bound on
the price error in the method, and that on the complexity su cient to achieve the given
error tolerance. In Sect6, we make some remarks: comparison with existing methods,
comments on exponential factors with respect to the exercise date number in the error
bound, and the possibility of quantization of LSM. Sectiori summarizes this paper. All
proofs are presented in thé\ppendix.

1.1 Notations
We here explain the notations used in this paper.

N denotes the set of all positive integers, al¥h := {0}UN. We de“ne [n] :={i e N | i < n}
foranyn e N, and [n]p :={i € Ng | i <n} foranyn € Ny. We also de“neN.,:={ieN|i>
n} for n € N. Similarly, we de"neR; :={x e R|x>a}andR.,:={xe R | x> a}foraeR.
R+ denotes the set of all positive real number, that iRo.

For a,b € Np, ap denotes the Kronecker delta, which is 1 & = b or O otherwise. For
d € NandTy,l, € N§, we also de“ne ; 1,, which is 1ifly =T, and 0 otherwise.

For a measure space (F,i) andp € R.q, LP( , ) denotes thel P space on it.

The indicator function 1¢ takes 1 if the conditionC is satis“ed, and 0 otherwise.

In this paper, we consider quantum states of systems consisting of some quantum reg-
isters with some qubits. Fox € R, |x) denotes one of the computational basis states on
some register, whose bit string corresponds to the binary representationxofvith trun-
cation at some digit. Ford € N andX = (X1, ... Xq)T € RY, |X) :=|x1) - - - [Xq) is the state on
the d-register system.

2 Approximation of functions by Chebyshev interpolation
For| € Ny, the I-th Chebyshev polynomial (of the “rst kind) is de“ned as

Ti(X) :=cos | - arccos(X) , (1)

5See 13 as a textbook on this topic.
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wherex € [...1,1]. One of its important properties is thdiscreteorthogonality: for any
me No and|1,|2 € [m]o,

. 0;  ifliFly,
T m)Ti,(Xmj) = m+1; ifly=1,=0, )
=0 m.f ) =], >0,

2 1
Here, xm; is the Chebyshev nodée“ned as

i+3
+1

@)

Xm, = cOS

for j € [M]o. Xm0 - - - Xmm are the zeros off y+1(x).
We also de“ne thetensorizedChebyshev polynomials on a general hyperrectangle in
RY, whered € N. That is, given

D: [Ll,U]_] X X [Ld!Ud]v (4)

with Ly, ... L4,Uy,... Uq € R satisfyingL; <Uy,... Lg <Uq, we de“ne
d
Tpr = T iS) (5)
i=1

foreveryl = (I, ... lq)T € Nd andS=(S,,... &) € D, where

> 25 ..U1 .. 25 ..Uq .. Lyg

= e 6
> Up..L; Ug .. Lg ©
For the above polynomials, the orthogonality relation is now
meaf. Y, =T
(1. ’ 1—=12
Ton®Tpp,@= 2w = )
0; if |1 =4 |2

)?eg%'m ’

for everym e N and Ty, € [m]d, whereR(l) :=#{i € [d] | I; > 0} for [ = (I,... Jg)T € N¢,
andG3™ is the set of pointséS]D’m € D written in the form of

éD'm — Ui.. L1 + Ui+ Ug..Lg Ug + Ly

3 . 2 mejl 2 IEEEE] 2 vajd + 2 (8)

with = (1, ... ja) € [m]3.

We can use the above polynomials for function approximation. Givdnas @) andm €
N, we de“ne theChebyshev interpolationf a functionf : D — R as

pmlfl® = aTpi (9 )
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for everySe D, where the coe cient & is calculated by

280) B, B}
&= m f(OTp (9 (10)
éegd’m

D

for everyT e [m]d. This is in fact an interpolation, since Dym[f](é) =f (§) for every node
Segim,

The error in the above approximation has been investigated ia7, 51]. They gave the
error bound, making an assumption on analyticity of the interpolated functioih We here
present the theorem on such a error in the case where we are given the valudsaifthe
Chebyshev nodes with some errorg]. However, let us make some de“nitions prior to
the theorem. For € R4, the Bernstein ellipse5 is de“ned as the open region in the
complex plane bounded by the eIIipse%(u +u-y|ueC,|ul = }. We also de“ne the
generalized Bernsteinellipse d¥p, :=( 108 )x---x( goB ), where, for every € [d],

i(2) is the map fromC to C de“ned as (2) := %z+ % Furthermore, we de“ne the
multivariate version of theLebesgue constaf the Chebyshev nodes: for every € N,

d

dm == max ]T(Xi), (11)

'
(X1, Xg)T €[...1,19 (jl,...jd)Te[m]g i=1

where
X .. Xmk
') = ﬁ (12)
kefmo\() ™ MK
for everyj € [m]o. As [47] showed,
¢ 2
dm =< —log(m+1)+1 (13)

i=1

holds, which is derived from the well-known upper bound 1, < 2 log(m + 1) + 1 [43).
Then, the theorem is as follows.

