
Kaneko et al. EPJ Quantum Technology (2022) 9:7
https://doi.org/10.1140/epjqt/s40507-022-00125-2

R E S E A R C H Open Access

Quantum pricing with a smile:
implementation of local volatility
model on quantum computer
Kazuya Kaneko1*, Koichi Miyamoto1,2, Naoyuki Takeda1 and Kazuyoshi Yoshino1

*Correspondence:
kazuya-kaneko@fintec.co.jp
1Mizuho-DL Financial Technology
Co., Ltd., Tokyo, Japan
Full list of author information is
available at the end of the article

Abstract
Quantum algorithms for the pricing of financial derivatives have been discussed in
recent papers. However, the pricing model discussed in those papers is too simple for
practical purposes. It motivates us to consider how to implement more complex
models used in financial institutions. In this paper, we consider the local volatility (LV)
model, in which the volatility of the underlying asset price depends on the price and
time. As in previous studies, we use the quantum amplitude estimation (QAE) as the
main source of quantum speedup and discuss the state preparation step of the QAE,
or equivalently, the implementation of the asset price evolution. We compare two
types of state preparation: One is the amplitude encoding (AE) type, where the
probability distribution of the derivative’s payoff is encoded to the probabilistic
amplitude. The other is the pseudo-random number (PRN) type, where sequences of
PRNs are used to simulate the asset price evolution as in classical Monte Carlo
simulation. We present detailed circuit diagrams for implementing these preparation
methods in fault-tolerant quantum computation and roughly estimate required
resources such as the number of qubits and T-count.

Keywords: Finance; Pricing; Quantum computing

1 Introduction
With recent advances in quantum computing technologies, researchers are beginning to
consider how to utilize them in industries. Finance is one of the major target [1]. Be-
cause financial institutions perform enormous tasks of numerical calculation in their daily
works, the speedup of such calculation will bring significant benefits to them. One of such
tasks is the pricing of financial derivatives [2–4]. Financial derivatives, or simply deriva-
tives, are contracts in which payoffs are determined in reference to the prices of underlying
assets at some fixed times.

In derivative pricing, movements of underlying asset prices are represented by stochastic
processes, and a derivative price is written as an expected value of the sum of payoffs
discounted by the risk-free interest rate. Monte Carlo simulation is often used to compute
the derivative price, but it takes a computation long time. Quantum algorithms for Monte
Carlo integration [5, 6] bring quadratic speedup compared with classical Monte Carlo

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-022-00125-2
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-022-00125-2&domain=pdf
mailto:kazuya-kaneko@fintec.co.jp

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 2 of 32

algorithms, and several previous studies discuss their application to derivative pricing [7–
10]. Although previous studies consider the Black-Scholes (BS) model [11, 12], which is
the pioneering model for derivative pricing, it is inappropriate as an application target of
Monte Carlo for practical business for the following reasons. First, the actual market prices
of derivatives are inconsistent with the BS model. This phenomenon is called volatility
smile, which we will explain in Sect. 2. To price derivatives precisely, financial firms often
use more complicated models than the BS models. Second, the BS model is so simple
that analytic formulae are available, and thus Monte Carlo simulation is not necessary. In
fact, banks use Monte Carlo simulation mainly for complex models which can take into
account volatility smiles. The above points motivate us to consider the advanced models
in quantum algorithms.

This paper focuses on one of the advanced models, the local volatility (LV) model [13].
In the LV model, the volatility of an asset price depends on the price itself and time. The
BS model is also a special case of the LV model. Because the LV model can make derivative
prices consistent with volatility smiles, it is widely used for pricing derivatives, especially
exotic derivatives, which have complex transaction terms such as early redemption. In
order to price a derivative by Monte Carlo simulation, we generate random trajectories
(paths) of the time evolution of asset prices, then calculate the expectation value of the
sum of discounted payoffs in each path. In this paper, we focus on the implementation
of such a time evolution in the LV model on fault-tolerant quantum computers to apply
quantum algorithms for Monte Carlo simulation.

We consider two quantum integration algorithms based on the quantum amplitude es-
timation (QAE): the amplitude encoding (AE) type method [5] and the pseudo-random
number (PRN) type method [6]. These algorithms are the same in that we prepare a quan-
tum state encoding the integrand and estimate the integral from the state by the QAE. The
difference between these algorithms is whether the probability distribution is encoded to
the amplitude of a quantum state. In the AE-type method, which is adopted in previous
studies [7–9], the probability distribution of the payoff is fully encoded to the probability
amplitude [14]. In other words, this method takes account of all possible paths in calculat-
ing the expectation value. A problematic point of the AE-type method is that the number
of qubits grows with the dimension of the integrand. In the pricing task, the number of
qubits is proportional to the total number of random variables, which equals the length of
the path times the number of underlying assets.1 Because the length of the path, i.e., the
number of time steps, can be large for derivatives with a long maturity, and the number
of underlying assets can be multiple, the AE-type method will require many qubits. Let
us see a common situation: the number of assets is O(10), that of time steps is O(102),
and each register for random variables consists of O(10) qubits. Then, the total number
of qubits for the derivative pricing becomes O(104). Since the large qubit overhead might
incur to make a logical qubit (see Ref. [15] and references therein), calculations with a large
number of logical qubits might be prohibitive.

The PRN-type method is originally proposed in Ref. [6] to reduce the number of qubits
for integrating multivariate functions. In the PRN-type method, we do not encode the
probability distribution to the probability amplitude, while we use PRNs whose empirical
distribution reproduces the desired probability distribution as in the classical Monte Carlo

1In this paper, we assume arbitrage-free and complete markets, so the number of stochastic factors equals that of assets.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 3 of 32

simulation. Although this method introduces an additional error in the estimation, we
can reduce the error by increasing the number of sampled paths. As shown in Ref. [6],
we can achieve the quadratic speedup by appropriately changing the number of sampled
paths. Moreover, this approach allows us to sequentially update PRNs at each time step.
In other words, we do not need to have multiple random variables simultaneously. In the
PRN-type method, each quantum register is not assigned to each of the random variables,
but a single register is used to generate a sequence of PRNs. Thus, the number of qubits
is independent of the number of random variables, which is the advantage of the PRN-
type method. On the other hand, its drawback is the increase of the circuit depth. More
concretely, the circuit depth is proportional to the number of random variables. When it
comes to the LV model, the circuit depth is proportional to the number of time steps in
both methods, and thus the drawback of the PRN-type method will be alleviated. This is
different from the situation in credit portfolio risk management [16], where the AE-type
method reduces the circuit depth.

Furthermore, we design the quantum circuits implementing the above state preparation
methods in the fault-tolerant quantum computer by using several quantum circuits for el-
ementary arithmetic. We then estimate the number of logical qubits2 and T-count [17, 18]
in the proposed quantum circuits. Because the qubit number in the PRN-type method is
independent of the number of time steps, it is much less than that in the AE-type method.
On the other hand, the T-count is proportional to the number of time steps in both meth-
ods. However, the T-count of the PRN-type method is larger than that of the AE-type
method by a factor of O(1).

The rest of this paper is organized as follows. Section 2 and 3 are preliminary sections,
the former briefly explains the LV model, and the latter reviews the quantum algorithm for
Monte Carlo simulation. In Sect. 4, we present quantum circuits for the state preparation
in two methods. In Sect. 5, we estimate the qubit number and T-count of the proposed
circuits. Section 6 gives a summary.

2 Local volatility model
This section is devoted to defining the LV model.

2.1 Pricing of derivatives
We consider the single-asset case, but it is straightforward to extend the discussion in
this paper to the multi-asset case. Consider a party A involved in a derivative contract
written on some asset. Let St be a stochastic process representing the asset price at time
t. We assume that the payoffs arise multiple times tpay

i , i = 1, 2, . . . , and the i-th payoff is
given by f pay

i (Stpay
i

) ∈ R. Here, the positive payoff means that A receives a money from
the counterparty, and the negative one means vice versa. For example, when A buys an
European call option with the strike K , the payoff is given by

f pay
1 (Stpay

1
) = max{Stpay

1
– K , 0} (1)

with a single payment date tpay
1 . Note that this type of derivative contract is too simple

to cover all trades in financial markets. For example, callable contracts, in which either

2Hereafter, we use the word ‘qubit’ to mean a logical qubit.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 4 of 32

of the parties has a right to terminate the contract at some time, are widely dealt with in
markets. In this paper, we consider only derivatives expressed as Eq. (1) and leave studies
for exotic derivatives for future works.

Following the theory of arbitrage-free pricing [3, 4], the price V of the contract for A is
given by

V = E

[∑
i

f pay
i (Stpay

i
)
]

, (2)

where E[· · ·] represents the expectation value under a risk-neutral measure. We assume
that the risk-free interest rate is 0 for simplicity.

