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Abstract
Quantum optimal control, a toolbox for devising and implementing the shapes of
external fields that accomplish given tasks in the operation of a quantum device in
the best way possible, has evolved into one of the cornerstones for enabling
quantum technologies. The last few years have seen a rapid evolution and expansion
of the field. We review here recent progress in our understanding of the controllability
of open quantum systems and in the development and application of quantum
control techniques to quantum technologies. We also address key challenges and
sketch a roadmap for future developments.
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1 Introduction
Quantum optimal control theory (QOCT) refers to a set of methods to devise and imple-
ment shapes of external electromagnetic fields that manipulate quantum dynamical pro-
cesses at the atomic or molecular scale in the best way possible [249]. It builds on control
theory in more general terms which evolves at the interface between applied mathematics,
engineering, and physics and concerns the manipulation of dynamical processes to realize
specific tasks. The main goal is for the dynamical system under study to operate optimally
and reach its physical limits while satisfying constraints imposed by the devices at hand.
Quantum processes are no exception to this general framework, but certain aspects of
control theory must be adapted to take into account the particularities of the quantum
world. Over the past few years, QOCT has become an integral part of the emerging quan-
tum technologies [6], testifying to the fact that it is control that turns scientific knowledge
into technology [249]: If the superposition principle is the core feature of quantum me-
chanics, quantum control is the superposition principle at work.

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-022-00138-x&domain=pdf
mailto:christiane.koch@fu-berlin.de
http://creativecommons.org/licenses/by/4.0/


Koch et al. EPJ Quantum Technology            (2022) 9:19 Page 2 of 60

Quantum technologies require comparatively well-isolated and well-characterized
quantum systems. It is this very feature that makes them an ideal testbed for QOCT,
compared to other fields where QOCT has been used, such as chemical reaction dynam-
ics. Conversely, QOCT has matured to the stage that it is nowadays readily used in ex-
periments. The next challenge for QOCT will be to become an integral part of practical
quantum devices or, in other words, of practical quantum engineering.

Here we provide an update to Ref. [249], focussing on progress in QOCT and its ap-
plications relevant to the development of quantum technologies. Under this specific per-
spective, quantum optimal control sets out to answer typical engineering questions. For
example: To which extent can a quantum system be (i) controlled, (ii) observed (sensed or
tomographed), (iii) stabilised, etc. For classical (mostly linear) systems, a rigorous systems
and control theoretical framework exists and is core to the teaching programme of every
engineer. For training future quantum engineers, such a framework is yet to emerge.

A rigorous and unified quantum systems theory is therefore among the current over-
arching research goals — it will interface not only theory and experiment but teaching
programmes in quantum physics and engineering as well. Such a theory also forms the
basis for the derivation of optimal control strategies by ensuring the well-posedness of
problems and existence of solutions. We provide a brief summary of basic definitions to-
gether with a review of recent progress towards these goals and open questions in Sect. 2.

Section 3 presents the current state of the art in quantum optimal control methodolo-
gies. These can be classified into analytical vs numerical approaches and the latter into
approaches evaluating only the target functional (gradient-free methods) and those based
on variational calculus such as the Pontryagin maximum principle (PMP). We review
progress on these methodologies in Sect. 3, including corresponding software develop-
ment, for which we highlight publicly available software packages.

Quantum optimal control is closely related, both in terms of goals and techniques, to
several neighbouring fields, including most notably quantum feedback control, machine
learning, and shortcuts to adiabaticity. We highlight similarities and differences between
quantum optimal control theory and these approaches in Sect. 4, pointing also to recent
fruitful cross-fertilization. An example of this is the inclusion of ideas from both quantum
feedback and machine learning to quantum optimal control, in order to account for model
inaccuracies and enhance practical applicability of the approach.

