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Abstract
Noiseless quantum channels are critical to share a pure maximally entangled state for
performing an ideal teleportation protocol. However, in reality the shared
entanglement severely degraded due to decoherence. In this paper, we propose a
quantum teleportation channel protection scheme to enhance the teleportation
fidelity in presence of decoherence. Before the entangled pair enters the
decoherence channel, the weak measurement and flip operations are applied to
transfer the qubit to a more robust state to the effects of the noise. After the
decoherence channel the reversed flip operations and weak measurement reversal
are applied to recover the initial state. We illustrate our protected teleportation
scheme and compare it with a protocol based on weak measurement reversal. The
numerical results show that the average teleportation fidelity of our proposed
scheme can be significantly improved. Although the proposed entanglement
protection scheme is probabilistic, after a successful entanglement transmission, we
use the standard teleportation protocol which has probability one.

Keywords: Quantum teleportation; Entanglement protection; Weak measurement;
Teleportation fidelity; Decoherence channel

1 Introduction
Quantum teleportation plays a critical role in quantum communication and quantum
computation networks [1–5]. Teleportation was originally proposed by Bennett et al. [6]
and has been implemented in various physical platforms [7–12]. Quantum teleportation
is the process of transmitting an unknown quantum state from a sender (Alice) to a re-
ceiver (Bob) using an entangled quantum channel. The quantum channel that connects
Alice and Bob is an entangled pair which is the key ingredient in quantum teleportation
[13]. However, in realistic implementations, noise is affecting the entangled state during
its transmission to Alice and Bob which degrades the performance of the teleportation
seriously [14]. One strategy to overcome the effects of noise is by modifying the standard
teleportation protocol which is changing the unitary operation applied by Bob [15–20].
Another method is called distillation which offers a probabilistic method of preparing a
pair of qubits with an increased amount of entanglement by using several copies of non
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maximally entangled mixed state in conjunction with local operations and classical com-
munication [21–23]. Applying quantum error correction also protects the entangled state
through the noisy channel but requires many qubits in entanglement [17, 24–26]. Except
for the previous schemes which are resource-intensive, a more recent approach to battle
against decoherence is using the quantum weak measurement (WM) [27–32]. WM can
decrease the disturbance of the system by weakening the interaction responsible for the
measurement. There is a tradeoff between information gain and disturbance of the system
in quantum WM. The weaker measurement gives less information about the system and
disturb it less. Moreover, WM has been implemented in superconducting phase qubits
[33, 34], as well as photonic qubits [35, 36]. In these schemes, before entering the noisy
channel the state is transferred to a more robust state by a WM. After passing through the
noisy channel, another WM is applied to reverse back the state to its original one.

In this paper we propose a protection scheme by WM with flips and its reversal (WMFR)
to protect the entangled pair in amplitude damping channel (ADC) to enhance the telepor-
tation fidelity. Before the qubit goes through the noisy channel, we add pre-flip operations
according to the result of the WM. The aim of applying pre-flip operations is to intention-
ally drive the qubit close to its ground state before the ADC, to make it almost immune
to the effects of the noise. After the entangled pair passes through the ADC, the post-flip
operations and weak measurement reversal (WMR) are applied to recover the state. We
have considered two scenarios: I. Decoherence happens in mode A or B, when the entan-
gled pair is prepared by Alice and one qubit of the pair is sent to Bob through the noisy
channel. II. Decoherence happens in mode AB, when the entangled pair is prepared by
a third party (Charlie) and then each half of the entangled pair is sent to Alice and Bob
through the noisy channel. For comparison, we also study another scheme which is used
WM in the last step of the teleportation protocol to overcome the effects of noise, which
we call it weak measurement reversal teleportation protocol (WMRTP) hereafter [19]. In
this protocol, the designed joint measurement and the corresponding single-qubit revers-
ing operation are applied to achieve optimal quantum teleportation. By comparing our
scheme with the WMRTP, we show significant improvement in the teleportation fidelity
of our scheme. In addition, according to the incompleteness of the WMR, the WMRTP
is probabilistic and can gain high fidelity with the price of decreasing the teleportation
success probability. While, our scheme has the privileged of the unit teleportation success
probability. Once the protected entangled pair is successfully transferred to Alice and Bob,
teleportation can be done with unit probability and high fidelity.