2.2 LV model and volatility smile
In the LV model, the evolution of the asset price is modeled by the following stochastic
differential equation:

dSt = σ (t, St) dWt (3)

in the risk-neutral measure,3 where Wt is the Wiener process which drives St . dXt is the
increment of a stochastic process Xt over an infinitesimal time interval dt, and σ (t, St)
(≥0) represents the local volatility. The BS model corresponds to the case where

σ (t, S) = σBSS (4)

with a positive constant σBS, which we call a BS volatility. In the BS model, a price of
a European call option with strike K and maturity T at t = 0 is given by the following
formula:

Vcall,BS(T , K , S0,σBS) = �SN(d1)S0 – �SN(d2)K ,

d1 :=
1

σBS
√

T

[
ln

(
S0

K

)
+

1
2
σ 2

BST
]

,

d2 := d1 – σBS
√

T ,

(5)

where �SN is the cumulative distribution function (CDF) of the standard normal distri-
bution. If the BS volatility is given, we can price the option by the above equations. Con-
versely, we can calculate the BS volatility from the market price of the option Vcall,mkt(T , K).
The BS volatility determined from the market price is called implied volatility. That is, the
implied volatility σIV(T , K) is defined through

Vcall,BS
(
T , K , S0,σIV(T , K)

)
= Vcall,mkt(T , K). (6)

If the market is described well by the BS model, σIV(T , K) depends on neither K nor T .
However, σIV(T , K) varies with K and T in many markets. If σIV(T , K) obtained from the
market depends on K , it is said that we observe volatility smile for the market. Volatility

3Note that the drift term does not exist because we set the risk-free to be 0.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 5 of 32

smile implies that possible scenarios of asset price evolution in the BS model do not match
those which market participants consider. The volatility smile arises when, for example,
market participants think that extreme scenarios, such as big crashes or sharp rises, occur
more frequently than the BS model prediction.

The LV model allows pricing of a European option to be consistent with a market price
as long as there is no arbitrage in the market. This is because, in the LV model, the local
volatility σ (t, S) has enough degrees of freedom to reproduce the two-dimensional func-
tion Vcall,mkt(T , K). In fact, if Vcall,mkt(T , K) is given for any T and K , we can determine
the local volatility as described in Ref. [13]. However, in reality, the market option prices
are available only for limited strikes and maturities. Therefore, in practical situations, we
assume the functional form of σ (t, S) as follows. We set nt + 1 grid points in the time axis,
t0 := 0 < t1 < · · · < tnt , and set nS grid points in the asset price axis for each time grid point,
–∞ < si,1 < · · · < si,nS < ∞. Then, σ (t, S) is set as a piecewise-linear function on S:

σ (t, S) = ai,jS + bi,j for ti–1 ≤ t < ti, si,j–1 ≤ S < si,j, (7)

where ai,j and bi,j are constants. In this paper, we assume that ai,j and bi,j are predetermined
constants.

2.3 Monte Carlo simulation
We here describe how to estimate the derivative price (2) by Monte Carlo simulation. First,
we discretize the time into sufficiently small meshes because we can deal with a continuous
variable on neither classical nor quantum computers. For simplicity, we set the time grid
points to {ti}nt

i=0. Then, the time evolution (3) is approximated as

�Sti := Sti+1 – Sti ≈ σ (ti, Sti)
√

�tiwi, (8)

where �ti := ti+1 – ti, and w1, . . . , wnt are mutually independent standard normal random
numbers (SNRNs). Among various ways to discretize the stochastic differential equation,
we here adopt the Euler-Maruyama method [19].

Second, we discretize SNRNs. Since discretized SNRN takes on a countable number of
values, we denote the m-th value of the discretized SNRN by w(m). The associated prob-
ability mass function pm is defined as the cumulative distribution of the standard normal
distribution over a small interval of two grid points. Then, we can approximate Eq. (2) as

V ≈
∑

m

pm

∑
i

f pay
i

(
S(m)

tpay
i

)
, (9)

where m := (m1, . . . , mnt) and S(m)
t is the asset price at time t when SNRNs take values

w(m1)
1 , . . . , w(mnt)

nt .
There are several ways to calculate the right-hand side of Eq. (9). The simplest way is

brute force calculation, but it takes an exponentially long calculation time. In fact, if we
take M grids to discretize each SNRN, the total number of grid points is Mnt . To overcome
this problem, usually, Monte Carlo method is used. In Monte Carlo simulation, we gener-
ate finite but sufficiently many discretized samples of SNRNs (w(n)

1 , . . . , w(n)
nt) and use them

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 6 of 32

to generate sample paths of the asset price evolving according to Eq. (8). Then, Eq. (2) is
approximated by the average of sums of payoffs in sample paths:

V ≈ 1
Nsamp

Nsamp∑
n=1

∑
i

f pay
i

(
S(n)

tpay
i

)
. (10)

Here, S(n)
t is the value of the asset price at time t on the n-th sample path, and Nsamp denotes

the number of sample paths.

3 Quantum algorithm for Monte Carlo simulation
In this section, we review two quantum methods for Monte Carlo simulation. We consider
a problem of numerically estimating a weighted average of a given function f (s), that is,
V :=

∑
m pmf (sm). Here, sm represents an m-th value of a discretized random variable, and

pm is the probability that it takes a realization sm. Equation (9) is a special case of this
problem, where the integrand is f (·) =

∑
i f pay

i (·).

3.1 AE-type method
We first review the AE-type method discussed in Ref. [5], which directly encodes pm to the
amplitude. It consists of the following three steps: First, we create a superposition of the
inputs and the integrand values with amplitudes √pm, that is,

∑
m

√pm|sm〉|f (sm)〉. This
step is called the state preparation step, and we need an oracle calculating f (s). Second, the
integrand values are encoded to amplitudes of an ancillary qubit by a controlled rotation.
The quantum state is transformed as follows:

|0〉|0〉|0〉 →
(∑

m

√
pm|sm〉∣∣f (sm)

〉)|0〉

→
∑

m

√
pm|sm〉∣∣f (sm)

〉(√
1 – f (sm)|0〉 +

√
f (sm)|1〉). (11)

Here, the first, second, and third ket refer to the random number register, the integrand
register, and the ancilla, respectively. Finally, quantum amplitude estimation [20–24] on
the ancilla gives an approximation of the desired value V . We note that the AE-type
method does not directly use classical Monte Carlo approximation like Eq. (10), but the
estimation error induced by the QAE.

In this method, the number of calls to an oracle calculating f (s) is O(ε–1) with an estima-
tion error of ε > 0. Thus, the quantum algorithm is quadratically faster than the classical
Monte Carlo algorithm, which requires O(ε–2) calls. In the case of a multivariate inte-
grand, the AE-type method requires as many random number registers as input variables.
Thus, the number of qubits grows with the dimension of the integrand.

3.2 PRN-type method
We here review the PRN-type quantum method for Monte Carlo integration [6], where we
prepare a state different from Eq. (11) by using the PRN generator. We first consider the
case of the univariate integrand. Let {xj}∞j=0 be a PRN sequence where relative frequency of
xj = sm equals pm. Since a PRN sequence usually corresponds to the uniform distribution,
we use some transformation techniques such as inverse transform sampling if necessary.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 7 of 32

Then, V can be approximated as V ≈ Ṽ := N–1
samp

∑Nsamp
j=1 f (xj) by Monte Carlo sampling.

The error of the approximation scales as N–1/2
samp. This approximation is the core of the PRN-

type method, which estimates Ṽ by the QAE instead of directly estimating V . In the PRN-
type method, we prepare a quantum state encoding f (xj):

|0〉|0〉|0〉 →
(

1√
Nsamp

Nsamp∑
j=1

|xj〉|f (xj)〉
)

|0〉 (12)

and apply a controlled rotation and the QAE as in the AE-type method. Although there
are two error sources in the PRN-type method, by setting the number of samples Nsamp =
O(ε–2), we obtain quadratic speedup over classical Monte-Carlo integration.

In contrast to the AE-type method, the number of qubits does not depend on the dimen-
sion of the integrand in the PRN-type. Let us consider a multivariate function f (s1, . . . , sn).
We assume that we can calculate f (s1, . . . , sn) sequentially, that is, yn = f (s1, . . . , sn) is cal-
cultaed as

yj = fj(yj–1, sj) for j = 1, 2, . . . , n (13)

with y0 = 0 and two dimentional functions {fj}n
j=1. In calculating a sequential function, we

do not need to simultaneously keep the input values s1, . . . , sn. The PRN-type method uti-
lizes this property to reduce the number of qubits in integrating the multivariate function.
To calculate integral of f (s1, . . . , sn) with PRNs, we divide a PRN sequence {xj}∞j=0 into Nsamp

subsequences of length n, i.e., {xj}n
j=1, . . . , {xj}nNsamp

j=n(Nsamp–1)+1. Then, the integral is calculated
as

Ṽ =
1

Nsamp

Nsamp∑
i=1

y(i)
n , (14)

where y(i)
j = fj(y(i)

j–1, x(i–1)n+j) and i is the label of the subsequence. To realize sequential cal-
culation in the PRN-type state preparation, we replace the random number register with
two registers Rsamp and RPRN, where Rsamp stores the label of the subsequence and RPRN

stores an element of the subsequence, i.e., an PRN. We note that the number of qubits in
Rsamp and RPRN is independent of n, i.e., the dimension of integrand f . Then, the PRN-type
state preparation with sequential calculation is as follows:

1 create an equiprobable superposition of labels of subsequences on RPRN:
|0〉 → N–1/2

samp
∑

i |i〉.
2 generate a PRN on RPRN: |i〉|0〉 → |i〉|x(i–1)n+1〉.
3 calculate f1 and write its value to the integrand register:

|x(i–1)n+1〉|0〉 → |x(i–1)n+1〉|y(i)
1 〉.

4 update a PRN: |x(i–1)n+1〉 → |x(i–1)n+2〉.
5 iterate operations 3 and 4 for j = 1, . . . , n.

Finally, we obtain the desired state:

|0〉|0〉|0〉 → 1√
Nsamp

∑
i

|i〉|xin〉|y(i)
n 〉. (15)

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 8 of 32

Since no additional error to the aforementioned PRN-type method arises in this sequential
calculation, this method provides a quadratic speedup compared to the classical calcula-
tion and uses a smaller number of qubits than the AE-type algorithm, which needs O(n)
qubits. The drawback of the PRN-type method is the O(n) increase in circuit depth.