When looking back to the start of the art presented in Ref. [249], scientific progress has
been most impressive in the number and extent of practical quantum technological appli-
cations exploiting quantum optimal control. We review these advances in Sect. 5, starting
with experimental demonstrations of quantum optimal control. A recent and striking ex-
ample of the power of quantum optimal control techniques is illustrated in Fig. 1 showing
the realization of a Bose-Einstein condensate (BEC) printer [209]. In this experiment, a
BEC of ultra-cold 87Rb atoms was loaded into a one-dimensional optical lattice formed
by two counter-propagating laser beams with the same wavelength, but a different phase.
A gradient-based optimal control algorithm was used to calculate the phase which opti-
mally “shakes” the optical lattice back and forth and thus brings the quantum system to the
desired target state. At the end of the control process, the atoms are in a well-defined su-
perposition of speeds, which are multiples of an elementary speed. This superposition can
be experimentally visualized through a ballistic expansion achieved after switching off the
confining potential. The measured chain of small atomic clouds allows one to write line by
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Figure 1 A BEC “printer”: The robust and versatile control of a BEC allows for producing experimentally lines
of points made up of atomic clouds, with which letters and words can be formed

line, for example Quantum Control as shown in Fig. 1. This approach to preparing states of
a BEC in an optical lattice is also practically useful in many areas from quantum simulation
to quantum metrology [209]. We review further highlights of experimental implementa-
tions of quantum optimal control in Sect. 5 and then provide an overview over quantum
optimal control approaches tailored to, respectively, specific quantum hardware and spe-
cific key tasks in the operation of quantum devices. This section also elucidates the relation
between quantum control and quantum thermodynamics. A summary of goals and chal-
lenges in view of further expanding the scope of quantum optimal control applications in
practical quantum devices in the mid-term completes Sect. 5.

Finally, we discuss the goals and challenges that define our vision for the longer term
development of quantum optimal control in the quantum technologies in Sect. 6 and con-
clude in Sect. 7.

2 Controllability and accessibility of open quantum systems
Natural and foremost questions for engineering quantum technological devices are ‘what
can one do with them?’, in particular ‘which states can be prepared?’ or ‘which quantum
gates can be implemented?’ Answering these questions connects engineering with the core
of mathematical control theory. This section starts by giving an account on how to for-
malise these questions mathematically, adapting the classical engineering terminology of
controllability, accessibility and reachable sets to the realm of closed and open quantum
systems. To this end, we start out with the necessary basic definitions in Sect. 2.1 to de-
scribe the pertinent recent progress for controlling symmetric systems in Sect. 2.2.1 and
for reachable sets in Markovian systems in Sect. 2.2.2. In a wider context, we characterise
the role of Markovianity for control in Sect. 2.2.3. The loss of compactness in (finite di-
mensional) open systems paves the way to the even more intricate case of infinite dimen-
sional closed systems treated in Sect. 2.2.4. The problem of simultaneous robust control
of infinitely many (almost identical) subsystems in Sect. 2.2.5 may be seen in close spirit.
Time-optimal control problems are put into the context of the quantum-speed limit in
Sect. 2.2.6. Finally, the progress is wrapped up to serve as a roadmap to challenging goals
and open research problems formulated in Sect. 2.3.

2.1 Basic definitions
A control system is usually described by an equation of motion, e.g. an ordinary or par-
tial differential equation, involving additional “parameters” (controls). The controls can
be time-dependently manipulated to “steer” the system, say from a given initial state to
a desired target state. The system is called controllable if any initial state can be trans-
formed into any desired target state. The reachable set of a given initial state is composed
of all states the initial state can be steered to. In other words, a system is controllable if the
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reachable set to any initial state coincides with the entire state space. The system is accessi-
ble if its reachable set contains at least interior points. Roughly speaking, for an accessible
system, the reachable sets may be small but not too small in the sense that they embrace at
least a set of full dimension. In the following, we characterize standard quantum control
scenarios and their properties in terms of the notions introduced above.

