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Abstract

Rolling bearing is an indispensable part of the contemporary industrial system, and its
working conditions affect the state of the entire industrial system. Therefore, there is
great engineering value to researching and improving the fault diagnosis technology
of rolling bearings. However, with the involvement of the whole mechanical
equipment, we need to have a large quantity of data to support the accuracy of fault
diagnosis, while the efficiency of classical machine learning algorithms is poor in
processing big data, and huge amount of computing resources is required. To solve
this problem, this paper combines the HHL algorithm in quantum computing with
the LS-SVM algorithm in machine learning and proposes a fault diagnosis model
based on a quantum least square support vector machine (QSVM). Based on
experiments simulated on analog quantum computers, we demonstrate that our
fault diagnosis based on QSVM is feasible, and it can play a far superior advantage
over the classical algorithm in the context of big data.
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1 Introduction

With the development of science and technology, the modern industrial system has en-
tered a new era of integration, precision and intelligence, these characteristics not only
make the mechanical equipment organically integrated into a whole but also improve the
modern industrial system’s higher production efficiency. On the other hand, with the in-
crease in operation time and equipment aging, mechanical malfunctions are always in-
evitable. The failure of any part of the industrial production line may have a great impact
on the entire industrial system, which may bring serious economic losses to enterprises
and factories, and even cause major safety accidents in serious cases. Rolling bearing has
always been one of the essential key parts of mechanical equipment. According to some
research, in rotating machinery, about 30% of mechanical failures are caused by rolling
bearings [1]. Therefore, it is very important to conduct research on the fault diagnosis of
rolling bearings [2].

In recent years, with the improvement of machine learning theory, more and more
researchers have applied these artificial intelligence algorithms to the fault diagnosis of
rolling bearings and achieved good results [3—-6]. However, it should also be noted that
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classical machine learning algorithms have gradually reached a bottleneck in computing
power when dealing with high-dimensional and massive data. Finding algorithms that are
more efficient in processing big data will be the focus of research on rolling bearing fault
diagnosis [7].

Quantum is an important concept in modern physics, in which quantum is the smallest
unit that cannot be divided, so the characteristics of quantum are mainly shown in the
microscopic world. To describe the laws of physics of the microscopic world, the theory
of quantum mechanics was proposed. This theory is often contrary to the experience and
common sense of the macroscopic world, such as quantum superposition, quantum en-
tanglement, quantum coherence and so on. The science and technology developed from
quantum mechanics is called quantum technology. After decades of development, quan-
tum technology has made great progress and gradually entered the field of interdisci-
plinary application research [8]. Quantum computing is one of the important branches
of quantum technology, and is also the most promising technology, which can be put into
practice in the foreseeable future [9]. Compared with classical computing methods, quan-
tum computing can even achieve exponential acceleration in solving specific problems.
As soon as its theory was put forward, it attracted the close attention of many scholars
[10]. The super-strong computing power makes quantum computing one of the methods
which are most likely to break through the existing computing bottleneck. Therefore, us-
ing quantum computing to solve the rolling bearing fault diagnosis problem in the context
of big data will be one of the development directions in the future.

HHL algorithm is a quantum algorithm for solving linear equations proposed by Har-
row, Hassidim and Lloyd in 2008 [11]. Compared with the classical solution methods, the
HHL algorithm can achieve exponential acceleration in theory, and the proposal of this
algorithm also drives the rapid development of quantum machine learning (QML). It has
promoted scholars’ research on quantum machine learning algorithms. Later, Childs et al.
improved the HHL algorithm by using chebyshev class method to represent the operator,
avoiding the phase estimation process in the original algorithm and enhancing the univer-
sality of the algorithm. WieBe et al. first proposed the quantum linear regression algorithm
based on HHL algorithm in 2012. HHL algorithm can be divided into three steps to solve
the least square support vector machine problem: First, the classical data is represented by
quantum bits and stored in the quantum random access memory; Then the phase estima-
tion algorithm is used to solve the parameters of the least square support vector machine,
and the corresponding quantum states of the parameters are obtained and applied to the
classification of test samples. Finally, the coherent term is used to measure the final quan-
tum state, and the expectation of the coherent term is obtained, and the category of the
test sample is judged according to the final expectation value.