2 Protected teleportation with decoherence in mode A or B
In this section we assume that the decoherence happens in mode A or B, which means the
entangled qubit pair is prepared by Alice (Bob) and then one qubit of the pair is sent to Bob
(Alice) through an ADC, respectively. To protect the entangled pair from noisy channel,
Alice applies WM and pre-flip operations on Bob’s qubit before she sends it to Bob. She
sends the result of the measurement to Bob through the same classical channel that she
is going to use for teleportation. Then according to the result of the measurement sent by
Alice, Bob applies post-flip operations and WMR to recover his qubit of the entangled pair.
The schematic diagram of quantum teleportation channel protection is shown in Fig. 1.

The details of the scheme for protecting the shared entanglement state is demonstrated
as follows. To establish the quantum channel, Alice prepares the entangled qubit pair and
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Figure 1 Schematic diagram of quantum teleportation channel protection with decoherence in mode A or B

supposes to send one qubit of the pair to Bob through an ADC. The entangled state pre-
pared by Alice is presented as

|ψ〉ab = cos
θ

2
|0〉a|0〉b + sin

θ

2
|1〉a|1〉b, (1)

where 0 ≤ θ ≤ π
2 . When θ = π

2 (θ = 0), the entangled pair is maximally entangled state
(product state), respectively. A useful measure of the entanglement is the concurrence of
this state, which is C = sin θ .

The density matrix representation of the entangled state is

ρab =

⎛
⎜⎜⎜⎝

cos2 θ
2 0 0 cos θ

2 sin θ
2

0 0 0 0
0 0 0 0

cos θ
2 sin θ

2 0 0 sin2 θ
2

⎞
⎟⎟⎟⎠ . (2)

In this paper we assume that the prepared entangle pair is a maximally entangled state
(θ = π

2 ).
To protect the entangled state, Alice applies operations on the qubit of the pair which

she is supposed to send to Bob, before it enters the ADC. First of all, she measures the qubit
with a family of positive operator-valued measurement (POVM) consists of two operators
given by �i = m†

i mi (i = 0, 1). The measurement operators mi are defined as [37, 38]

m0 =

[
cos(ω/2) 0

0 sin(ω/2)

]
,

m1 =

[
sin(ω/2) 0

0 cos(ω/2)

]
,

(3)

where 0 ≤ ω ≤ π/2 is the strength of the measurement. The larger ω is, the weaker the
measurement becomes. When ω = π/2 (ω = 0), we have no measurement (projective mea-
surement) and for 0 < ω < π/2 the measurement is called weak measurement.

Therefore, the applied two-qubit measurement operators are represented as

M0 = I ⊗ m0, M1 = I ⊗ m1, (4)

where I =
( 1 0

0 1

)
is the identity operator.
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According to the result of the measurement, the pre-flip operations are applied on the
second qubit as

f0 = I =

[
1 0
0 1

]
, f1 = σx =

[
0 1
1 0

]
, (5)

where f0(f1) corresponds to the measurement outcome m0(m1), respectively.
If the result corresponds to measurement operator m0 acquired, it means the qubit is

already close to the ground state |0〉 and we do not need to change it. However, if the result
corresponds to m1 appeared, by applying flip operation f1 the qubit will be driven to its
ground state to become less vulnerable to the effects of the ADC.