A typical closed quantum control system extends the Schrödinger equation (just gov-
erned via its so-called drift Hamiltonian) by several control Hamiltonians whose im-
pact is scaled by possibly time-dependent control amplitudes—for instance, ux(t)σx for
an x-pulse of amplitude ux(t) on a single qubit. With the controlled part being linear in
both the state and the control, it is an example of the wide class of bilinear control sys-
tems [157, 215, 315]. Before investigating controllability, one has to keep in mind that
one can associate different state spaces to a quantum control problem: pure states, mixed
states, and unitary gates. An easy and well-established criterion whether a finite dimen-
sional quantum dynamical system of such bilinear form is fully (i.e., unitary gate) control-
lable proceeds via the system Lie algebra obtained as linear span generated by all iterated
commutators among system and control Hamiltonians (multiplied by i): if it amounts to
the full Lie algebra su(N), generating the special unitary group SU(N) by exponentiation,
then the system is fully controllable (also called universal). This widely used criterion is
termed ‘Lie-algebra rank condition’ (larc) [96, 315, 316]. It exploits the fact that (due
to compactness of SU(N)) the trajectory generated by the drift Hamiltonian is (almost)
periodic, and therefore forward and backward time evolution of the drift can be used to
steer the system. When restricting to pure states in even dimensions N , it suffices that
the system Lie algebra yields the Lie algebra of all unitary symplectic matrices of dimen-
sion N . Otherwise, in finite dimensional closed systems, pure-state controllability, mixed-
state controllability, and full unitary gate controllability coincide [15, 191, 356]. In infinite
dimensions, the situation is more involved and in spite of recent progress elucidated in
Sect. 2.2.4 and Sect. 2.2.5, a controllability condition as powerful as larc is still sought
for, see Sect. 2.3.

Already open quantum systems in finite dimensions are more complicated with recent
advances in reservoir engineering [12, 564, 565] as well as fix-point and symmetry anal-
ysis [11, 14]. Here we focus on the Markovian scenario, i.e., on master equations tak-
ing the standard form of a controlled Gorini-Kossakowski-Sudarshan-Lindblad equation
[175, 192, 264, 348, 388] (GKLS). A caveat in advance: If the GKLS reduced dynamical
equation is derived under the additional assumption that the total of system plus envi-
ronment in the sense of Stinespring has time-translation symmetry (i.e. the total unitary
commutes with the sum of system and bath Hamiltonian), then one arrives at enhanced
thermal Markovian operations [155, 394]. Alternatively, this is implied by Markovian evo-
lutions respecting strict energy conservation as shown in [167], where thermodynamic
compatibility imposes a functional dependence between the dissipative and unitary gen-
erators. It should be emphasized that in general, the GKLS master equation per se need
not obey thermodynamical principles [376, 459], cf. Sect. 5.3.6. An example of physical
noise that does not meet thermodynamic compatibility is standard bit-flip, while standard
phase-damping does.

Possible state spaces for controllability analysis in open systems are the set of all density
operators (as the irreversible time evolution of open quantum systems no longer preserves
the spectrum of the initial density operator), or the set of all quantum maps, i.e., the set of
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all completely positive and trace-preserving (cptp) operators. These maps ensure density
operators to evolve into density operators; they form a semigroup — not a group as unitary
propagators do in closed systems. This issue will be further discussed below in Sect. 2.2.3.
Here we just note that the reachable set of open Markovian dynamics takes the form of
a Lie-semigroup orbit [192, 366] generated by the associated Lie wedge [287], whereas in
closed systems the reachable set generically takes the form of a Lie-group orbit generated
by the associated system Lie algebra. Remarkably, the set of all (time-dependent) Marko-
vian quantum maps carries the structure of a Lie semigroup [192, 513], whereas the entire
set of all quantum maps (with positive determinant) also embracing non-Markovian ones
does not.

By irreversibility, open systems with permanent noise are not exactly (mixed-state) con-
trollable [25, 191]. However, generic finite dimensional open quantum systems with (usu-
ally Hamiltonian) controls accompanying a (usually non-switchable) relaxation term are
accessible. The concept of accessibility, which is considerably weaker than controllability,
is nevertheless a good starting point for characterising reachable sets in open quantum
dynamics. Any finite-dimensional Markovian open quantum system has at least one fixed
point, the steady state under the drift Hamiltonian plus dissipator. If the identity matrix
1N and, by linearity, the maximally mixed state 1

N 1N , is among the fixed points, the map
is termed unital. A generic finite-dimensional unital system is accessible [25, 191, 356], if
its system Lie algebra is isomorphic to the Lie algebra glN2–1(R) of all real square ma-
trices with N2 – 1 rows and columns (details of the non-unital case are discussed in
Refs. [191, 356]). This criterion is likewise called Lie-algebra rank condition (larc), the
difference between closed and open systems being that in closed systems larc is equiva-
lent to controllability, while in open systems it is only equivalent to accessibility. This con-
trast results from different compactness properties of the underlying Lie groups SU(N)
and GLN2–1(R): While the compactness of SU(N) forces the one-parameter semigroup
generated by the drift term to be (almost) periodic and thus time-reverting, this argument
fails for the dissipative term in open systems.