SVM is one of the most classical algorithms in traditional machine learning. Its basic
principle is to completely separate two types of data through a hyperplane. Different from
black-box algorithms such as neural networks, SVM has complete theoretical proof and
excellent generalization performance. In recent years, many scholars have applied it to the
fault diagnosis of rolling bearings and achieved good results [12—15]. The solving process
of standard SVM does not involve linear equations, but its derivative algorithm, the Least
Square Support Vector Machine (LS-SVM) has computations involving linear equations
[16]. In solving small-scale linear equations, the construction of the LS-SVM model is
faster, but with the expansion of the scale of equations, it may even be impossible to solve.
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Therefore, this paper combines the HHL algorithm with the LS-SVM algorithm to propose
a fault diagnosis model based on Quantum Support Vector Machine (QSVM).

Since quantum hardware with enough coherence time to demonstrate our proposed
QSVM algorithm are not available at present, to verify the feasibility of QSVM, we need
to spend much more time and computing resources compared with the classical LS-SVM.
However, our research provided theoretical guidance and empirical results that will help
further improvement in the theoretical research area and can better guide the develop-
ment of practical applications soon.

In addition, the contributions of this paper are as follows:

(1) We combine the HHL algorithm with the LS-SVM algorithm to propose a fault di-
agnosis model based on Quantum Least Square Support Vector Machine (QSVM), which
has greater engineering application value.

(2) We use QSVM to realize three-classification fault diagnosis on small-scale data
(classical computer simulation of quantum computing is very resource-intensive), achieve
100% fault diagnosis, and show that the fault diagnosis model is based on QSVM is feasi-
ble.

2 Theoretical of least square support vector machine
Suppose that the training set contains p samples, denoted as

{xixyi}f?:l’ Yi € {_1r1}~ (1)

In Eq. (1), x; € RY, x; represents the g-dimensional input vector, and y; is the sample cat-
egories, including 1 and —1. SVM tries to find an optimal hyperplane that can completely
divide these two types of data. The optimal partition scheme is that the point closest to the
hyperplane in the sample is the farthest away from the hyperplane. These points that de-
termine the hyperplane are called support vectors. For each training point, its geometric

distance to the hyperplane is

1
d,'= ;i X —(Wxx,-+b). (2)
I W

Where d; is the distance from the i-th training point to the hyperplane, W and b are
the parameters of the hyperplane. According to the theory of SVM, we need to find the
training point closest to the hyperplane.

Amin = Min d;. (3)
i=1,...p

According to the Eq. (2) and (3), the optimization problem of SVM is transformed into

dmin
max
wb |W
st yi(W x % + b) > diyin, i = 1,2,..., p. (4)

To facilitate the solution, the Eq. (4) can be rewritten as

1 2
max — || W||
Wb 2
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st.yi(Wxux;+b)>1,i=1,2,...,p. (5)

LS-SVM transforms the inequality constraint of the Eq. (5) into equality constraint

e A§m 4
max — + = e
Wb 2 2 py !
st.yi(Wxx+b)=1-e,i=1,2,...,p. (6)

Where e; is the relaxation variable and X is the regularization parameter. For nonlinear
classification problems, training sample x; can be mapped from the original space to a
higher dimensional feature space by the kernel function.

Construct the Lagrange function of the Eq. (6)

1 )\‘ m m
L(W,b,e,a) = maxEHWH2 + 5 ;ef - Z%‘[JG(W Xx;i+b)—1+ ei]. 7)

i=1

Where «; is the Lagrange multiplier corresponding to sample x;. The partial derivative

of each variable in the above formula is taken and sorted out, which can be obtained

o 17 b| |0
1 K+aUf|a| |y] )
a = [og,,. .., 0]

Where K is the kernel matrix of order p, and the values of « and b can be obtained by
solving the linear equation.