Theorem 1 Let d and m be positive integerget D be a hyper-rectangle lik&d). Let f :
D — R be a function that has an analytic extension t8p for some € R.;. Besides
assume thasupg If (9| < B for some Bz R. Moreoversuppose that we are given a real
numberﬁ for everyT € [m]4, and that there exists € R such that

M f < (14)

holds for every € [m]d. Then,

max £(§ .. < ™( ,d,mB)+ am (15)
SeD

6[47..50] considered the more general case, where the values ahdm are di erent for di erent directions in RY. In this
paper, we take common values ofand m for every direction, for simplicity.
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holds Here for everySe D, f(S) is de“ned as

f9:=  &Tp; (S, (16)

with the coe cients &; calculated by

2R(T)

5 tr 2D,
&= (m+1)d fTor S " an
]7 d

€[m]g
for everyl € [m]d, and

. d

m( d,m,B):=22"/dB M 1. 22, (18)

3 Bermudan option pricing
3.1 General formulation
In this paper, we consider pricing a Bermudan option witkd € N underlying assets and
K € N exercise datedy,... tx, which satisfyty <t; <-.. <tg with t; := 0 being the
present andtk :=T € R, being the “nal maturity. This is formulated as follows. Under
some “ltered probability space (,.F, (Fi)i<o,P), consider theS-valued Markov process
é(t) = (Su(t), ... S(t)", whereS is a subset oRY equipped with its Borel -algebra in-
herited from RY, and &, := é(O) is deterministic.é(t) corresponds to the values of the un-
derlying asset prices at timg, or transformations of them by some function (for example,
the logarithms of the asset prices). We are mainly interested in its valuesat. . tx, that
is, the discrete-time procesé‘.k =(Siky -+ k) = é(tk), k € [K]o. We hereafter denote an
instance of this process, which is &(+ 1)-tuple of elements ofS, asS = (é)él . S&).
Besides, suppose that we are given the functitﬁ?y e LS, i) for everyk e [K], where
k Is the image probability measure o induced byék. This corresponds to the payo
which arises by the exercise &t. Although we assume that the risk-free rate is O for sim-
plicity in this paper, we can consider that}® is the discounted payo , that is, the product
of the payo and the discount factor. Then, the price of the Bermudan option df with
S =3%e Sisgivenas

Vi@® :=supE fP¥S)|§ =8, (19)
€Tk

where E[-] denotes the (conditional or unconditional) expected value with respect i
and 7x,k € [K] is the set of all{k, ... K}-valued stopping times. In particular, the present
option price is

Vo@® :=supE fP¥S) (20)
eT

where7T =T7;.
The problem to “nd Vg can be written as a kind of dynamic programming, that is,

i k=K,
max{f’¥(®, @) k=1,...K..1

Vk(é) = (21)
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for everyse S, and

Vo=E Vi(S) . (22)
Here, for everyk € [K ... 1] ande S,

Q® =E Vie1(Serr) | & =3 (23)

is called the continuation value. This corresponds to the option price &tin the case that
the option has not been exercised at that time and thép =3

Note that this problem can be seen as “nding the optimal exercise daig < 7, which
maximizes @0). This can be recursively determined as

k =K,
(24)
k=KLpyg gt kiliPE)E) KelK .. 1]
and op= 1. Also note that
QAB=E fﬁf{(ém) |G =8, 25)

for everyk € [K ... 1], which means thafy is the expected value of the payo under the
exercise strategyg+1.

3.2 Least squares Monte Carlo

We here explain LSM 9], as an algorithm for Bermudan option pricing. This is one of the
widely used methods in practical business, and the theoretical error bound on the price
in the method has been investigate®p..61].

Omitting some technical details, we describe the outline of LSM as follows. As a prepa-
ration, for everyk € [K ... 1], we determine the set of functiorlly < L2(S, ) for ap-
proximation of the continuation valueQy. One common choice isHyx = Rqm, the set of
all real-coe cient polynomials on RY of degree at mostm € N, and we hereafter con-
sider this. Next, we generat®samp € N> sample paths of underlying asset prices, which
are denoted ass; = (S,gf), ... ,§<i)), i € [Nsamgl- Then, we determine the stopping time,
which approximate the optimal one p, by the following procedure. First, we sef ; = K
for everyi € [Nsamg. Fork € [K ... 1], giveny.1; for everyi € [Nsamg, we determine the
approximate continuation valueQy as the elementy in Ry m, which minimizes

Nsamp

g P g 2 (26)

Tkl k+1,

1

Nsamp i=1

or, in other words, best “ts to the realized payo s under the stopping timey.1; on the
sample paths. Itis guaranteed by statistical leaning theory that “tting to the sample values
of the payo , which distribute around the continuation value, yields the approximation of
the continuation value p5, 57, 59..61]. Then, we set

ki, ifQEY) < P&,

k+1j; Otherwise

ki (27)



Miyamoto EPJ Quantum Technology (2022) 9:3 Page 8 of 27

for everyi € [Nsamgl. By repeating this until we reactk = 1, we get 1;, and “nally

Nsam
1 p
Vo =

pay i)
Nsamp i=1 f U S(l'i (28)
as an approximation oiV.

Let us make some comments on the procedure. First, note that itis assumed that we can
generate sample paths;. In the usual situation where the stochastic di erential equation
(SDE) foré(t) is given, we can use some method for numerical simulation of SDEs such
as Euler-Maruyama method. Second, we mention how to “ngt minimizing (26). Note
that this is just least-squares linear regression, sin&m is a vector space. Therefore,
we can solve this by various methods, for example, solving the normal equation of linear
regression, some numerical optimization, and so on.

Then, let us mention the relationship between the error and the sample number in LSM.
According to [61], under some technical assumptions, taking appropriately large we
obtain the error bound on the option price which scales as

n(p...2)
]Esamp |V0 ---V0| =0 (Nsamp)"zn(p+zj+E(p“'2) . (29)

Here,Esamd -] denotes the expectation with respect to randomness of samples, arahdp
are the quantities which characterize smoothness Q&(@), e ,QK,,,(é) and boundedness
of the norms of tP®(9), ... £2%(9), respectively (seedf1] for more details). For largep and
n, the RHS of R9) decreases faster against the increaséNafm,. In the limit of n,p — oo,
which means thatQyes are highly smooth and the norms df*ss are well-bounded, the
RHS of 9) becomesO(N;¥3, which coincides with the well-known error decay rate in
Monte Carlo integration. Conversely, in this limit, it is su cient to take O( -3 samples in
order to achieve the error tolerance.