3.3 Remarks
To conclude this section, we would like to give some remarks. Even in classical compu-
tation, we can achieve quadratic speedup over the classical Monte Carlo integration by
using low-discrepancy sequences instead of (pseudo) random numbers. This algorithm
is known as the quasi-Monte Carlo method and is used in some pricing tasks. Thus, we
cannot say that quantum algorithms for the integration are better than the best classical
algorithm on the asymptotic behavior of the estimation error with respect to the calcu-
lation time. However, the complexity dependence on the function dimensions is known
to be worse in the quasi-Monte Carlo method than the ordinal Monte Carlo method. For
this reason, we expect that quantum algorithm is beneficial to the integration of high di-
mensional functions such as Eq. (2).

After the first version of this paper appeared as a preprint, Refs. [10, 25] have pointed
out that the Grover-Rudolph method [14] for preparing distributions as amplitudes can
eliminate the quadratic speedup. The AE-type method for the LV model with the Grover-
Rudolph state preparation might be faced with a similar obstacle.4 On the other hand, the
PRN-type method is free from such a problem because it does not encode the probability
distribution.

4 Quantum circuits for the LV model
This section presents quantum circuits for the state preparation in two methods: the PRN-
type and the AE-type methods.

4.1 Elementary gate
Before presenting our proposals, we list up elementary gates used in following discussion:

• Adder: |x〉|y〉 → |x + y〉|y〉
• Controlled Adder: |c〉|x〉|y〉 → { |c〉|x + y〉|y〉; for c = 1,

|c〉|x〉|y〉; for c = 0

• Multiplier: |x〉|y〉|z〉 → |x〉|y〉|z + xy〉
• Divider: |x〉|y〉|0〉 → |x〉|y〉|x/y〉

Implementation of those elementary arithmetic are studied in many works [26–46]. With
these gates, we can construct the other arithmetic we use. For example, subtraction
|x〉|y〉 → |x–y〉|y〉 can be done as addition by the 2’s-complement of y. The 2’s-complement
of n-bit number y is defined as 2n – y, which is equivalent to –y modulo 2n. Moreover,
comparison |x〉|y〉|z〉 → |x〉|y〉|z ⊕ (x > y)〉 can be done as subtraction in 2’s-complement
method, since the most significant bit represents whether the result of subtraction is pos-
itive or negative. Thus, a comparator is constructed as two adders including uncomputa-
tion.

We also note that the above multiplier uses two registers as operands and outputs the
product into another register. However, we need the self-update type of multiplier, which

4The state preparation method for the standard normal distribution introduced in Sect. 4.3.2 does not suffer from this
problem since it does not use Monte Carlo integration to calculate the cumulative distribution over each interval in dis-
crete approximation, whereas Ref. [25] assumed the use of it. Although Ref. [10] said that our method uses Monte Carlo
integration in some parts, it actually does not use any. For the detail, see Sect. 4.3.2.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 9 of 32

updates either of input registers with the product. Such a operation is realized by the fol-
lowing trick:

|x〉|y〉|0〉 → |x〉|y〉|xy〉 → |xy〉|y〉|x〉 → |xy〉|y〉|0〉. (16)

Here, the first step is original multiplication. The second step is swap between the first
and third registers. The third step is the inverse operation of division.

4.2 PRN-type method
4.2.1 Calculation flow
We present the calculation flow of the PRN-type state preparation for pricing in the LV
model. Our purpose is estimating Eq. (10) by the PRN-type Monte Carlo method pre-
sented in Sect. 3.2. We show the detailed calculation flow to realize operation (15) in the
case where the desired value is given by Eq. (10).

Before presenting the calculation flow, we explain our setup. We generate Nsamp = 2nsamp

sample paths of length nt by using the PSNRNs. In this algorithm, we prepare the following
registers:

• Rsamp is a register for an index of the sample path and consists of nsamp qubits.
• RW is a register for a PSNRN used to calculate the asset price evolution.
• RS is a register for the value of the asset price.
• Rpayoff is a register for the payoffs.

We note that RW corresponds to the PRN register, and Rpayoff corresponds to the integrand
register in Sect. 3.2. On the other hand, RS is a tailored ancillary register for calculating the
specific integrand and has no counterpart. Although some ancillary registers are needed
in addition to the above registers, we abbreviate them in the main calculation flow.

We assume that the following gates are available to generate a sequence of PSNRNs.
• JW acts on Rsamp ⊗ RW and sets the initial value of the PSNRN subsequence:

JW |i〉|0〉 = |i〉|xint+1〉, where nt is the number of time steps.
• PW advances a PSNRN sequence by one step: PW |xj〉 = |xj+1〉, where xj is the j-th

element of the PSNRN sequence.
Applying these gates to a superposition of Nsamp states, we obtain Nsamp PSNRN subse-
quences:

1√
Nsamp

Nsamp–1∑
i=0

|i〉|0〉 JW−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+1〉

PW−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+2〉

PW−→ . . . PW−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+nt〉 (17)

We also use gate Uj acting on RW ⊗RS ⊗Rpayoff , which calculates the j-th time step of asset
price evolution and the payoff as follows:

Uj|xj〉|Stj–1〉|Vj–1〉 = |xj〉|Stj〉
∣∣Vj–1 + f pay

j (Stj)
〉
. (18)

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 10 of 32

In other words, Uj performs the time evolution (8) by using the value on RW as wj. Af-
ter that, Uj calculates the payoff at time tj and adds its value into Rpayoff . The concrete
implementation of these gates is presented in the next subsection.

The calculation flow of the PRN-type method is as follows:
1 Initialize RS to |St0〉 and the other registers to |0〉.
2 Generate 1√

Nsamp

∑Nsamp–1
i=0 |i〉 on Rsamp. This is done by applying a Hadamard gate

to each qubit of Rsamp.
3 Apply JW to Rsamp ⊗ RW . This step sets the initial value of the PSNRN subsequence.
4 Apply Uj to RW ⊗ RS ⊗ Rpayoff to simulate asset price evolution.
5 Apply PW to RW , which updates RW from xint+1 to xint+2.
6 Iterate operations 4-5 nt-times.

The flow of the corresponding state transformations is as follows:

|0〉|0〉|St0〉|0〉

2−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|0〉|St0〉|0〉

3−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+1〉|St0〉|0〉

4−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+1〉|S(i)
t1 〉|f pay

1
(
S(i)

t1

)〉

5−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+2〉|S(i)
t1 〉|f pay

1
(
S(i)

t1

)〉
6−→ . . .

6−→ 1√
Nsamp

Nsamp–1∑
i=0

|i〉|xint+nt〉|S(i)
tnt

〉
∣∣∣∣∣

nt∑
j=1

f pay
j

(
S(i)

tj

)〉
, (19)

where the first, second, third and fourth kets correspond to Rsamp, RW , RS and Rpayoff ,
respectively. The quantum circuit realizing the flow (19) is schematically shown in Fig. 1.

The implementation of Uj is also shown in Fig. 2, where the subroutine gates V (j)
1 , . . . , V (j)

nS

are used to update the asset price according to Eqs. (7) and (8), and the gate payoff j cal-

Figure 1 The quantum circuit for asset price evolution of the LV model in the PRN-type method. Ancillary
qubits are abbreviated for simple display. The subroutine Uj simulates the time evolution at the j-th time step,
and the details of Uj is described in Fig. 2. The implementation of JW and PW is shown in Fig. 5

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 11 of 32

Figure 2 The implementation of the Uj , which performs the j-th step of asset price evolution, in the PRN-type

method. V (j)k is a subroutine for updating the asset price by Eq. (8), and payoff j is a subroutine for payoff

calculation. The implementation of V (j)k is described in Fig. 3

culates f pay
j (S(i)

tj) and adds its value into Rpayoff . The subroutine V (j)
k realizes the following

three operations:
• Checks whether the asset price RS is in the k-th interval [sj,k–1, sj,k).
• If that is the case, updates the asset price by Eq. (8) with σ (tj, S(i)

tj) = aj,kS(i)
tj + bj,k .

• Clears all the intermediate output.
This procedure requires three ancillary registers, Rcount, RS′ and Rg . Rcount stores an indi-
cator of whether the j-th step of evolution has already been done. If the j-th update has
already been done, the asset price is not updated, which is necessary to avoid double up-
dating in a single step. Rg stores the check result.

We note that there is a restriction on implementing the LV model in the PRN-type
method. Through operations V (j)

1 , . . . , V (j)
nS+1, the state is transformed from |j〉|S(i)

tj 〉 to |j +
1〉|S(i)

tj+1〉, where the first and second kets represents states of Rcount and RS , respectively,
and unchanged registers are abbreviated. This map must be one-to-one correspondence
from the unitarity, which restricts parameters. As shown in Appendix, the unitarity is cer-
tified if we set parameters ai,j and bi,j so that σ (t, S) is continuous with respect to S and set
�tj sufficiently small.

4.2.2 Implementation of subroutines
We now consider how to implement subroutines used in the PRN-type method by arith-
metic operations in Sect. 4.1.

Implementation of V (j)
k At the start of V (j)

k , Rcount takes |j〉 or |j+1〉, and the other registers
take |0〉. Then, the detailed calculation flow of V (j)

k is as follows:
1. Check whether Rcount equals j and RS is in [sj,k–1, sj,k). If the check is passed, flip Rg .
2. If Rg is 1, update RS as

Stj → Stj+1 = Stj + (aj,kStj + bj,k)
√

�tjxint+j, (20)

where xint+j is the value on RW , and add 1 to Rcount.
3. Calculate

S – bj,k
√

�tjxint+j

1 + aj,k
√

�tjxint+j
(21)

into RS′ , where S is the value on RS .
4. If Rcount is j + 1 and RS′ is in [sj,k–1, sj,k), flip Rg . This uncomputes Rg .