The two-qubit representation of the flip operations are

F0 = I ⊗ f0, F1 = I ⊗ f1. (6)

Then Alice sends the second qubit to Bob through the ADC with Kraus operators [39]

e0 =

[
1 0
0

√
(1 – r)

]
, e1 =

[
0

√
r

0 0

]
, (7)

where 0 ≤ r ≤ 1 is the decaying rate.
Since only the second half of the pair passes through the ADC, the applied Kraus oper-

ators for entangled pair is

E0 = I ⊗ e0, E1 = I ⊗ e1. (8)

Also, she sends the result of the measurement 0 or 1 to Bob through the same classical
channel which she is going to use for teleportation.

After receiving the state by Bob and learning about the measurement outcome, he ap-
plies the post-flip operations according to the result of Alice’s measurement. The post-flip
operations are same as the ones applied by Alice in Eq. (5) and (6).

Finally, Bob must apply the WMR to recover his qubit of the pair. Hence, the WMR
operator should be designed in a way that mini becomes almost proportionate to I . The
WMR operators n0 and n1 are from the complete measurement sets {n0, n̄0} and {n1, n̄1},
respectively, as

n0 =

[
q 0
0 1

]
, n̄0 =

[√
1 – q2 0

0 0

]
,

n1 =

[
1 0
0 q

]
, n̄1 =

[
0 0
0

√
1 – q2

]
,

(9)

where 0≤q≤1 is the strength of the WMR and n†
0n0 + n̄†

0n̄0 = I and n†
1n1 + n̄†

1n̄1 = I . In our
protection process, we only preserve the result of ni, discard the result of n̄i and normalize
the final state at the end of protection process.

The two-qubit representation of the WMR is given as

N0 = I ⊗ n0, N1 = I ⊗ n1. (10)
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After applying the WMR by Bob, the entangled state shared between Alice and Bob is
ready to start the teleportation protocol.

The protected entangled pair after the whole process of protection is described as

ρfin
ab =

∑
i=0,1

∑
j=0,1

NiFiEjFiMiρabM†
i F†

i E†
j F†

i N†
i . (11)

According to Eq. (2) and (11), the protected entangled state, shared between Alice and
Bob, after the protection process becomes

ρfin
ab =

1
2

⎛
⎜⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 0 0
0 0 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎟⎠ (12)

with ρ11 = ρ44 = q2cos2 ω
2 + (1 – r)sin2 ω

2 , ρ22 = ρ33 = rq2sin2 ω
2 and ρ14 = ρ

†
41 = sinωq

√
1 – r.

Since some of the results of the WMR in Eq. (9) are discarded, the protection process
becomes probabilistic with total protection success probability:

gfin
ab = Tr

(
ρfin

ab
)

= (1 – r)
(
1 – q2) sin

ω

2
+ q2. (13)

Now the entangled pair shared between Alice and Bob is ready to start the standard
teleportation process. In what follows we present the standard teleportation protocol by
considering the protected entangled pair Eq. (12).

Alice has the qubit ρin which we call it input state hereafter, that she wishes to teleport
to Bob. The input qubit is given by

ρin = |ψin〉〈ψin| =

(
|α|2 αβ∗

α∗β |β|2
)

, (14)

where |α|2 + |β|2 = 1 and * denotes complex conjugation.
Alice interacts the qubit ρin to her half of the protected entangled pair in Eq. (12). Then

she makes a projective measurement on her two qubits (the input state and her share of the
protected entangle state) with measurement operators Bi = |bi〉〈bi|, where Bi (i = 1, 2, 3, 4)
are represented as

Bi = |bi〉〈bi| with

|b1〉 = cos
ϕ

2
|00〉 + sin

ϕ

2
|11〉,

|b2〉 = sin
ϕ

2
|00〉 – cos

ϕ

2
|11〉,

|b3〉 = cos
ϕ

2
|01〉 + sin

ϕ

2
|10〉,

|b4〉 = sin
ϕ

2
|01〉 – cos

ϕ

2
|10〉

(15)

which becomes the Bell basis when ϕ = π
2 . In this paper we use the Bell basis measurement

in the teleportation protocol.
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In the next step, Alice tells Bob, through the classical channel, which |bi〉 she measured.
After receiving this information, Bob knows that his state is now described as