4 Quantum amplitude estimation and quantum algorithm for Monte Carlo
integration

4.1 Quantum amplitude estimation (QAE)

We here brie"y review QAE. Consider the system consisting of a quantum regisirand

a qubit R,. Suppose that we are given the orackg which transforms|0)|0), the state in

which all qubits in R; and R; are set to|0), into

Al0)0)=+al 1)I1)+V1..a 0)0)=:] ) (30)

with somea € (0, 1). Here, the “rst and second kets correspond &, and R, respectively,
and| o),| 1)are some quantum states. Then, our goal is estimatiagwhich is the prob-
ability to obtain 1 in R, when we measur¢ ), with the error tolerance . There exist some
algorithms which output such an estimation withO( -3 calls to A and its inverseAT in
total [31, 33..36]. Although these QAE algorithms output a number close tanot with cer-
tainty but with some probability, we can enhance the success probability by running QAE
many times and take the median of the outputs3, 62]. Let us de“ne the Noage, Nrep)-
QAE as the method for estimatinga which runs Ny, rounds of QAE and makeNgae
calls toA and A" in total in each round. Obviously, in the Kloag, Nrep)-QAE, A and Af are
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called NgaeNrep times in total. Then, combining Theorem 12 in 3] and Lemma 6.1 in
[62], we obtain the following theorem.

Theorem 2 Suppose that we are given the accesses to @@ and its inverse A. Then,
forany € (0,1)and € (0,0.1)a(Noae, Nrep)-QAE, where the positive integersdye and

Nrep Satisfy
7
Noae > - (31)
and
Nrep> 12 log =1 +1 (32)
respectivelyoutputs & € R such that
7
la..al < <, (33)
Noae
where a is de“ned a$30), with probability higher thanl ... .
Here, (1) is derived from the inequality in Theorem 12 in33] with k=1, that is,
2 Ja(l..a 2
|é..a|§#+—, (34)
M M2

whereM = Noag/2 under the current de“nition. Using v/a(1 ..a) < 3, we see that84) im-
plies|a..a| < 7/Ngae for Noae > 70, which follows from @1) and 0 < <0.1.In summary,
if Noag satis“es @1) for < (0,0.1), the error in QAE is suppressed to at mostwith high
probability. Hereafter, we say that aNgae, Nrep)-QAE succeeded if it outputa such that

|a..al < 7/NQAE-

4.2 Quantum algorithm for Monte Carlo integration

One application of QAE is the algorithm for Monte Carlo integration, that is, the method
to calculate expected values. Suppose that we want to calcul]EtE()?)], the expected
value ofF()?), whereX is some real vector-valued stochastic variable aRds a real-valued
function acting on X. We also assume that the range 6fis in [0, 1], and, if not, we make
this hold by adding and/or multiplying some constants té-. Furthermore, suppose that
we can use the following oracle®y and Og. Oy, is the oracle to generate the state in which
the distribution of X is encoded. That isQy, operates on a quantum register and transform
the state with all qubits set tg0) into

N

Ogloy = /pilxi), (35)

i=1

whereXy, ... Xy, areNg € N possible values oK and p;,i € [Ng] is the probability that
X = Xi. Here, we assume that the set of all the values théatcan take is “nite. If X is con-
tinuous, we need some discretization. How to create states corresponding to widely used
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distributions such as normal distribution has been investigatetl3, 63]. The second oracle
Or operates on a two-register system, and, using the “rst register as the ingubutputs
F(X) into the second register. That is, for any in the domain of F,

Or[X)10) = [X) [F(X)).- (36)

By these oracles, the following computation is possible. Preparing two registrsR, and
a qubit Rz, and initializing all of them to|0), we perform

10)10)10)

- VPilXi)[0)[0)

—  JPil%) F(X) [0)

= JRilx) F)  FR)ILD+  1.F(X)I0) , (37)
i=1

where the “rst, second and third kets correspond t&;, R, andRs, respectively. We us®y
and O at the “rst and second arrows, respectively. The transformation at the third arrow
is done by arithmetic circuits p4] and controlled rotation gates. Note that the probability
to obtain 1 in Rz when we measure the “nal state in37) is riﬁ piF(X), that is,E[F()?)].
Therefore, using the whole operation in37) as the oracleA, we can estimatéZ[F()?)] by
QAE.

5 Bermudan option pricing by Chebyshev interpolation and QAE
Now, let us present the method for Bermudan option pricing by Chebyshev interpolation
and QAE.

5.1 Assumptions

We begin with making some assumptions necessary to execute the proposed method. The
“rst one is as follows.