LS-SVM needs to use all the training data, so its time complexity is a polynomial order
of sample number p and feature number g, denoted as O(Ploy(pq)). When p and g are
large, the computational complexity is extremely high. So, we use the HHL algorithm to
replace the classical method of solving linear equations.

3 HHL algorithm

3.1 The solution form of HHL algorithm

HHL algorithm is a quantum method to solve linear equations, and is the key of quantum
support vector machine to solve linear equations of LSSVM quickly. Firstly, HHL algo-
rithm describes the systems of linear equations using quantum symbols, assuming that A
is an Ermi operator in the N-dimensional state space and |b) is a state vector of this space,
so solving the system of linear equations can be expressed as solving the |x) that satisfies
Alx) = |b).

The two core steps of the algorithm are sparse Hamiltonian simulation and phase esti-
mation. When the data matrix in the algorithm is a sparse Hermitian matrix and the num-
ber of conditions is small, the time complexity of HHL algorithm to solve linear equations
is O(logN), compared with the time complexity of the best known classical algorithm
O(n), achieving exponential acceleration. The HHL algorithm promotes the research of
quantum machine learning algorithms, especially for the problems that can be solved by
data matrix algebraic operations.
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Figure 1 Quantum Fourier Transform circuit

In the HHL algorithm, the solution form of linear equations is expressed as
Alx) = |b). ©)
Where A is the N order matrix of Hermitian, |x) and |b) is the column vector of Hilbert

space.

The Hermitian matrix can be decomposition:
N-1
A=) il ). (10)
i=0

Where p; is the eigenvalues of A, |u;) is the eigenvector corresponding to ;.
Assume |b) = [bg, b1,...bn_1]T, HHL constructs it

N-1 N-1
)= bili), Y bi=1. (11)
i=0 i=0

Taking u; as the base vector, we could construct b
N-1
1b) =Y Bilus). (12)
i=0
According to Egs. (10) and (12)
N-1
) = A7 b) = Y g il (13)
i=0

Where |x) is the target to be solved by HHL. In the HHL algorithm, we need to use

Quantum phase estimation (QPE) and Quantum Fourier transform (QFT).

3.2 Quantum Fourier transform
Similar to classical Fourier transform, QFT also converts a quantum state into another

quantum state, and its quantum circuit is (see Fig. 1).
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In Fig. 1, |x1) to |x,) are the basis vectors and they satisfy the conditions
%) = [01%0, ..o %), = 2"y 427 2 + -+ 2%, (14)

H stands for Hadamard gate, and it can be expressed

H=£|:1 1] (15)

2 (1 -1

In the first qubit |x;), after applying H-gate, | V1) is expressed as

1 i,
1) = —=[10) + 2 *1[1)] ® |24, ..., %) (16)

V2

Ry, stands for controlled rotation gate

1 0
Ry = |: 2m:| (17)
0 ek

Applies Ri-gate, |V5) is expressed

1 2mi | 2mi
W) = —=[10) + ¢ 2 1722 1)] ® |xaxs, ..., %) (18)

V2

Similarly, after the application of R3 to R,, we can get

1 i 2mi L 2w
1W3) = —=[10) +& 2 22 TII D] @ g, ., ). (19)

V2

And according to Eq. (14), |W3) can be rewritten

1 i,
|Ws) = —[10) + 2" *|1)] ® |x2x3, ..., Xn). (20)

V2

Repeat the steps above, we can get

W4 = —[10) 4 F )] @ = [10) + eI )] @ - ® [0 + A D]. (21)
V2 V2 V2
|W,) can be rewritten
122
|Wy) = N ;ez—ﬂﬂk). (22)

Eq. (22) shows that the original quantum state |x) is transformed into |k), which com-
pleted the QFT. And it can be calculated from the circuit that the total number of quantum
gatesused by QFTisn+ (n—1) +---+ 1 = n(n + 1)/2, and the computational complexity is
O(n2). In the classical algorithm, the computational complexity of the Fourier transform
is O(n2").