ρBi =
Tr12[Biρ

fin
ab Bi]

gBi

, (16)

where Bi is defined in Eq. (15) and Tr12 denotes the partial trace on qubits 1 and 2 (those
with Alice) and gBi = Tr[Biρ

fin
ab ] the probability of gaining the measurement outcome cor-

responds to the measurement operator Bi.
In the last step, Bob applies the reversing operation on his qubit to recover the teleported

state. The reversing operators for each measurement outcome i = 1, 2, 3, 4 are given as

R1 = I, R2 = σz, R3 = σx, R4 = σzσx, (17)

where I =
( 1 0

0 1

)
is the identity operator and σx =

( 0 1
1 0

)
, σz =

( 1 0
0 –1

)
are the Pauli operators.

Therefore, the final recovered state received by Bob is

ρRi =
RiTr12[Biρ

fin
ab Bi]Ri

gBi

. (18)

The teleportation fidelity for each measurement outcome is defined by

fidi = 〈ψin|ρRi |ψin〉, (19)

where ρin = |ψin〉〈ψin| is the input state which Alice wished to send, defined in Eq. (14) and
ρRi is the received state by Bob in Eq. (19).

Since the probability of occurring each state ρRi is different, the total teleportation fi-
delity is defined as

Fidtot =
∑

i

gBi fidi, (20)

where fidi is the fidelity corresponds to each measurement and gBi the probability of oc-
currence of each measurement outcome Bi.

The fidelity depends on the input state ρin. Hence, to quantify the performance of the
protocol in a way that is independent of a particular input state, we use the average tele-
portation fidelity over all possible initial states as

〈Fidtot〉WMFR

=
∫

dψ
∑

i

gBi

〈
ψa|ρRi |ψa

〉

=
(11q2 + q2(11(r+q2–1)–4q2r)

(q2–1)(r–1) + 4qsin(w)
√

1 – r)

(15(sin2( w
2 )(1 – q2))(1 – r) – 15q2)

–
11(r + q2 – 1) – 4q2r

15(q2 – 1)(r – 1)
.

(21)
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Also, for comparison we include the average teleportation fidelity of WMRTP proposed
in [19]:

〈Fidtot〉WMRTP =
∫

dψ
1 + r|α|2|β|2tan2( θ

2 )
1 + r|β|2tan2( θ

2 )

(
|α|2cos2

(
θ

2

)
+ |β|2sin2

(
θ

2

))

+
1 + r|α|2|β|2tan2( θ

2 )
1 + r|α|2tan2( θ

2 )

(
|α|2sin2

(
θ

2

)
+ |β|2cos2

(
θ

2

))
,

(22)

where α and β are the elements of the input qubit density matrix in Eq. (14), θ is the angle
of shared entangled state in Eq. (1) and r is the decaying rate of the ADC in Eq. (7).

And the standard teleportation protocol without any protection with the average tele-
portation fidelity of:

〈Fidtot〉stan =
1

15

(
4sin(θ )

√
1 – r – 7rsin2

(
θ

2

)
+ 11

)
, (23)

where θ is the angle of shared entangled state in Eq. (1) and r is the decaying rate of the
ADC in Eq. (7).

In the following, we study the behavior of the average teleportation fidelity and total
protection success probability by numerical simulations. We assume that Alice prepares
a maximally entangled state with θ = π

2 and the Bell basis measurement is applied in tele-
portation protocol with ϕ = π

2 in Eq. (15).
The average teleportation fidelity by varying measurement strength 0 ≤ ω ≤ π/2 and

WMR strength 0 ≤ q ≤ 1 for decaying rate r = 0.5 is given in Fig. 2. The gray plane in
Fig. 2(a) is the standard teleportation fidelity without any protection in Eq. (23). We only
accept the measurement strengths which gains higher teleportation fidelity than no pro-
tection protocol. Therefore, in Fig. 2(b) the gray area is the protection success probability
with the amounts of measurement and WMR strength (ω, q) that leads to teleportation
fidelity less or equal to no protection protocol.