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 12 of 32

Figure 3 The implementation of V (j)k , which updates RS if the asset price is in the k-th grid of the LV function.
Here and hereafter, the wire going over a gate means that the corresponding register is not used in the
operation of the gate. A formula at the center of a gate represents the operation the gate performs, and
superscript ‘-1’ means the inverse operation. A formula beside a wire and in a gate represents the input or the
output value of the gate

5. Do the inverse operation of 3.
If and only if the j-th step has not been done and the asset price is in [sj,k–1, sj,k), the asset
price is upadated with the LV function aj,kS + bj,k . To realize this conditional update, the
check result is outputted to Rg , and the gate doing update (20) is controlled by Rg . The
increment of Rcount is also controlled by Rg so that Rcount indicates the completion of the j-
th update. Steps 3-5 are necessary to clear Rg . From the result of Step 3, we can determine
whether the update has been done in Step 2. In step 4, Rg is flipped if and only if it is |1〉,
so it goes back to the initial state |0〉. In summary, through the sequential operation of
V (j)

1 , . . . , V (j)
nS+1, RS is updated only once at the appropriate V (j)

k , Rcount is updated from |j〉 to
|j + 1〉, and all intermediate outputs on ancillary registers are cleared. See also Fig. 3.

Most of sub-parts of V (j)
k can be constructed from arithmetic operations, addition, sub-

traction, multiplication, division, and comparison. For example, Let us consider the gate
z ← z⊕ (x = j and y ∈ I), which is divided to the following two parts. The first part is check-
ing whether the value on Rcount equals j. This check can be done by the multiple control
Toffoli gate, which is studied in Refs. [18, 47, 48]. The second part is checking whether the
asset price is in a given interval, which can be constructed from two comparisons. Com-
bining these, the gate z ← z ⊕ (x = j and y ∈ I) is constructed as shown in Fig. 4. Note that
the bitwise flips X1–j0 ⊗ · · · ⊗ X1–jnx–1 are operated before the multi control Toffoli. Here,
ja is the a-th digit of the binary representation of j, so the a-th qubit is flipped if and only
if ja = 0. This convert |x〉 to |1〉 . . . |1〉 if and only if x = j.

The operation x ← x + (ax + b)y in Fig. 3 can be realized as follows:

|x〉|y〉|0〉 → |x〉|y〉|1〉
→ |x〉|y〉|1 + ay〉
→ |(1 + ay)x〉|y〉|1 + ay〉

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 13 of 32

Figure 4 The gate which outputs whether x = j and y ∈ [α,β) or not. The control by a register means the
multiple control by qubits therein

→ |(1 + ay)x + by〉|y〉|1 + ay〉
→ |(1 + ay)x + by〉|y〉|0〉, (22)

where the third ket corresponds to an ancillary register. The first step is just setting a
constant on the ancillary register. The second step is the multiplication by a. The third
step is self-update multiplication. The fourth step is multiplication by b, and the final step
is uncomputation of the first and second steps. Note that this is done under control by Rg .
In order for this to be controlled, it is sufficient to control only the second, fourth and final
arrows because the third arrow becomes multiplication by 1 without the second. Also
note that multiplication by an n-bit constant can be done by n-adders, that is, n shift-
and-add’s: ax =

∑n–1
i=0 ai2ix, where ai is the i-th bit of a. This method saves the number

of qubits compared with the case of using a multiplier, where we need to hold a on an
ancillary register.

The operation x ← (x – by)/(1 + ay) in Fig. 3 is done as follows:

|x〉|y〉|0〉|0〉 → |x〉|y〉|1〉|0〉
→ |x〉|y〉|1 + ay〉|0〉
→ |x – by〉|y〉|1 + ay〉|0〉
→ |x – by〉|y〉|1 + ay〉|(x – by)/(1 + ay)〉, (23)

where the first, second, third and fourth states correspond to RS , RW , an ancillary register
and RS′ , respectively. The first and second steps are the same as Eq. (22), the third step is
the multiplication by –b, and the final step is division. Here, we do not have to uncompute
RS and the ancillary register because the whole of this operation is uncomputed soon after
in Vj,k .

Implementation of JW and PW In Ref. [6], implementation of PRN on quantum circuits
is based on permuted congruential generator (PCG) [49], which is a PRN generation algo-
rithm with small memory requirements. We use the following two gates to run PCG: (i)
JPRN lets the PRN sequence jump to the int + 1. (ii) PPRN progresses the PRN sequence by

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 14 of 32

Figure 5 The circuits used to generate a PSNRN sequence. RPRN is a register for a PRN sequence generated
by PCG, and RW is a register for a PSNRN sequence. JPRN and PPRN are the jump gate and the progress gate of
PCG, respectively. �–1

SN(x) is the inverse CDF of standard normal distribution

a step. Since PCG basically generates uniform PRNs, we transform them to PSNRNs by
adopting the inverse transform sampling. The implementation of JW and PW are schemat-
ically shown in Fig. 5.

Although we refer to Ref. [6] for the detail of the implementation of the PRN generator,
we here briefly explain it. PCG is a combination of linear congruential generator (LCG)
and permutation of bit string. For LCG, update of the PRN sequence is done by

xn+1 = axn + c mod N , (24)

where a and N are positive integers, c is a nonnegative integer. From the above equation,
the n-th element of the sequence is computed from the initial value x0 by

xn = anx0 +
c(an – 1)

a – 1
mod N . (25)

We can implement Eqs. (24) and (25) using only controlled adders. According to Ref. [26],
the modular adder can be constructed by 5 plain adders. Modular multiplication by a n-
bit constant can be done as n modular shift-and-add’s. Modular division by a constant
a – 1 can be done as modular multiplication by an integer β such that β(a – 1) = 1 mod N .
Modular exponentiation ax mod N is computed as a sequence controlled modular mul-
tiplication [26]. We do not explain permutation: see Ref. [6] for the detail. We make a
comment that it is implemented by a simple circuit; for example, Xorshift is implemented
as a sequence of CNOT.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 15 of 32

The step by step transformation of the implementation of Eq. (24) is as follows:

|xn〉|0〉|0〉 → |xn〉|axn mod N〉|0〉
→ |0〉|axn mod N〉|0〉
→ |0〉|axn mod N〉|c〉
→ |0〉|axn + c mod N〉|c〉
→ |0〉|axn + c mod N〉|0〉
= |0〉|xn+1〉|0〉. (26)

Here, the first register is RPRN, and the other registers are ancillary registers. The first
step is modular multiplication. The second step is the inverse modular multiplication by
an integer α such that aα = 1 mod N , which is necessary to avoid the increase of ancillae.
The third step is the load of c into an ancillary register, the fourth step is modular addition,
and the last step is to unload. Equation (25) progresses as follows:

|n〉|0〉|0〉|0〉
→ |n〉∣∣an mod N

〉|0〉|0〉

→ |n〉∣∣an mod N
〉∣∣∣∣
(

x0 +
c

a – 1

)
an mod N

〉
|0〉

→ |n〉∣∣an mod N
〉∣∣∣∣
(

x0 +
c

a – 1

)
an mod N

〉∣∣∣∣ c
a – 1

〉

→ |n〉∣∣an mod N
〉∣∣∣∣
(

x0 +
c

a – 1

)
an –

c
a – 1

mod N
〉∣∣∣∣ c

a – 1

〉

→ |n〉|0〉
∣∣∣∣
(

x0 +
c

a – 1

)
an –

c
a – 1

mod N
〉
|0〉

= |n〉|0〉|xn〉|0〉, (27)

where the first and third registers are Rsamp and RPRN, and the other registers are ancillary
registers. The first step is modular exponentiation, the second step is modular multipli-
cation, the third step is loading, the fourth step is modular addition, and the last step is
uncomputation of the first and third steps.

Implementation of �–1
SN We also need the gate to calculate �–1

SN, the inverse function of
the CDF of standard normal distribution. We adopt the method in Ref. [50], where �–1

SN is
approximated by a piecewise polynomial function. Let us set the number nICDF of intervals
to be 109 and polynomials to be cubic, that is, �–1

SN is approximated as

�–1
SN(x) ≈ cm,3x3 + cm,2x2 + cm,1x + cm,0 (28)

in xICDF
m–1 ≤ x < xICDF

m , where {xICDF
m }nICDF

m=0 are the end points of the intervals. This approxi-
mation realizes the error smaller than 10–6. Such a piecewise cubic function can be imple-
mented as in Fig. 6. The sequence of comparators and “Load cm,i ’s” gates loads appropriate

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 16 of 32

values of cm,0, . . . , cm,3 into the register Rc,0, . . . , Rc,3, respectively, as explained later. After
the load of coefficients, the cubic function is calculated in the Horner’s method, which is
based on the following representation

(
(cm,3x + cm,2)x + cm,1

)
x + cm,0. (29)

Horner’s method is realized only by adders and multipliers as presented in the latter half
of the circuit in Fig. 6.

Let us explain the way to load the appropriate coefficients. Comparing the input value
x of RPRN and the grid point xICDF

m , the m-th comparator flips a qubit on Rg if x < xICDF
m .