Page 6 of 15
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Figure 2 Quantum Phase Estimation circuit

3.3 Quantum phase estimation

In the QPE, the solution form of eigenvalue is expressed as
Alu) = ¥ |y). (23)

Where e>" is the eigenvalue, and the function of QPE is to estimate 6. QPE’s quantum
circuit is (see Fig. 2).

The first register of QPE contains ¢-qubits and is all set to |0). The second register con-
tains the eigenvector |u#) of matrix A. From the Fig. 2, we can get

Iﬂl)=H®t®|0)®t®lu):%(IOHID)@@IM% (24)

U is the controlled rotation gate and can be expressed as

11 0
uf:{o AiJ’ (25)

After applying U/-gate, we can get

1 o1 50
|2,) = ﬁ(w) +e2D)) @ @ (10) + 1)) ® [u). (26)

Eq. (26) can be rewritten

2t-1

12) > e k) @ [u). 27)
k=0

V2

Then applied inverse QFT

_ 1 - .
123) = |2) ¥ = =Y e 2Ty, (28)
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Figure 3 HHL quantum circuit

From Eq. (28), it can be seen that the probability amplitude corresponding to |270) is the
largest, that is, after the measurement of |Q23), the quantum state is most likely to collapse
toward |2°0). In the same way, if we take enough measurements of |€23), the frequency it
collapses to [2°9) must be the most. Since 2°6/2" = 0, we can get 0. Note that ¢ represents
the number of qubits in register 1, and the larger the ¢ is, the more accurate the 0 is.
Considering that too many qubits will require a lot of computing resources on classical
computers, only three qubits are used in this paper (¢ = 3).

3.4 HHL algorithm
Take Eq. (9) for example, HHL's quantum circuit is (see Fig. 3).

In Fig. 3, |y) as auxiliary qubits, and |xg) to |x,,_1) are qubits that store eigenvalues. All
of these qubits are set to |0).

|®1) = [y%0, ... %m-1) @ |b) =100---0) ® |b). (29)

Applies QPE for |xo) to |x,,_1) and |b). Where |b) is expressed in Eq. (12), we can get

m—1

D) = 19) ® Y Bilpid ). (30)

i=0

Applies SWAP-gate for |xo) to |x,,-1), and SWAP-gate’s function is to calculate the re-
ciprocal of eigenvalues

m-1

1D3) = |y) @ > Bl ). (31)

i=0

Applies Controlled Rotation, and its function is to save the eigenvalue from the |u;) to
the probability amplitudes of an auxiliary qubit.

|¢4>='"zl{[(1-j—§)|o>+ (%)m} ®ﬁilu;l)|ui>}. (32)

i=0 t

Where C is a constant and satisfies C < min |j;].
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Table 1 Data introduction

Condition Dataset Samples Actual life Failure location

1 Bearing1_1 123 2h 3 min Outer race
Bearing1_2 161 2h41 min Outer race
Bearing1_3 158 2h 38 min Quter race
Bearing1_4 122 2h2min Cage

2 Bearing2_1 491 8h 11 min Inner race
Bearing2_2 161 2h41 min Outer race
Bearing2_3 533 8h 53 min Cage
Bearing2_4 42 42 min Quter race
Bearing2_5 339 5h 39 min Quter race

Applies QPE™}, and its function is to untangle |xg, %1, . ..,%,_1) from |®4)

m—-1 )
|D5) = Z”(l - %)m + (E)m} ®ﬂ,-|00~--0>|u,->}. (33)

0 i Mi

Measure the ancilla qubit, and if the result is 0, we need to recalculate, until the result
is 1. Finally, we can get

m

-1
|Dg) = it Bilws). (34)
0

C
ND el

We can observe that |®g) is proportional to |x) in Eq. (13). Thus, the solution of linear
equations is completed.