Figure 2 (a) Teleportation fidelity as a function of WM strength (ω) and WMR strength (q) with decoherence
in mode A or B. The gray plane is the teleportation fidelity without any protection (b) Protection success
probability as a function of WM strength (ω) and WMR strength (q) with decoherence in mode A or B. Here
r = 0.5 and θ = π

2 . The gray area is the corresponding protection success probability of no protection protocol



Harraz et al. EPJ Quantum Technology            (2022) 9:15 Page 8 of 12

Figure 3 Teleportation fidelity by varying decaying rate
0≤ r ≤ 1. The red solid curve represents the average
teleportation fidelity of WMRTP and the dashed
magenta curve corresponds to average teleportation
fidelity of standard teleportation without any protection

As one can see from Fig. 2 for bigger teleportation fidelities the protection success prob-
ability becomes smaller. In other words, there is a trade-off between teleportation fidelity
and protection success probability. For instance, when q = 0.53 and ω = π

3 the telepor-
tation fidelity and protection success probability amounts are 〈Fidtot〉 = 0.92, gfin

ab = 0.34,
respectively. However, if smaller success probabilities are tolerable during protection, our
scheme can gain teleportation fidelity more than 98%. Therefore, one needs to find a suit-
able amount for ω and q to gain acceptable teleportation fidelity and protection success
probability. We note that the success probability of teleportation is always equal one, and
the given probability in Fig. 2 is the success probability of the entanglement protection.

For different values of decaying rate r, each group of WM and WMR strength (ω, q)
uniquely determines its corresponding teleportation fidelity. In Fig. 3 for each amount of
decaying rate 0 ≤ r ≤ 1, the measurement strengths (ω, q) are independently taken over
all the real numbers in their range 0 ≤ ω ≤ π/2, 0 ≤ q ≤ 1 and the corresponding telepor-
tation fidelity is plotted.

The red solid curve represents the average teleportation fidelity of WMRTP in Eq. (22)
and the dashed magenta curve corresponds to the average teleportation fidelity of stan-
dard teleportation without any protection in Eq. (23). As Fig. 3 clearly depicts, our scheme
can improve the teleportation fidelity significantly compared to the standard protocol
without any protection and WMRTP. Moreover, our scheme has high fidelity even un-
der strong decoherence that would otherwise preclude any quantum operations. We note
that the WMRTP is a probabilistic protocol which gains high teleportation fidelity at the
price of low success probability, while in our scheme, once the entanglement protection is
successful, the standard teleportation protocol with unit probability is applied.

3 Protected teleportation with decoherence in mode AB
In this section, we assume that the decoherence happens to both qubits of the entangled
pair. This scenario happens when the entangled state is prepared by a third-party Charlie
and then transferred to Alice and Bob via noisy channels. To protect the quantum telepor-
tation channel, Charlie applies WM and flip operations on both qubits of the entangled
pair before sending them to Alice and Bob. Also, he sends the results of the measurements.
Then Alice and Bob apply the post-flip and WMR operations according to the result of the
measurement of the Charlie to recover their qubit of the entangled pair. The schematic di-
agram of protection with decoherence in mode AB is given in Fig. 4.
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Figure 4 Schematic diagram of quantum teleportation channel protection with decoherence in mode AB

In this scenario the applied two-qubit protection operators are represented as

X0 = x0 ⊗ x0, X1 = x0 ⊗ x1, X2 = x1 ⊗ x0, X3 = x1 ⊗ x1, (24)

where xi, i = 0, 1 are the WM operators in Eq. (3), flip operators in Eq. (5), ADC Kraus
operators in Eq. (7) and WMR operators in Eq. (10).