Assumption 1 We are given the access to the oraclBsepk, Which generates the state
corresponding to the probability distribution 0fS1 conditional on . That is, for every
ke[K...1jandSe S,

Ostepk : 19)10) P18 9ISIP), (38)
§€5k+1(§)

whereS.1(9) is the set of possible values &1 under the condition that S, = S, and
P13 =PSw1 =31 &= 9. (39)

We here make comments on how to implemenDsepk. As mentioned in Sect3, usu-
ally, following some SDE and some numerical method such as Euler-Maruyama, we can



Miyamoto EPJ Quantum Technology (2022) 9:3 Page 11 of 27

generate random sample values &f.1 with the given value ofS as the initial condition.
Implementations of such a calculation on quantum circuits have been discussed in the pre-
vious papers7?,9,13]. Thatis, we can prepare the states corresponding to some (discretely
approximated) random variables (e.g. standard normal) on the other registers, and, using
them at discretized time steps, generate the path é('t) from ty to ty+1. This yields the
state like 88). We should also note that, in Assumption, it is assumed thaék+1 can take
only a “nite number of values for the “xedS. This is not the case in the most models of
é(t), in which it takes continuous values. However, under the aforementioned implemen-
tations for time evolution ofé(t), in which both time and random variables are discretely
approximated, the number of the possible values 8f necessarily becomes “nite.

Hereafter, we are mainly interested in the number of calls ©sepy in calculating the
option price as a measure of complexity, since calculation for time evolution of underlying
asset prices is typically the most time-consuming part in option pricing.

The second assumption is as follows. Heré, denotes the set of all real-valued func-
tions on a given subsed € RY.

Assumption 2 For everyk € [K ... 1], we are given the following
€ the hyper-rectangl®, :=[L1x,U1x] X -+ X [Lak,Uax] € S, with
Lik, .- .Ldk: Uik, ... Uak € R satisfyinglyx <Uik, ... Lax <Uqgk,
€VBeTsp,

such that the following (i) and (ii) are satis“ed.
(i) There exists OB € R, such that either

VE® .. Vi@® < & (40)
or
F[Vi® . Vk® < 98 (41)

is satis“ed for anys € S \ Dy. Here,Fy[-] is the ¢"at extrapolation operators de“ned
as

E([FI(® :=F b(9) , (42)

be(® = min Upy,max{Liy, S} ,....min Uggmax{lag S} (43)

foranyF € Zp, ands=(sy,...x)" €S.
(i) If, for someG € Zp,, we have the access to the ora€lg such that

Og[$9)0) =19 G (44)
for anyse Dy, we also have the access to the oraGlg, which acts as

Ocl9)10) =9 G[CI(S) (45)
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Here,Gi[ ] is de“ned as

VOB®;  ifse AL

Gk[HI(® =
RIS F(H](®; otherwise

(46)

foranyH € Zp, andSe S, where A, is a subset of \ Dy such that @0) and @1)
hold for anyse Ay and anyse (S \ D) \ A, respectively.

We also de“neGg[H](3) :=H(® foranyH € Zs andse S.
Roughly speaking, this assumption means that, when some of underlying asset prices
are extremely large or small, we can approximate the option vaMgby some known and
easily computable functionv® or the "at extrapolation of Vi from moderate underly-
ing asset prices. Postponing explanation on why this assumption is necessary to Se&t.
we here see that it is actually satis“ed in some typical settings in option pricing. For ex-
ample, let us consider a basket put option, whose payo function fﬁay((sl, L&) =
max{ ..§ ...--..S,0} with some € R for everyk e [K], under some model in which
Si(t),. .. S(t) are unbounded from above but bounded from below, say, by 0, as the Black-
Scholes model. Then, in each of the following situationgi@) or (41) holds.
€ If some ofSyy, . .. Sk are extremely large, the option is far out-of-money, and
therefore its price is almost 0.

€ If some ofSyy, ... Sux are smaller than the su ciently small thresholds
Lik, ... Lak € Ry respectively, but the others are not, setting the former to the
thresholds hardly a ects the option price.

€ Ifall of S, ..., Syk are su ciently close to 0, the option is exercised &t, and

thereforeV(S) = fP¥(S0).

Thirdly, we make the following assumption, which is necessary for bounding the inter-
polation error in the proposed method.

Assumption 3 Foreveryk e [K ... 1] Qk(é) has an analytic extension t#p,  ,, whereDy
is given in Assumption2 and  is some real number greater than 1, and

_sup Qk(é) < By (47)

SEB'DkY K
holds, whereBy is some positive real number.

5.2 The proposed method

Under these assumptions, we can construct the procedure for Bermudan option pricing
based on QAE and Chebyshev interpolation. This is also a backward calculation similarly
to LSM; we sequentially calculate the approximate continuation val@ and option price

V atty, going from the “nal maturity to the present. Roughly, the outline is as follows. As
preparation, for everyk € [K ... 1], we setn € N, the degree of Chebyshev polynomials
used for the approximation, and the hyper-rectangBy = [L1x,U1k] X - -+ X [Lax,Udk] S

S. We begin the iterative calculation by settiny/ (S :=ff¥/(S) for everySe S. Then, for

k e [K ... 1], givelVy.1, we estimate the expected value Mk+1(§<+1) under the condition
that S = éjp"’m" for every Chebyshev nodéJ.D"’mk by QAE, and denote the estimation
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asQE’J,AE. Using these, we construc®y, the Chebyshev interpolation of the approximate
continuation value, and sets/k(é) = max{Qk(ﬁ),fkpay(é)} for every@e S. We repeat these
steps until we reactk = 1. Finally, we estimate the expected value‘ﬁi(él) by QAE again,
and let the result be an approximation oY/.

The fully detailed procedure is shown in Algorithml.