The register Rg rules the activation of “Load cm,i’s” gate, that is, the “Load cm,i ’s” gate is
activated if Rg is 1 at m-th step. If x ≥ xICDF

nICDF
, only “Load cnICDF+1,i’s” gate is activated, and

cnICDF+1,0, . . . , cnICDF+1,3 are loaded to the registers. However, if xICDF
nICDF–1 ≤ x < xICDF

nICDF
, “Load

cnICDF,i’s” and “Load cnICDF+1,i’s” gates are performed. Hence, we have to set “Load cnICDF,i’s”
to compensate the effect of “Load cnICDF+1,i’s”. More generally, the activated gates are “Load
cm,i’s” of m = M, M + 2, . . . , nICDF, nICDF + 1 if nICDF – M is even and that of m = M, M +
2, . . . , nICDF –1, nICDF +1 if nICDF –M is odd. This is because Rg is flipped by all comparators
after the M-th step and alternates between 0 and 1. Considering those, we set the X gates
in “Load cm,i’s” as in Fig. 7, so that cm,0, . . . , cm,3 for appropriate m are loaded after the
sequence of all activated gates.

Implementation of payoff In this paper, we do not consider gates to calculate payoffs in
detail because the resource the gates require is the same in both the PRN-type method
and the AE-type method. We here make just a short comment. In many cases, a payoff is
expressed as

f pay
i = min

{
max{aiSti + bi, fi}, ci

}
, (30)

where ai, bi, ci, fi are real constants. Thst is, a payoff is a linear function of the asset price
with the upper bound (cap) ci and the lower bound (floor) fi. For example, a payoff in an
European call option (1) corresponds to the case of ai = 1, bi = –K , ci = +∞, fi = 0. The
right-hand side of Eq. (30) can be calculated by a combination of comparators, adders, and
multipliers.

4.3 The AE-type method
4.3.1 Calculation flow
The AE-type method is simpler than the PRN-type method, but it requires more registers.
In the AE-type method, we use the following registers:

• RWi is a register for the i-th SNRN (i = 1, . . . , nt).
• RSi is a register for the asset price at time ti (i = 0, . . . , nt).
• Rpayoff,i is a register for the sum of payoffs by ti (i = 1, . . . , nt).

We again abbreviated ancillary registers. In RWi , an SNRN is encoded into a superposition
state |SN〉, which is defined as

|SN〉 :=
NSN–1∑

i=0

√
pSN,i|i〉, (31)

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 17 of 32

Fi
gu

re
6

Th
e
ga
te

to
ca
lc
ul
at
e
th
e
in
ve
rs
e
C
D
F
of

st
an
da
rd

no
rm

al
di
st
rib

ut
io
n
by

pi
ec
ew

is
e
po

ly
no

m
ia
la
pp

ro
xi
m
at
io
n
(2
8)

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 18 of 32

Figure 7 details of the “Load cm,i ’s” gate in Fig. 6. Here, cm,i,k denotes the k-th digit of cm,i

where pSN,i := �SN(xSN,i+1) – �SN(xSN,i). Here, xSN,0 < xSN,1 < · · · < xSN,NSN are the equally
spaced NSN + 1 points for discretizing the distribution. We also assume NSN = 2ndig with
the bit size ndig of floating point number for simplicity. We discuss a gate creating such a
state in the next subsection.

The calculation flow of the AE-type method is as follows:
1 Initialize RS0 to |St0〉 and the others to |0〉.
2 Generate |SN〉 on each of RW1 , . . . , RWnt .
3 Calculate St1 by the time evolution (8) and output the result to RS1 .
4 Calculate the payoff at time t1 and add its value to Rpayoff,i.
5 Iterate operations 3-4 nt-times. Then, we obtain a superposition of states in which

the value on Rpayoff,nt is the sum of payoffs for each path.
The flow of the corresponding state transformation is as follows. Writing only RW1 , . . . ,
RWnt , RS0 , RS1 , . . . , RSnt and Rpayoff,1, . . . , Rpayoff,nt ,

|0〉⊗nt |St0〉|0〉⊗nt |0〉⊗nt

2−→ |SN〉⊗nt |St0〉|0〉⊗nt |0〉⊗nt

3−→
NSN–1∑

i1=0

√pSN,i1 |i1〉|SN〉⊗nt–1|St0〉
∣∣S(i1)

t1

〉|0〉⊗nt–1|0〉⊗nt

4−→
NSN–1∑

i1=0

√pSN,i1 |i1〉|SN〉⊗nt–1|St0〉
∣∣S(i1)

t1

〉|0〉⊗nt–1∣∣f pay
i1

(
S(i1)

t1

)〉|0〉⊗nt–1

5−→ . . .

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 19 of 32

Figure 8 The overview of the circuit for asset price evolution in the LV model in the AE-type method

5−→
NSN–1∑

i1,...,int =0

√
pSN,i1 . . . pSN,int |i1〉 . . . |int〉|St0〉

∣∣S(i1)
t1

〉
. . .

∣∣S(i1···int)
tnt

〉∣∣f pay
i1

(
S(i1)

t1

)〉
. . .

∣∣∣∣∣
nt∑
j=1

f pay
j

(
S(i1...ij)

tj

)〉
, (32)

where S(i1...ij)
tj is the value of the asset price at time tj evolved by w1 = xSN,i1 , . . . , wj = xSN,ij .

The quantum circuit of the AE-type state preparation is shown in Fig. 8. First, |SN〉 is
created on each RWj by SN gate. After that, the gate Uj performs the j-th step of asset price
evolution and payoff calculation. For each evolution step, we additionally use ancillary
registers Rflg,j and RLV,j, which have 1 and 2ndig qubits, respectively. The implementation
of Uj is shown in Fig. 9. In this gate, the sequence of comparators and “Load” gates set
aj,k , bj,k in Eq. (7) into RLV,j by the trick similar to that in the circuit presented in Fig. 6.
Then, operation x ← x + (ax + b)y updates the asset price according to Eq. (8). Operation
x ← x + (ax + b)y can be done as follows:

|x〉|y〉|a〉|b〉|0〉|0〉 → |x〉|y〉|a〉|b〉|0〉|x〉
→ |x〉|y〉|a〉|b〉|xy〉|x〉

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 20 of 32

Fi
gu

re
9

Th
e
im

pl
em

en
ta
tio

n
of

U
j,
w
hi
ch

pe
rf
or
m
s
th
e
j-t
h
st
ep

of
as
se
tp

ric
e
ev
ol
ut
io
n,
in
th
e
A
E-
ty
pe

m
et
ho

d

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 21 of 32

→ |x〉|y〉|a〉|b〉|xy〉|x + axy〉
→ |x〉|y〉|a〉|b〉|xy〉|x + axy + by〉, (33)

where the first ket is the state of RSj–1 , the second is the state of RWj , the third and fourth
are the state of RLV,j, the fifth is the state of an ancillary register, and the last is the state of
RSj . So, this operation consists of copying a state and three multiplications. At the end of
Uj, the payoff is calculated by the “payoff j” gate, which performs the following operation

∣∣S(i1...ij)
tj

〉∣∣∣∣∣
j–1∑
k=1

f pay
k

(
S(i1...ik)

tk

)〉|0〉 → ∣∣S(i1...ij)
tj

〉∣∣∣∣∣
j–1∑
k=1

f pay
k

(
S(i1...ik)

tk

)〉∣∣∣∣∣
j∑

k=1

f pay
k

(
S(i1...ik)

tk

)〉
, (34)

where the first, second and third kets correspond to RSj , Rpayoff,j–1 and Rpayoff,j. This oper-

ation is done by copying Rpayoff,j–1 to Rpayoff,j and adding f pay
j (S(i1...ij)

tj) into Rpayoff,j.

4.3.2 Implementation of the SN gate
Let us consider the implementation of the SN gate, which creates a superposition state
|SN〉. Although our implementation is mainly based on Ref. [14], we use an approximate
by the Taylor expansion.

We construct |SN〉 in an inductive way. An intermediate state at m-step is given by

|SNm〉 :=
2m–1∑

i=0

√
p(m)

SN,i|i〉, (35)

where p(m)
SN,i =

∫ x(m)
SN,i+1

x(m)
SN,i

φSN(x) dx, and φSN(x) is the probability density function of the stan-

dard normal distribution. Here, {xSN,i}2m
i=0 is the set of equally-spaced 2m + 1 points di-

viding the range [xSN,0, xSN,NSN]. We assume the existence of a gate efficiently computing

θ
(m)
i := arccos

√
f (m)
i with the input i, where f (m)

i is

f (m)
i :=

∫ (x(m)
SN,i+x(m)

SN,i+1)/2

x(m)
SN,i

φSN(x) dx

∫ x(m)
SN,i+1

x(m)
SN,i

φSN(x) dx
. (36)

Then, the following state transformation is possible:

|SNm〉|0〉|0〉 =
2m–1∑

i=0

√
p(m)

SN,i|i〉|0〉|0〉

→
2m–1∑

i=0

√
p(m)

SN,i|i〉|0〉∣∣θ (m)
i

〉

→
2m–1∑

i=0

√
p(m)

SN,i|i〉
(
cos θ

(m)
i |0〉 + sin θ

(m)
i |1〉)∣∣θ (m)

i
〉

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 22 of 32

=
2m+1–1∑

i=0

√
p(m+1)

SN,i |i〉∣∣θ (m)
i

〉

= |SNm+1〉|0〉, (37)

where we use the gate computing θ
(m)
i at the first step and perform the controlled rotation

at the second step. Repeating this operation until m = ndig – 1, we finally obtain the desired
state |SN〉.