The mathematical derivation process of the HHL algorithm is extremely complicated.
Therefore, it is very difficult to simulate the HHL algorithm with a classical computer. But
quantum computers do not involve these complex mathematical operations, just control-
ling qubits to rotate in Hilbert space. We can prove the superiority of the HHL algorithm
by analyzing its time complexity:

The time complexity of the HHL algorithm is O(log(N)s?k2/e), where N is the order of
the matrix, « is the number of conditions of the linear equations, s is the sparsity of the
matrix, and ¢ is the precision of the solution. Compared with classical algorithms, HHL
can theoretically achieve exponential acceleration, thus greatly improving the efficiency
of LS-SVM when dealing with a huge quantity of data.

Finally, there can be errors in solving the HHL algorithm, and the main source of errors
is the eigenvalues solved in QPE. As mentioned in Sect. 3.2, the accuracy of eigenvalues
depends on the number of qubits, and the increase in the number of qubits will improve
the time complexity of the HHL algorithm, and how to balance accuracy and time com-
plexity can be an area for further research of QSVM in fault diagnosis.

4 Rolling bearing fault diagnosis experiment
4.1 Data source
The experimental data selected in this paper came from XJTU-SY Bearing Datasets [17],
and the data includes the outer race fault, inner race fault, cage fault and normal state of
rolling bearings. The detailed introduction is shown in Table 1.

The computer used in the experiments is configured with an i5-9300H CPU, clocked at
2.4 GHz, with a memory of 16 GB, the programming language used is Python, the quantum
programming framework is Qiskit, and the quantum simulator is statevector.
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Figure 4 Horizontal vibration data of Bearing1_1 dataset
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Amplitude(g)
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Figure 5 Horizontal vibration data of Bearing2_1 dataset

4.2 Data preprocessing

Rolling bearing fault diagnosis generally consists of two steps: feature extraction and fault
identification. An appropriate and effective feature extraction method can effectively im-
prove the accuracy of fault diagnosis.

In general, we reconstruct the original data into a signal matrix. Horizontal vibration
data of the Bearingl_1 dataset and Bearing2 1 dataset was selected in this paper (see
Figs. 4 and 5).

The sampling frequency of the Bearingl 1 dataset is 35 KHz, and the sampling time is
123 minutes. It contains 4 million sample points in total, and the outer race fault occurs
in about 4896 seconds. (We use the Pauta criteria to calculate the point in time when the
fault occurred [18]).

The sampling frequency of the Bearing2_1 dataset is 37.5 Hz, the sampling time is 491
minutes. It contains 16.08 million sample points in total, and the inner race fault occurs
in about 28,038 seconds.
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Figure 6 The normal sample and outer race fault sample in the Bearing1_1 dataset

10 4

Amplitude(g)

-10 4
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—— normal
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Samples

Figure 7 The normal sample and inner race fault sample in the Bearing2_1 dataset

Then we reconstructed the above two data sets into two signal matrices. The Bearingl 1
dataset matrix contained a total of 1953 samples, and each sample was composed of 2048
continuously sampled points. The labels of normal samples were denoted as H1, and the
labels of outer race fault samples were denoted as H2. In the same way, the Bearing2_1
dataset matrix contained a total of 7851 samples, and each sample was composed of 2048
continuously sampled points. The labels of normal samples were denoted as H1, and the
labels of inner race fault samples were denoted as H3 (see Figs. 6 and 7).

After the sample division is completed, the next step is to extract data features. The
commonly used feature extraction methods include time domain, frequency domain and
time-frequency domain. Considering that the rolling bearing data used in this paper is col-
lected in the laboratory with less external interference and no complex feature extraction
process is required, only the time domain features of the data are extracted in this paper.