Some additional explanations should be made. The “rst one is ¢n,;) in Step 4. For
everyk € [K ... 1]and € Ji, given the approximatiorVy.+1 € Zp,,, Of Vi+1, we generate the
state| ;) on the appropriate multi-register system with the last one being single-qubit,

Algorithm 1 The method for Bermudan option pricing based on Chebyshev interpolation
and QAE
Require:
€ my € Nfor everyk € [K ... 1]the degree of Chebyshev polynomials.
€ NSAE e Nfor everyk € [K ... 1§, the iteration number in each run of QAE in
calculatingQ%AE or V.
€ NP e Nfor everyk € [K ... 1, the number of rounds of QAE in calculatin@%AE
or Vo. '
€ V"™ e R, for everyk € [K], the upper bound of |Gk[Vi] (9| | 3€ S}.
€ Dy =[L1k,U1k] x --- x [Lgk,Ugk] € S for everyk € [K ... 1]the hyper-rectangle
for Chebyshev interpolation. Here,; i, ... Lgx, U1k, ... Udgk € S satisfy
Lik <Uik, ... Lak <Uqgk-
1: SetV (9 =2¥(S) for everySe S.
2: fork=K ...1to ldo
3 for allT € Jk :=[my]d do

4 Using N, Ni™)-QAE, obtain an estimationP,; of the probability P, ; to ob-
serve 1 on the last qubit in measuring ;) in (50), and let (R, ... 1y, be
QAE ' ’
Qk,} .
5:  end for
6: Set
A® = &iTp O (48)
Tejk

for everySe Dy, with 3,y calculated as

2&@)

- QAE. . &Dbrmg
= (e + 17 Q5 Ty SJD (49)
jed
forle Jk-
7. SetVi(9 = max{f”¥(9), () for any Se Dy.
8: end for

9: Using N, N¢*P)-QAE, obtain an estimationP, of the probability Py to observe 1
on the last qubit in measuring o) in (53), and output (P ... 1Y " asVo.
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by the following operation:

0)10)(0)[0)
— §7%™10)(0)[0)

— §m P 8™ [910)/0)

o -Dy,
S

— g Peer 5™ 9 Gea[Viea] 3 10)

S @ ™)

S Pt 587%™ 9 GualViea®

seSia @K™

1 . G+1[Vi+1](9)
2" T

1 Gea[Vinl3
n+ 3 . SealVienl® nk];im 10)
AT

®
= | kj)! (50)

whereOstepk in Assumption1andO,,, ,, in Assumption2 are used at the second and third
arrows, respectively. Note that the probability to obtain 1 on the last qubit in measuring

| k,T> is
P.-= ! + Qk(éfpkymk) 51
72T Ty (51)
where
Q&S =E Graa[Viel(Ses1) | & =S
= Ps1 G [ Vi1 (9 (52)

éeSk+1(é)

erefore, as long aGy+1[Vi+1] is close toVi.1, T = Q(S7*™) is close to
Theref | G [Visa] is cl Viet, (P .. 1ymax sj?k”‘k |

Qk(éj,D"’mk). This is why we can obtain approximations of the continuation values at Cheby-
shev nodes by Step 4, with the errors from QAESs being also small.

Second, let us explain the state o) in Step 9. GivenVy, we can generaté¢ o) similarly
to | k,f> as

10)10)(0)|0)
— 1%)10)10)|0)

- %) P15 S)[910)(0)

351(%)

- %) P& S)I® Gi[Vil(® 10)

%51(%)
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- |S) PGB GiViI®
%S1(%)
1 GV 1 Gi[Vil(®
5+ T{W'l) + s "'T{W'O)
:: | 0>1 (53)

where the last ket corresponds to a single-qubit register. Since the probabiRtyto obtain
1 on the last qubit in measuring o) satis“es

(2P ... Iy " =V, (54)
where
Vo:=E Gi[V1](S) = P18 S)G1[V1](, (55)
551(%)

we can obtain an approximation oV by Step 9, as long a&1[V1] is close toV; and the
QAE error is small.

Lastly, let us comment on the reason why Assumptidhis necessary. This is because we
have to handle underlying asset prices out @&l.1 in Steps 4 and 9, or, more speci“cally,
in generating| kj) and| o). Infact, when we generaté Kj) Sc+1 can be out ofDy.1 with
some probability. In particular, wher| ;) corresponds to a Chebyshev nO(f?D"’mk close
to the boundary of Dy, or, in other words, the condition thaték is close to the boundary
of Dy is imposed, such a probability becomes non-negligible.

5.3 Evaluation of the error
Then, let us consider the error on the present option price in the proposed method. First,
we have the following theorem.

Theorem 3 Under Assumptionsl to 3, consider Algorithml. Suppose thatfor every ke
[K ... 1and]j € J,

Qk élpk,mk QS’?E < kQAE (56)

is satis“ed where 2*% is some positive real numbeioreover suppose that

IVo..Vol < (57)

is satis“ed for some Q"€ € R,. Then,
K...1 K...1 K...1
int OB AE
Vo ..Vo| < 1ko1k + 1ko1k-* 1K 0 (58)

k=1 k=1 k=0

holds wherg forke [K ... 1and k' € [K ... 1§,

M= e ko dy Mg, By) (59)
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and
Ko i ifk <K
kK = _ (60)
1; otherwise
2 d
k:= —log(my+1)+1 . (61)

The proof is presented in Appendiy. 1.

5.4 Complexity
Based on Theoren8, we can evaluate the complexity, that is, the number of calls@giepi
su cient to achieve the desired level of the error on the present option price.