The remaining part is constructing the gate to compute f (m)
i . Here, we propose a way

based on simple Taylor expansion. Let us consider function

g(x, δ) :=
∫ x+δ/2

x φSN(x) dx∫ x+δ

x φSN(x) dx
. (38)

By simple calculation, it is approximated as

g(x, δ) ≈ 1
2

+
1
8
δx +

1
16

δ2 + O
(
δ3). (39)

This result means that, for small δ, g(x, δ) is well-approximated by a linear function of x.
We use the above approximation to compute f (m)

i , which is represented as

f (m)
i = g

(
x(m)

SN,i,
�

2m

)
, � := xSN,NSN – xSN,0. (40)

If �/2m is sufficiently small, f (m)
i can be approximately written as a linear function of i,

which is derived from the approximation of g and x(m)
SN,i = xSN,0 + �

2m i. We then reach the
circuit in Fig. 10 for calculation of f (m)

i . For m ≤ 6, the above approximation yields a large
error, and thus we use another method. Here, we apply the most straightforward way,
loading pre-computed values. The quantum circuit of this method is shown in Fig. 10(a),
and it uses a similar technique to the circuit in Fig. 6. In this method, each comparator
checks whether the input value i equals its inherent value, and the check result is used for
activation of the Load gate. If the input value is I , “Load f (m)

i ” gates are activated for all i ≥ I .
Therefore, each “Load” gate is set to compensate the effect of the following load gates. For

Figure 10 Circuit to compute f (m)
i

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 23 of 32

Figure 11 Implementation of the SN gate

m ≥ 7, f (m)
i is well approximated by a linear transformation. This transformation can be

implemented as bitwise flips followed by a constant multiplier. We note that, depending
on the required accuracy, we should adjust the threshold value of m switching calculation
method of f (m)

i and also increase the degree of the Taylor expansion.
Then, SN gate is constructed as shown in Fig. 11. First, we operate a Hadamard gate to

the most significant bit in RWj to assign probability 1/2 to positive and negative halves of
[xSN,0, xSN,NSN]. We next operate a sequence of gates USN

1 , . . . , USN
ndig–1. USN

m corresponds to
the m-th step of the above recursive calculation and is constructed as a combination of
f (m)
i gate, gates for square root and arc cosine, and controlled rotation gate R(θ).

Finally, we comment on the implementation of arccos and square root. Reference [51]
discusses the implementation of the inverse trigonometric function by the piecewise poly-
nomial approximation. Although they consider not arccos but arcsin, we can easily apply
their result by arccos(x) = π

2 – arcsin(x). We adopt a setting with the polynomial degree 3
and 2 intervals, which leads to accuracy 10–5 [51]. The circuit to calculate square root is
given in Ref. [52].

5 Estimation of required resources
We roughly estimate the machine resources for the fault-tolerant implementation in the
PRN-type method and the AE-type method. We consider the two metrics, the number of
logical qubits and T-count. Our resource estimation focuses only on the leading contri-
bution from the state preparation step, and we must take the implementation of the QAE

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 24 of 32

Table 1 Resources for the elementary gates. We here assume that operands are n-bit. We omit
subleading terms with respect to n

Gate Logical qubits T-count Reference

Total Operand Output Ancilla

Adder 2n 2n 0 (self-update) 0 14n [37, 38, 46]
Ctrl Adder 2n 2n 0 (self-update) 0 21n [42, 46]
Modular Adder∗ 2n 2n 0 (self-update) 0 70n [26, 37, 38, 46]
Multiplier 3n 2n n 0 21n2 [42]
Divider 5n 2n n 2n 35n2 [46]
Multi Ctrl Toffoli 2n n 1 n 8n [18, 48]
Square Root† 4n n n 2n 14n2 [52]
arccos 105 3.4× 104 [51]
controlled rotation
(with accuracy of 2–n)

2 3n [16, 47, 53]

∗Since the modular adder is constructed by 5 plain adders [26], its T-count is 5 times the values of the adder.
†The circuit given in [52] takes an n-bit input and returns an n/2-bit output of square root and an n/2-bit remainder. To keep
n-bit accuracy, we add n qubits with 0’s to the input of the circuit and calculate the n-bit square root with 2n-bit input. The
added n bits are treated as the input, and the n bits remainder is treated as ancillae.

into consideration for evaluating the total resource of the derivative pricing. We also ne-
glect the resource of calculating payoffs because it can be implemented by a combination
of a few arithmetic circuits, as discussed in Ref. 4.2.2.

5.1 Elementary gates
We first summarize the resources of elementary gates necessary to construct the LV cir-
cuit. We here consider fixed-point arithmetic. Resources of the elementary gates in the
case of n-bit operands are summarized in Table 1. Because we aim to estimate the orders
of the metrics, we take only the leading term with respect to n. For example, we approxi-
mate an + b as an.

We comment on multiplication and division. For these operations, we use modified ver-
sions of circuits proposed in Refs. [42, 46] for the following reason. Original circuits use
2n-bits, but, in our setting, this causes a problem that the number of qubits doubles at
every multiplication. Therefore, we have to truncate lower bits of the product and keep
the digit number. This is why the number of qubits for a divider in Table 1 is different
from that in Refs. [42, 46]. We explain the details of the modified multiplier and divider in
Appendix.

5.2 The number of qubits in registers
We assume that the qubit numbers of the registers is as follows. Some of them have already
been mentioned.

• Registers which store numerical numbers, RW , RS , Rpayoff , RLV,j etc., and ancillary
registers concerning them have ndig qubits. ndig depends on computational
representation of real numbers, which is determined according to the required
accuracy and range. We set ndig = 16.

• RPRN has nPRN qubits, and nPRN is so large value that the PRN sequence has good
statistical property, e.g. long period. Ancillary registers for calculating a PRN sequence
have nPRN qubits too. We set the bit of the PRN generator as nPRN = 64 as in Ref. [49].

• Rsamp has nsamp qubits.
• Other registers, e.g. Rcount, have small number of qubits, and thus we neglect their

contributions to the total number.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 25 of 32

Table 2 Logical qubits necessary in each step in the PRN-type circuit. We neglect registers with only
several qubits

Part Register Logical qubit Note

Whole Rsamp nsamp
RS ndig
Rpayoff ndig
RPRN nPRN

JPRN ancilla 2nPRN To hold intermediate outputs; see (25)
�–1

SN RW ndig
ancilla 6ndig To hold the coefficients of the polynomial

and the intermediate outputs; see Fig. 6
V (j)k RW ndig

RS′ ndig
ancilla 4ndig For x ← x + (ax + b)y and z ← z+x–by

1+ay ; see
the comment in the body text.

PPRN ancilla 2nPRN To hold intermediate outputs; see (26).

5.3 The PRN-type method
Then, let us consider the required resources in the PRN-type method.

5.3.1 Qubit number
In Table 2, we summarize qubits necessary in each step in the circuit. Registers which hold
some values throughout the circuit are as follows: Rsamp, RS , Rpayoff ans RPRN. Except these,
the following parts in the circuit can consume qubit number most heavily.

• JPRN and PPRN: 2nPRN qubits
• �–1

SN: 7ndig qubits
Therefore, the total number of qubits required in the PRN-type method is roughly

nsamp + 2ndig + nPRN + max{2nPRN, 7ndig} (41)

Let us comment on some technical points for obtaining Table 2. We first make a supple-
mentary explanation on the ancillary qubit number in V (j)

k . There are two parts requiring
ancillae in V (j)

k . First, x ← x + (ax + b)y needs the following ancillae: a ndig-bit register
to which 1 + ay is output, a ndig-bit register to which the result is temporally output in
the self-update multiplication and a 2ndig-bit register necessary for the inverse division to
clear the input x. Second, z ← z+x–by

1+ay needs the following: a ndig-bit register to which 1 + ay
is output and a 2ndig-bit register necessary for division. In total, 4ndig bits are sufficient.5

We also comment on the ancilla number in �–1
SN. As we can see from Fig. 6, we need

four registers to which coefficients are loaded and two registers for intermediate outputs.
Therefore, 6ndig ancillae are necessary6

5.3.2 T-count
Because we are interested in only the leading contribution, we focus on multiplications,
divisions, and repeated additions. We do not consider the T-count of JW because it is used
only once. For the parts in Uj, which is used repeatedly, we specify T-counts as follows:

5Strictly speaking, comparisons between RS or RS′ and sj,k ’s require loading sj,k ’s into some register. This does not require
another register, since at least one of ancillary registers used in x ← x + (ax + b)y and z ← z+x–by

1+ay is empty at loading.
6Although we also need a register to which xICDF

m ’s are loaded at comparisons between them and RPRN , we can use RW or
intermediate output registers, which are empty at comparisons.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 26 of 32

1 V (j)
k
One V (j)

k includes the following parts:
• x ← x + (ax + b)y

As we can see in (22), this includes one multiplication and one division,
which come from one self-update multiplication, and 3ndig controlled
additions, which comes from two controlled multiplications by constant and
one inverse. In total, the T-count is 119n2

dig.
• z ← z+x–by

1+ay
As we can see in (23), this includes one division and 2ndig additions, which

comes from two multiplications by constant. In total, the T-count is 63n2
dig.

• Uncomputation of z ← z+x–by
1+ay

Similar to the above.
Therefore, the total T-count in one V (j)

k is 245n2
dig. Since V (j)

k is used nS + 1 times,
the total T-count in them is 245n2

dignS (only the leading term).
2 PPRN

This includes two modular multiplications by constant, which comes from one
self-update modular multiplication. These are decomposed into 2nPRN modular
additions. So the T-count is roughly 140n2

PRN.
3 �–1

SN and its inverse
Each of them includes 2(nICDF + 1) additions (nICDF + 1 comparisons) and five

multiplications. So the T-count for each is roughly 105n2
dig + 28ndignICDF.