Time domain feature extraction refers to the calculation of various time domain sta-
tistical parameters from the original vibration signal. The commonly used time-domain
statistical parameters include root mean square, crest factor, kurtosis and waveform fac-
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tor, etc. These statistical parameters will change with the change in the running status of
rolling bearings. Therefore, by analyzing these parameters, the running status of rolling
bearings can be reflected to a considerable extent.

Kurtosis is one of the most widely used statistical parameters in the field of rolling bear-
ing fault diagnosis. When the rolling bearing runs normally, the amplitude of its vibration
signal approximately meets the Gaussian distribution, and the kurtosis value is approxi-
mately equal to 3. When the fault occurs, the Gaussian distribution curve will be skewed,
and correspondingly, the kurtosis value will increase. The mathematical formula of kur-

tosis is

n Z;‘q:l(Xi - )(mean)4
[Z:lzl(Xi - )(mean)z]2

Xkurt = (35)

In Eq. (35), X; represents the sample, X ,c.n represents the average value of the sample
in a certain period, and # represents the total number of samples.
The crest factor is sensitive to faults with surface damage and wear, the mathematical

formula of the crest factor is
max(Xq,Xs,...,X,)

Xcrest = X . (36)
rms

In Eq. (36), X:ms represents the root mean square value of the sample in a certain period
of time.

Specifically, we calculate the kurtosis and crest factor of all data in each sample and take
them as the input features of QSVM. At the same time, to imitate quantum computing,
classical computers need to consume massive computing resources and computing time.
Therefore, a total of 20 samples were selected from normal, outer race fault and inner race
fault in this paper. Among them, 70%(14 samples) were used as training data, and the re-
maining 30%(6 samples) were used as test data. According to the mathematical derivation
in Sect. 2, linear equations are constructed and solved by the HHL algorithm.

Traditional QSVM can only complete two classification tasks, and we take Eq. (8) as an

example, after solving « and b, the QSVM classification can be expressed as

-1, if(kT xa+b)<0,
Jfx) = (37)
1, if(kT xa+b)>0.

Where k represents the kernel function of test data and training data.

To implement the classification of the three types of faults, we use training data to train
three QSVM classifiers for H1 and H2 (1 and —1), H1 and H3 (1 and -1), H2 and H3 (1
and —1) respectively. Then the test data were input into the above three QSVM classifiers
respectively, and the test data were assigned to the corresponding labels according to the
results. For example, if the results of the three QSVM classifications are “1’, “1” and “~1”
respectively, the test data will be labeled as H1 classes, and so on.

The decision boundary divided by QSVM according to the training data is shown in

Fig. 8.
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Figure 8 Decision boundary divided by QSVM
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Figure 9 QSVM classification results

_

Then 6 test samples were input into the QSVM after training, and compared with the
classical LS-SVM (see Figs. 9 and 10).

It can be observed from Fig. 9 and Fig. 10 that there is a certain deviation between the
decision boundary of QSVM and LS-SVM, and the reasons have been explained in Sect. 3,
but the overall deviation is not large, so QSVM can also achieve 100% fault diagnosis ac-
curacy. And it also shows that the fault diagnosis model based on QSVM is feasible and
can play a far superior advantage over the classical algorithm in the context of big data.
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Figure 10 Classical LS-SVM classification results

5 Conclusion

To solve the problem of fault diagnosis in the context of big data, this paper proposes
a fault diagnosis model based on QSVM. Compared with traditional algorithms, QSVM
can theoretically achieve exponential operation acceleration and solve high-dimensional
data that cannot be processed by traditional algorithms. With the rapid development of
quantum hardware, QSVM and other quantum machine learning algorithms can be run
on quantum computers soon to prove the superiority of quantum. The fault diagnosis
algorithm based on quantum machine learning will also be one of the best choices in the

context of big data, which has a profound impact on the field of fault diagnosis.
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