Corollary 1 Let be areal number in(0,0.1).Under Assumptionsl to 3, consider Algo-
rithm 1 with the following parameters
(i) Mgk e[K ... Lkatisfying mc > mi with

mth - 1 log 2d/2+2ﬁ(K 1)(1 mi.%..d/ZB:L
! log 1 Vlmax

mth = 1 log 2022 d(K ... 1)1 .39 B ©2)
k log « v max

fork=2,...K ... 1,

where tlh’kmlis determined as 1. 1in (60) withmy=mi, ... my_ 1= mlt(h'__I
(i) NE ke[K ... 1] set as

7
NE= — . (63)
k
Here, o, ..., k..1are given by
_ 1
0= K..1 4
1 + k/:l (mk/ + 1)d 1’k’
—_— (64)
(M + 1)/ 1k \/ max
= — L fork=1,...K... 1,
1+ Kb e+ e Mk
where Mo, ... Mk _1areset as (i) and 14,..., 1k..1are given as (60) with such
Mo, ... Mk...2
(i) leep set to
. Nest
Nrep := 12 log 001 +1, (65)

foreveryk e [K ... 1]. Here, Ngst:=1 + E/;‘l](mk/ + 1) with {my} set as (i).
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Moreover suppose that 28, ..., 28 are 0. Then, Algorithm 1 outputs Vy satisfying|Vo ...
Vol < V"™ with probability higher than0.99.

The proof is presented in AppendipA.2.

We here explain why the parameters are set as above. As we see in the proof in Ap-
pendix A.2, my, ... Mk 1satisfying 62) make the “rst term in the RHS in 68) smaller
1IN0, k. 1are determined as§3) so that

K..1
=N+ (mie+ 1)INE (66)
k=1

Niot
N rep

number NP, is minimized under the constraint that, if all the QAEs in Algorithml suc-
ceed, the third term in the RHS in §8) is smaller than VI"®/2. Finally, {N,}x=0. k.. 1
are determined so that the probability that these QAESs all succeed becomes higher than
0.99=1...0.01. Intotal, Algorithrhwith the setting in Corollary 1 gives an approximation
of Vo with an error at most V{"®* with probability higher than 0.99.

Note that, in reality, it is di cult to set my to m,‘(“, since k andBy are usually unknown.
In practice, we might set them to some conservatively large values, based on, for exam-
Besides, note that, in the above setting, the half of the error tolerances assigned to
the interpolation error and another half is assigned to the QAE error. Although we can of
course change this assignment ratio, it a ects the complexity only logarithmically, since
the su cient levels of {my}k=1. k..1are logarithmically a ected by such a change and so
are{N,°"} compensating the change dimy}.

Let us consider the dependency of the total complexity on the error toleranceWe see
that

my=0 log “!polyloglog !, (67)
NX*¥ =0 ~!x polyloglog - (68)

for everyk € [K ... 1], and that

NOQAE =0 ...llogd/Z 1 pOlleglOg 1 , (69)
wherepolyloglog(-) meanspolylog(log(-)). Combining these with 66), we obtain

Nt =0 ~Hog? ! polyloglog 1, (70)
which eventually beats LSMes complexi( -3 for small .
6 Discussion
6.1 Comparison with existing Chebyshev interpolation-based methods
In fact, the idea that we approximate the continuation value by Chebyshev interpolation

is not novel. There are some classical methods for Bermudan option pricing based on
Chebyshev interpolation 44..50]. However, in addition to whether we use QAE or other
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classical methods for calculating the nodal continuation values, there are the following
di erences between the above proposed method and the existing methods.

First, we note that we do not have to use Monte Carlo for calculating the continuation
value, and §4, 45 actually used other methods. These papers considered the situation
where the transition probability of the underlying asset prices can be easily calculated,
and computed the continuation value by the numerical integration of the product of the
transition probability and the option value at the next exercise date. Note that this way
is possible only for some simple models for underlying asset evolution such as the Black-
Scholes model. On the other hand, in more complicated settings where, for example, we
price a multi-asset option under the stochastic local volatility model, Monte Carlo can be
the sole solution, and such a time-consuming situation is a meaningful target for quantum
speed-up. However, combining Chebyshev interpolation with various methods might be
an interesting possibility also in the quantum setup, and worth to be investigated as a
future work.

Let us also mention the di erences from48]. The major di erence is that, in the method
in [48], the continuation value is not the target of either Monte Carlo integration or Cheby-
shev interpolation. Instead, the method calculates the conditional expectations of Cheby-
shev polynomials by Monte Carlo or other methods, and “nd the Chebyshev interpolation
of not the continuation value but the option price at each exercise date. This approach
saves the computational time when we price many options under a same model, since
we can reuse the conditional expectations for interpolations in pricing di erent options.
Considering the quantum version of this approach might be interesting too.

6.2 Exponential factor with respect to the number of exercise dates in the error
bound
Now, let us make a comment on the factor 1k _in (58), which is re”ected into the poly-
loglog factors in {f0). This exponentially depends on the number of exercise datks
Therefore, it seems that the error on the option price exponentially grows &sincrease,
and so does the complexity su cient to achieve a given error tolerance. Similar situa-
tions arose in the error analyses for LSMBB, 55, 57, 59..61] and classical Chebyshev
interpolation-based methods48].

However, we should note that%8) is an upper bound on the error, and that the actual
error might not necessarily grows exponentially againist In fact, in the numerical exper-
iment in [48], where American options were approximately priced as Bermudan options
with a small exercise date interval, the error was suppressed even if hundreds or thousands
of exercise dates were set.

Let us now consider why the factor exponentially depending df appears in 8). In
the derivation of (68) described in AppendixA.1, we make Assumptior8 on the analyt-
icity and boundedness of the continuation valug3y, and apply Theoreml to Chebyshev
interpolation of Qy in Algorithm 1. Since we use noQk(épk’mk) the values ofQy at the

Chebyshev nodes, bLIDQAE estimates oer(SD k™) with some errors, in interpolation,
the term like the second term inthe RHS inX) arlses in the upper bound of the di erence
betweenQy and the interpolantQy, and is ampli“ed at every later interpolation.