Summing up these and considering Uj is used in nt times, the T-count in the whole circuit
is roughly

(
245n2

dignS + 140n2
PRN + 210n2

dig + 56ndignICDF
)
nt. (42)

5.4 The AE-type method
Next, we consider the required resources in the AE-type method.

5.4.1 Qubit number
In the AE-type method, registers shown in Table 3 are added per time step. Note that we
do not uncompute ancillae. Summing up all registers, the qubit number necessary for one
time step is roughly 3n2

dig + 111ndig. Therefore, for the entire circuit, it is

(
3n2

dig + 111ndig
)
nt. (43)

Table 3 Logical qubits added in each time step in the AE-type circuit. We neglect registers with only
several qubits. We only take the leading contributions

Register Logical qubit Note

RSi ndig
RWi ndig
Rpayoff ,i ndig
RLV,i 2ndig
ancilla used for x ← x + (ax + b)y in Uti ndig See (33)
ancilla for USN

m ,m = 1, . . . ,ndig – 1 output f (m)
i n2dig ndig for one USN

m

ancilla for SQRT 2n2dig 2ndig for one USN
m

qubits used for arccos
(input, output and intermediate output)

105ndig 105 for one USN
m

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 27 of 32

Note that the dominant part comes from the iterative calculation in the SN gates, which
prepare superpositions of the values of the SNRNs.

5.4.2 T-count
Again, we focus on operations with large T-count. For each part in the circuit, we estimate
the T-count as follows:

1 SN gate
The m-th iteration USN

m in the SN gate includes the following parts:
• square root, arccos, controlled rotation

T-counts are 14ndig, 3.4 × 104 and 3ndig, respectively.
• f (m)

i

For 2 ≤ m ≤ 6, we use 2m m-controlled Toffoli gates to check the value on
RWi and load f (m)

i which corresponds to the value. T-count for this is
2m(8m – 9).7 Summing this for m = 2, . . . , 6 leads to about 4000. Since this is
much smaller than T-count for arccos in one iteration, we neglect this. For
m ≥ 7, we do multiplication between a m-bit variable and a ndig-bit constant,
which is decomposed ndig additions of m-bit. Then, T-count is 14mndig.

Summing up these counts and taking only dominant contributions, one SN gate has
T-count of (7n2

dig + 3.4 × 104)ndig roughly.
2 Uj

This includes 2nS additions (nS comparisons) and three multiplications. So one
Uj gates has T-count of 63n2

dig + 28nSndig roughly.
In total, we can estimate the T-count of the entire circuit in the AE-type method as

(
7n2

dig + 63ndig + 28nS + 3.4 × 104)ndignt. (44)

5.5 Comparison between two methods
Table 4 compares resources necessary in two methods. The number of qubits is indepen-
dent of nt in the PRN-type method but proportional to nt in the AE-type method. On the
other hand, T-count is proportional to nt in both methods.

Table 4 Comparison of the number of qubits and T-count in the PRN-type method and the AE-type
method

PRN-type AE-type

logical qubit nsamp + 2ndig + nPRN +max{2nPRN , 7ndig} (3n2dig + 111ndig)nt

T-count (245n2dignS + 140n2PRN + 210n2dig + 56ndignICDF)nt (7n2dig + 63ndig + 28nS + 3.4× 104)ndignt

7Here, we use 8m – 9, the accurate value of T-count of the m-controlled Toffoli gates [18, 48], since the approximation as
8m is too crude for small m.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 28 of 32

Table 5 Resources to implement the PRN-type and AE-type methods in the practical situation (45).
The following values are obtained from substituting Eq. (45) to Table 4

PRN-type AE-type

logical qubit 2.4× 102 9.2× 105

T-count 3.7× 108 2.1× 108

Let us consider the following setting, which is necessary for practical use in derivative
pricing:

nsamp = 16,

ndig = 16,

nPRN = 64,

nICDF = 109,

nt = 360,

nS = 5.

(45)

Table 5 presents resources in this setting. The total T-count is of the same order of mag-
nitude in both methods but larger for the PRN-type method by a factor of about 2.

We here comment on parts consuming T-count most heavily in each method. In the
PRN-type method, there are two parts dominantly contributing to T-count. The first part
is the update of the asset price in V (j)

k . Additional operations for reducing the number of
qubits, such as inverse division in self-update multiplication and drawing back the asset
price to clear Rg , increase T-count compared with the AE-type method. The second part
is modular multiplications in the update of the PRN sequence. The T-count of operations
for the PRN becomes large because the PRN generator requires the large bit number, say
nPRN = 64, to keep good statistical properties. On the other hand, in the AE-type method,
the dominant contribution to T-count comes from the calculation of arccos in preparing
SNRNs. Because an arccos is not only T-count consuming but also used in each iteration
in the SN gate, it piles up T-count.

6 Summary
In this paper, we presented the implementation of the time evolution of the asset price
in the LV model on quantum computers. Similar to other problems in finance, derivative
pricing by Monte Carlo simulation requires a large number of random numbers, which
is proportional to the number of time steps for asset price evolution. We considered two
methods of implementation: the PRN-type method and the AE-type method. In the for-
mer, we sequentially generate PRNs on a register and use them to evolve the asset price.
In the latter, SNRNs are created as superpositions on separate registers. For both meth-
ods, we presented the concrete quantum circuits in detail (see Fig. 1 and 8). We then gave
estimations of the qubit number and T-count required in each method. In the PRN-type
method, the qubit number is kept constant against the number of time steps. On the other
hand, in the AE-type method, the qubit number is proportional to the number of time
steps. The total T-counts for both methods are of the same order of magnitude, but the
PRN-type method has the larger T-count by a factor of about 2.

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 29 of 32

Note that analyses of resources required for implementing the LV model in this pa-
per depend on designs of elementary circuits for arithmetic. For example, in the AE-type
method, the dominant contribution to T-count comes from arccos’s in preparing SNRNs.
If more efficient circuits are proposed, the required resources will change from our esti-
mation.

Finally, we would like to note that this study is not enough for the application of a quan-
tum algorithm for Monte Carlo simulation to pricing in the LV model. Although we as-
sumed that the LV function is given, in practice, we have to calibrate the LV so that the
model prices of European options fit the market prices. Besides, we have not considered
how to evaluate terms in exotic derivatives, for example, early exercise. In future works,
we will consider such things and aim to present how to apply quantum computers in the
whole process of exotic derivative pricing.

6.1 Condition on the parameters in the PRN-type method
We show that it is necessary for the PRN-type method working well that σ (t, S) is continu-
ous on S and �tj is sufficiently small. These conditions lead to one-to-one correspondence
between S(i)

tj and S(i)
tj+1 . We define a function f by

f (S) = S + σ (tj, S)
√

�tjwj, (46)

then S(i)
tj+1 = f (S(i)

tj) holds. Except for the grid points {sj,0, . . . , sj,nS }, f (S) is differentiable, and
its derivative is given by

f ′(S) = 1 + aj,k
√

�tjwj (47)

for sj,k–1 < S < sj,k and k = 0, . . . , nS + 1. If we take sufficiently small �tj, f ′(S) is positive
expect the grid points. Besides, if σ (tj, S) is continuous on S, f (S) is continuous too. Com-
bining these facts, we find that f (S) is strictly increasing, that is, one-to-one mapping if
the above two conditions hold.

6.2 Truncated multiplier and divider
We here describe the modified version of multiplier and divider. We assume that we con-
sider the fixed-point arithmetic with nint bits in the integer part and nfrac bits in the frac-
tional part, n = nint + nfrac bits in total. We hereafter call such numbers (nint, nfrac)-bit num-
bers.

Let us consider truncated multiplication. In order to keep this digit setting during mul-
tiplication, we adopt the following policy.

• We simply truncate the digits lower than the nfrac-th fractional digit in the product.
This might cause numerical errors around and the nfrac-th fractional digit and such a
tiny error might accumulate, but we simply neglect this concern.

• We assume the overflow from the nint-bit integer part never occurs.
We write a number x in binary representation as xnint–1xnint–2 . . . x0.x–1 . . . x–nfrac , where xi

is the i-th integer digit of x and x–j is the j-th fractional digit of x. We then approximate
the product of x and y as follows:

xy =
nint–1∑

i=–nfrac

xi2iy ≈
nint–1∑

i=–nfrac

xi2iỹi =: f mul
nfrac,nint,y(x), (48)

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 30 of 32

where

ỹi =

⎧⎨
⎩

ynint–1 . . . y0.y–1 . . . y–(nfrac–i); for i < 0,

y; for i ≥ 0.
(49)

Under our assumption that the overflow from the n-bit integer part never occurs, we have

f mul
nfrac,nint,y(x) =

nint–1∑
i=0

xi2i(ynint–1–i . . . y0.y–1 . . . y–nfrac)

+
nfrac∑
j=1

x–j2–j(ynint–1 . . . y0.y–1 . . . y–(nfrac–j)). (50)

This calculation can be constructed by using n-bit controlled adders n-times as in Ref. [42].
Thus, the qubit number and T-count of the circuit for truncated multiplication are the
same as those in Ref. [42].

We define the truncated division of z by y as the inverse of the truncated multiplication:
z/y ≈ (f mul

nfrac,nint,y)–1(z). Given two (nint, nfrac)-bit numbers y and z, we can find an (nint, nfrac)-
bit number x satisfying z = f mul

nfrac,nint,y(x) by the following iterative procedure:
1 Set i = nint – 1 and x = 0.
2 Update z with z – 2iỹi

3 Set xi = 0 if z < 0, else set xi = 1.
4 If xi = 0, update z with z + 2iỹi (z returns to the value before step 2).
5 Decrement i by 1.
6 Repeat steps 2-5 until i = –nfrac – 1.
7 Output x.