Therefore, the protected entangled pair after the whole process of protection is defined
as

ρfin
ab =

∑
i=0,3

∑
j=0,3

RiFiEjFiMiρabM†
i F†

i E†
j F†

i R†
i . (25)

With total protection success probability:

gfin
ab = Tr

(
ρfin

ab
)

= sin4
(

ω

2

)
(1 – r)2 + q4

[
cos4

(
ω

2

)
+ r2sin4

(
ω

2

)]

+
1
2

q2sin2
(

ω

2

)
(1 – r) +

1
2

rq4sin2(ω) + 2r(1 – r)q2sin4
(

ω

2

)
.

(26)

In this scenario the explicit formula of average teleportation fidelity is derived as

〈Fidtot〉WMFR =
Top

Down
, (27)

where Top = sin4( ω
2 )[22r2q4 – 16r2q2 + 22r2 + 16rq2 – 44r + 22q4 + 22] + 4rq4sin2(ω) –

19rq2sin2(ω) – 44q2sin2( ω
2 ) + 22q4 + 19q2sin2(ω) and Down = 15[sin4( ω

2 )(2r2q4 – 2r2q2 +
2r2 + 4rq2 – 4r + 2q4 + 2)] + rq4sin2(ω) – rq2sin2(ω) – 4q4sin2( ω

2 ) + 2q4 + q2sin2(ω).
For comparison we study the standard teleportation with no protection in presence of

decoherence in mode AB with average teleportation fidelity of

〈Fidtot〉stan =
1

15

(
14rsin2

(
θ

2

)
(r – 1) + 4sin(θ )(1 – r) + 11

)
. (28)

To investigate the behavior of the average teleportation fidelity and protection success
probability, we plot them as a function of WM and WMR strengths (ω, q) in Fig. 5.

In Fig. 5(a) the gray plane indicates the average teleportation fidelity with no protection
and in Fig. 5(b) represents the corresponding protection success probability of no protec-
tion protocol. From Fig. 5(a), it is noted that the average teleportation fidelity is indeed
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Figure 5 (a) Teleportation fidelity as a function of WM strength (ω) and WMR strength (q) with decoherence
in mode AB. The gray plane is the teleportation fidelity without any protection (b) Protection success
probability as a function of WM strength (ω) and WMR strength (q) in mode AB. Here r = 0.5 and θ = π

2 . The
gray area is the corresponding protection success probability of no protection protocol

improved compared to no protection teleportation. To achieve an acceptable amount of
average teleportation fidelity, one needs to tolerate low protection success probability. For
instance, when q = 0.81 and ω = 0.52 the average teleportation fidelity is 0.92 with corre-
sponding protection success probability 0.1. Here again we notice that after a successful
transmission of protected entangled pair, the teleportation will be done with unit proba-
bility.

4 Conclusion
We have proposed a scheme based on WM with flip operations to enhance the teleporta-
tion fidelity in presence of decoherence. Before the entangled pair enters the decoherence
channel, we apply WM and flip operations to make it almost immune to the effects of the
noise. After receiving each half of the pair by Alice or Bob, they will apply post flip oper-
ations and WMR to restore their qubit. We have demonstrated that by using our scheme
an unknown quantum state can be teleported with high fidelity when the decoherence
happens in mode A or B and mode AB. Moreover, the proposed WMFR has better per-
formance in dealing with high damping probabilities that would otherwise preclude any
quantum operation. Also, our scheme can highly improve the teleportation fidelity com-
pared with the teleportation protocol based on WMR proposed in [19] and the teleporta-
tion without any protection. Our scheme has applications for battling the decoherence in
other quantum communication tasks, such as quantum key distribution (QKD) [40, 41],
multipartite teleportation, entanglement transmission and one-way quantum repeater.
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