On the other hand, we can consider that the actual target of Chebyshev interpolation is
not Q but Qy in (52). That is, we can regareQQAE as not an estimate oer(f?TDk’mk) but

thaton Qk(SJP" ™). Then, we can make an assumption not on analyticity and boundedness
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of Qk but those ofQy. This leads to a di erent error bound than Theoren8. Actually, if we
make Assumptiord instead of Assumptior3, we have an error bound with no exponential
factor as shown in Theorens.

Assumption 4 Foreveryk e [K ... 1] Qk(é) has an analytic extension t#p,  ,, whereDy
is given in Assumption2 and  is some real number greater than 1, and

sup Qu(® < B (71)

&Bp,,
holds, whereBy is some positive real number.

Theorem 4 Under Assumptiondl, 2, and 4, consider Algorithml. Suppose thatfor every
ke[K ... Jand ] € %, (56) is satis“ed for some > € R,, and that (57) is satis“ed for
some $*€ € R,. Then,

K..1 K..1 K..1
Vo .. Vol < o K i (72)
k=1 k=1 k=0

holds where for every ke [K ... 1],
&= (o, dymi, B, (73)
and is de“nedas(6l).

The proof is presented in AppendixA.3. Note that a similar point has been made for
LSMin [59] (Theorem 3.1).

Of course,Q is de“ned as 62) with V.1, which is the intermediate output in Algo-
rithm 1, and making assumptions on such a thing does not lead to self-contained dis-
cussion. It is more desirable to derive the error bound under assumptions @ and/or
other quantities determined independently from pricing algorithms. We leave consider-
ing whether we can obtain an error bound similar to Theorem under such assumptions
or not as a future work.

6.3 Quantization of LSM

Lastly, we make a comment on whether we can consider the quantum algorithm for LSM.
Since there are some quantum algorithms for linear regressid@¥[.71], we naturally won-
der that we can apply these to LSM and then obtain speed-up. However, this is not so
straightforward, since most of these algorithms output the regression result as a quan-
tum state, in which the regression coe cients are amplitude-encoded. Fortunately, some
algorithms [67, 71] output the regression coe cient as classical data. In particular, the
algorithm in [71] has the complexity ofO(D”2 4/ ) with the tolerance , the explana-
tory variable numberD, and the condition number of the design matrix, from which
we expect the quadratic speed-up of LSM with respect to Nevertheless, applying this
algorithm to LSM is not immediate either, because of some points to be considered. For
example, the complexity has strong dependence @énand , which might make the al-
gorithm disadvantageous. Therefore, it will be crucial to evaluate these, especiallin
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addition to “nding the basis function set which makes as small as possible. We will con-
sider this direction in the future work.

7 Conclusions
In this paper, we considered application of quantum algorithms to Bermudan option pric-
ing. Since there are QAE-based algorithms for Monte Carlo integration, which provide
guadratic speed-up compared with the classical counterparts, and applications of them
to some option pricing problems have been investigated, it is natural to consider to apply
them to Bermudan option pricing. One crucial issue in this problem is how to approxi-
mate the continuation valueQy, which determines the optimal exercise date. In order to
cope with this, we considered combination of QAE and Chebyshev interpolation. That
is, the proposed method estimates the values @f on the interpolation nodes by QAE,
and, using such estimates, “nd a Chebyshev interpolation as an approximatioi@Qpf We
presented the calculation procedure in detail, along with the error bound and the com-
plexity, which corresponds to the number of calls to the oracle for underlying asset price
evolution, su cient to achieve the desired error tolerance . As expected, this method has
the complexity depending on asO( 3, which means the quadratic speed-up compared
with LSM, the typical classical algorithm for Bermudan option pricing.

As afuture work, itis interesting to consider the quantum version of LSM, as mentioned
in Sect.6.3 Besides, it is also meaningful to extend the proposed method to other types
of dynamic programming, which is ubiquitous in many “elds of science and industry.

Appendix
A.1 Proof of Theorem 3
Proof First, we note that, for everk € [K ... 1],

k=<k (74)
holds, where
c:=max V(S .. V(S , (75)
Dy
and
i o e 3% fork=K ... 1,
= K o 76)
M (et B+ %) fork=1,...K...2.

The proof of this is as follows. We see that, for arlye [K ... 1],

Vil(S) - GrIVKI(S) = Vi(&) - Vi(&) < « (77)

holds if S € Dy, and, under Assumptior®, either

Vi(S) - GeIVi(S) = V(&) - VOBE) < OB (78)
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or

Vi) - Ge[Vid(S0)

Vi(S) - FeVid(S)

Vi(S) - Bl Vid(S) + EelVil(S) - B Vil(S)
Vi(S) - Bl Vid(S) + Vie bi(S) - Vi bi(S)

< I(()B'F Kk (79)

IA

holds if T‘Sk € 8\ Dk. Combining these, we obtain
Vi(S) - GVI(S) < k+ B (80)
for anyék € S. Thisleads to
QAO® .. AO
= E Vier(Geed) - Groa[Viens)(Seen) | & =S

<E Vier(Se1) - Grea[Vie1](Sen) 1&=S

< it o (81)
foranyk e [K ... 2] andSe Dy. Thus, with (56), we obtain

& , AE
Qe 7M™ Q2

Ny

Qx %Dk'mk W Qx é}Dk'mk + Qk %pk’mk ---QS;E

IA

AE
it Bt @ (82)