Note that 2iỹi >
∑i–1

j=–nfrac
2jỹj. This ensures that sequential subtractions by 2iỹi and check-

ing whether the difference is positive or negative lead to determining each digit of x. In
the above procedure, we need to convert z to (2nint – 1, nfrac)-bit number to calculate
z ± 2nint–1ỹnint–1. So, we introduce nint-dummy qubits corresponding to the 2nint – 1-th
to nint-th integer digits of z. Then, steps 2-4 are implemented as the circuit in Fig. 12. We
also note that the dividend register is reset from |z〉 to |0〉 through the above procedure. If

Figure 12 Circuit corrsponding to steps 2-4 in the truncated division. Since, in the 2’s complement method,
we can check the sign of a number by seeing the most significant bit, we do not have to use an adder as a
comparator

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 31 of 32

we want to reserve |z〉, we need to copy the dividend state to another ancillary register by
CNOT gates, which increases the total number of qubits by n.

Despite the trick to truncate the digits, the structure of the circuit for truncated division
is similar to the restoring division circuit in Ref. [46]. Thus, the T-count of our truncated
division circuit is the same as that of the circuit in Ref. [46]. On the other hand, since we
have introduced dummy qubits and a register to keep the dividend, the qubit number of
divider is 5n.8

Funding
The research was funded by Mizuho-DL Financial Technology Co., Ltd.

Abbreviations
LV, Local Volatility; RN, Random Number; PRN, Pseudo-Random Number; BS, Black-Scholes; CDF, Cumulative Distribution
Function; SNRN, Standard Normal Random Number; PSNRN, Pseudo Standard Normal Random Number; PCG, Permuted
Congruential Generator; LCG, Linear Congruential Generator.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The original idea to this paper came from K.M. All authors contributed to the preparation of the manuscript. All authors
read and approved the final manuscript.

Author details
1Mizuho-DL Financial Technology Co., Ltd., Tokyo, Japan. 2Center for Quantum Information and Quantum Biology, Osaka
University, Osaka, Japan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 August 2021 Accepted: 28 January 2022

References
1. Orus R et al. Quantum computing for finance: overview and prospects. Rev Phys. 2019;4:100028.
2. Hull JC. Options, futures, and other derivatives. New York: Prentice Hall; 2012.
3. Shreve S. Stochastic calculus for finance I: the binomial asset pricing model. Berlin: Springer; 2004.
4. Shreve S. Stochastic calculus for finance II: continuous-time models. Berlin: Springer; 2004.
5. Montanaro A. Quantum speedup of Monte Carlo methods. Proc R Soc Ser A. 2015;471:2181.
6. Miyamoto K, Shiohara K. Reduction of qubits in quantum algorithm for Monte Carlo simulation by pseudo-random

number generator. Phys Rev A. 2020;102:022424.
7. Rebentrost P et al. Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys Rev A.

2018;98:022321.
8. Stamatopoulos N et al. Option pricing using quantum computers. Quantum. 2020;4:291.
9. Ramos-Calderer S et al. Quantum unary approach to option pricing. Phys Rev A. 2021;103:032414.
10. Chakrabarti S et al. A threshold for quantum advantage in derivative pricing. Quantum. 2021;5:463.
11. Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ. 1973;81:637.
12. Merton RC. Theory of rational option pricing. Bell J Econ Manag Sci. 1973;4:141.
13. Dupire B. Pricing with a smile. Risk. 1994;7:18–20.
14. Grover L, et al. Creating superpositions that correspond to efficiently integrable probability distributions.

quant-ph/0208112.
15. Campbell ET et al. Roads towards fault-tolerant universal quantum computation. Nature. 2017;549:172.
16. Egger DJ, et al. Credit Risk Analysis using Quantum Computers. 1907.03044.
17. Amy M et al. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans

Comput-Aided Des Integr Circuits Syst. 2013;32(6):818–30.
18. Selinger P. Phys Rev A. 2013;87:042302.
19. Maruyama G. On the transition probability functions of the Markov process. Rend Circ Mat Palermo. 1955;4:48.
20. Bassard G et al. Quantum amplitude amplification and estimation. Contemp Math. 2002;305:53.
21. Suzuki Y et al. Amplitude estimation without phase estimation. Quantum Inf Process. 2020;19:75.
22. Nakaji K. Faster Amplitude Estimation. 2003.02417.

8Actually, added qubits are not 2n but nint +n, but we consider that 2n qubits are added for simplicity and conservativeness.

http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/1907.03044
http://arxiv.org/abs/2003.02417

Kaneko et al. EPJ Quantum Technology (2022) 9:7 Page 32 of 32

23. Giurgica-Tiron T, et al. Low depth algorithms for quantum amplitude estimation. 2012.03348.
24. Plekhanov K, et al. Variational quantum amplitude estimation. 2109.03687.
25. Herbert S. The problem with grover-rudolph state preparation for quantum Monte-Carlo. Phys Rev E.

2021;103:063302.
26. Vedral V et al. Quantum networks for elementary arithmetic operations. Phys Rev A. 1996;54:147.
27. Beckman D et al. Efficient networks for quantum factoring. Phys Rev A. 1996;54:1034.
28. Draper TG. Addition on a quantum computer. quant-ph/0008033.
29. Cuccaro SA et al. A new quantum ripple-carry addition circuit. In: The eighth workshop on quantum information

processing. 2004.
30. Takahashi Y et al. A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput.

2005;5(6):440–8.
31. Van Meter R et al. Fast quantum modular exponentiation. Phys Rev A. 2005;71(5):052320.
32. Draper TG et al. A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput. 2006;6(4):351.
33. Takahashi Y et al. Quantum addition circuits and unbounded fan-out. Quantum Inf Comput. 2010;10(9–10):0872.
34. Portugal R et al. Reversible Karatsubas algorithm. J Univers Comput Sci. 2006;12(5):499.
35. Alvarez-Sanchezet JJ et al. A quantum architecture for multiplying signed integers. J Phys Conf Ser.

2008;128(1):012013.
36. Takahashi Y et al. A fast quantum circuit for addition with few qubits. Quantum Inf Comput. 2008;8(6):636.
37. Thapliyal H. Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. Transactions on

Computational Science XXVII. 2016;10.
38. Thapliyal H, Ranganathan N. Design of efficient reversible logic based binary and BCD adder circuits. ACM J Emerg

Technol Comput Syst. 2013;9:17.
39. Lin C-C et al. Qlib: quantum module library. ACM J Emerg Technol Comput Syst. 2014;11(1):7:1–7:20.
40. Babu HMH. Cost-efficient design of a quantum multiplier-accumulator unit. Quantum Inf Process. 2016;16(1):30.
41. Jayashree HV et al. Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J

Supercomput. 2016;72(4):1477.
42. Muñoz-Coreas E, Thapliyal H. Quantum circuit design of a T-count optimized integer multiplier. IEEE Trans Comput.

2019;68:5.
43. Khosropour A et al. Quantum division circuit based on restoring division algorithm. In: Information technology: new

generations (ITNG), 2011 eighth international conference on. Las Vegas: IEEE; 2011. p. 1037–40.
44. Jamal L, Babu HMH. Efficient approaches to design a reversible floating point divider. In: 2013 IEEE international

symposium on circuits and systems (ISCAS2013). 2013. p. 3004–7.
45. Dibbo SV et al. An efficient design technique of a quantum divider circuit. In: 2016 IEEE international symposium on

circuits and systems (ISCAS). 2016. p. 2102–5.
46. Thapliyal H et al. Quantum circuit designs of integer division optimizing T-count and T-depth. In: IEEE transactions on

emerging topics in computing. 2019.
47. Amy M, Maslov D, Mosca M. IEEE Trans CAD. 2014;33(10):1476.
48. Maslov D. On the advantages of using relative phase Toffolis with an application to multiple control Toffoli

optimization. Phys Rev A. 2016;93:022311.
49. O’Neill ME. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number

Generation. Harvey Mudd College Computer Science Department Tachnical Report. 2014.
http://www.pcg-random.org/.

50. Hörmann W, Leydold J. Continuous random variate generation by fast numerical inversion. ACM Trans Model
Comput Simul. 2003;13(4):347.

51. Haner T, et al. Optimizing Quantum Circuits for Arithmetic. 1805.12445.
52. Muñoz-Coreas E, Thapliyal H. T-count and qubit optimized quantum circuit design of the non-restoring square root

algorithm. ACM J Emerg Technol Comput Syst. 2018;14:3.
53. Kliuchnikov V et al. Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits.

IEEE Trans Comput. 2016;65(1):161.

http://arxiv.org/abs/2012.03348
http://arxiv.org/abs/2109.03687
http://arxiv.org/abs/quant-ph/0008033
http://www.pcg-random.org/
http://arxiv.org/abs/1805.12445

	Quantum pricing with a smile: implementation of local volatility model on quantum computer
	Abstract
	Keywords

	Introduction
	Local volatility model
	Pricing of derivatives
	LV model and volatility smile
	Monte Carlo simulation

	Quantum algorithm for Monte Carlo simulation
	AE-type method
	PRN-type method
	Remarks

	Quantum circuits for the LV model
	Elementary gate
	PRN-type method
	Calculation ﬂow
	Implementation of subroutines
	Implementation of V(j)k
	Implementation of JW and PW
	Implementation of PhiSN-1
	Implementation of payoff

	The AE-type method
	Calculation ﬂow
	Implementation of the SN gate

	Estimation of required resources
	Elementary gates
	The number of qubits in registers
	The PRN-type method
	Qubit number
	T-count

	The AE-type method
	Qubit number
	T-count

	Comparison between two methods

	Summary
	Condition on the parameters in the PRN-type method
	Truncated multiplier and divider

	Funding
	Abbreviations
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