IA

for everyk € [K ... 2] ande Jk- On the other hand, fork =K ... 1, noting thaQKm(é) =
QK___(é) for anyée S by de“nition, we see that

Qo Fme QU < 9% 3

for anyfe Jx..x Then, under Assumption3, invoking Theorem1, we obtain
QA - AO = (84)
foranyk e [K ... 1] ands € Dy, which immediately leads to74) as

Vi - Vi
= max {f%(9,Qu(® ..max {f¥(9,QS
< QO .. %O
<k (85)

Here, we used max{a,b} .. max{a,c}| < |b..c|, which holds for anya,b,c e R.
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Next, let us note that, fork € [K ... 2],

int : oB, QAE
kK.l T kK.l T (86)

k’=k k/=k+1 k'=k

Kk <

holds. We prove this by induction. Fok =K ... 2,74) implies that

K..2
int OB , OAE

= k.2t oke2 ket goat K2
int int QAE, OB , OQAE

= k.ot oke2 kot okeakoat kot K2
K..1 K..1 K..1

_ int OB QAE

= K. .1p + Ko .10 + Ko o - (87)
K=K...2 K=K .1 K=K .2

Similarly, if (86) hold for k € {2,... K ... 2, (74) implies that

k...1
int OB, QAE
S ket ok kt ot
K..1 K..1 K..1
int int OB QAE oB QAE
< ko1t ket kk..lp T kk'..l1p T kk v Tk T 1
k'=k k'=k+1 k'=k
K..1 K..1 K..1
— int oB QAE
= ko 1 T ko 1t ke @ - (88)
k'=k...1 K'=k K'=k...1

Therefore, @6) is proved for everyk € [K ... 2].
Finally, the claim is proved as follows. We see that

[Vo .. Vo
= EVi(S) -.E Gi[Vi](S)
<E Vi(S) .. G1[V1](S)

<1t ?B
K...1 K...1 K...1
int 0B QAE
< 1kt 1k.1k-* Ko (89)
k=1 k=1 k=1

where we used§0) and (86) at the second and last inequalities, respectively. Combining
this and (67), we obtain

Vo .. Vol
< IVo..Vgo| + Vg ..Vo|

K..1 K..1 K..1
_ int OB QAE
= 1k..1x T 1k..1k T 1k k- (90)

k=1 k=1 k=0 |
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A.2 Proof of Corollary 1
Proof By simple algebra, we see thaty, ... mg . ;satisfying 62) lead to

max
int Vl

LTk = o0 ) (1)

foreveryk e [K ... 1].
On the other hand, Theoren2 implies that, for everyk € [K ... 1] and € Jk, usingN>*"
set as 63), Step 4 in Algorithm1 gives usP, 5, an estimate orP, ; in (51), satisfying

1P - Pjl = 7w (92)
and then Qijf*E satisfying

Dk AE
o0

= (P Y (B . Ty

max-—
<2V, k

d
MDY b o @

S —_— 2 - k 1
K...1
1+ i (me+11 g

with some probability. Similarly, it is implied that, WithN(?AE set as 63), Step 9 gives us
Py, an estimation onPy, satisfying

|Po ..Pol < "o, (94)
and thenV satisfying

Vo .. Vol
= 2Py ... Iy . (B ... 1y
<2Vy¥,

1 VI qae

> 0 o (95)

=

1+ got (Me+10 g

with some probability. Therefore, when all of these succeed,

Vo .. Vol
K...1 K...1 K...1
int OB QAE

< 1k.1x T 1k..1x T 1k K

k=1 k=1 k=0

Vmax Vmax
<1 L0+

2 2

= ypax (96)
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holds, according to Theoren3. Here, we used{1), (93), (95), and the assumption that
28,..., QB are 0, along with simple algebra.
The remaining task is proving that the probabilityPy, that all of the estimations in Steps
4 and 9 succeed is larger than 0.99 under the settingl‘d;j":p as 65). Note that, according
to Theorem 2, with the setting as 65), the probability that Step 4 for a set ok € [K ... 1]
andT € Jk outputs B ; satisfying ©2) is higher than

1

. 97
Nest ®7)

Similarly, the probability that Step 9 outputs, satisfying 04) is also higher than 97).
Besides, the total number of these estimationshks;. Combining these, we obtain a lower
bound of P, as

0.01 Mes
Par> 1... >1...0.01=0.99, (98)

est

which completes the proof. d

A.3 Proof of Theorem 4
Proof Because of%6), Theorem1 implies that

O .. QO < M+  XE (99)

foreveryk e [K ... 1] an&e Dy. Besides, foreverke [K ... 2] ande Dy, |Qk(§) ..Qk(§)| <

k+1t 123 holds as 81), where  is de“ned as {5) foreveryk € [K ... 1], Wherea@Kmfé) =
QK___(é) by de“nition of Gk[-]. Combining these, we see that, for evelye [K ... 1] and
ée Dk,

AOS) A = AO .- AO + AO .. O

0B , int QAE
kit ot ok Tk (100)

IA

holds with « =0and QB =0, which leads to
Vk® VK®) < wat B+ My IE (101)

similarly to (85). Therefore, for everyk € [K ... 1],

= max Vi(© . Vi(®) < ket 25+ M+ OF (102)
k
This implies
K...1 K...l_ K...1
1< B+ e 2E (103)
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Finally, combining (L03) with (57) and [V, ..Vo| < 1+ 2B, which we can see a$0), we
obtain

[Vo .. Vo

< IVo..Vo| + Vg ..Vq|

< .+ ?B+ (?AE
K..1 K..1 K.l
OB int QAE
= K T k T Kk - (104)
k=1 k=1 k=0 O
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