2.2 Recent progress on the controllability of open quantum systems
2.2.1 Controllability within symmetry-induced subsystems
Moving from controllability with respect to the entire state space to controllability with
respect to a symmetry-adapted state space has recently been exploited for spin systems
with permutation symmetry [20, 21, 158]. More precisely, by means of a Clebsch-Gordan
decomposition, one arrives at block diagonal Hamiltonians in a symmetry-adapted ba-
sis, where controllability can naturally be discussed as subspace controllability for every
block [18] (see also [505]). Loosely connected in spirit is another recent development [584]
which circumvents implementing controlled unitary gates by resorting to Kraus maps im-
plementing unitary gates or channels just on a d-dimensional subset of qubits, while leav-
ing the remaining qubits invariant. These channels are thus called sector preserving and
they promise to widen the set of implementable quantum circuits.

2.2.2 Reachable sets for open Markovian systems with switchable noise
As mentioned before, open systems with unitary control and non-switchable noise are
never controllable. On the other hand, under the assumptions that (i) the respective noise
term can be turned on and off and (ii) the “residual” closed system (with the dissipator
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switched off) is fully unitarily controllable, one can precisely characterize reachable sets
for certain classes of unital and non-unital systems: In unital systems with full unitary
control and a single bang-bang switchable noise generator, the reachable set to any ini-
tial density operator is given by all density operators majorized 1 by the initial one [600]
(details in [598]). Here, coherent and incoherent controls are allowed to operate on dif-
ferent time scales, so the result formally reproduces earlier findings with instant unitary
controls [643].

Recently, first generalisations of these results to infinite dimensional systems with a sin-
gle switchable and compact noise generator [600] were obtained. Yet, a better understand-
ing of infinite dimensional systems incorporating earlier work on open systems with un-
bounded drift or noise [533] requires further work.

For non-unital systems with a switchable Markovian coupling to a bath at temperature
T = 0, one obtains controllability on the set of all density operators [190]. A switchable
cooling to low temperatures can readily be implemented experimentally, for instance by
a tunable coupling to an open transmission-line in the specific GMon setting of [137],
where the local cooling part itself can be made to respect conditions for Markovianity
as well as for enhanced thermal operations [70]. First generalisations of cooling via baths
of temperatures 0 < T < ∞ (again in the realm of enhanced thermal operations) have re-
cently been obtained for a toy model restricting the dynamics to population transfer in the
(cooling-preserved) eigenbasis of the drift Hamiltonian [190] thus respecting strict energy
conservation. Using generalized majorisation techniques [599], the reachable sets of the
restricted model could be upper estimated [515]. Similar ideas discussed in earlier stud-
ies [496] are considerably more difficult to handle explicitly in the general case, whereas
two-level systems can be treated exactly [497] even allowing for giving explicit reachable
sets [393]. Restricted to single two-level systems, the latter describes an intermediate sce-
nario with coherent and incoherent controls, where full decoupling of system and bath
cannot be achieved.

2.2.3 Markovianity and its role in quantum systems and control theory
In terms of state transfer, non-Markovian control systems can be mimicked by Marko-
vian ones with switchable coupling to a bath at T = 0 [70, 515] so that their reachable
sets can essentially coincide. Yet non-Markovian transfer may at instances be more effi-
cient [537]. On the operator level, however, this coincidence no longer holds: there are
quantum maps in the Kraus representation that cannot be represented as solutions of
Markovian master equations of gkls-form — these are non-Markovian (i.e. neither time-
dependent nor time-independent Markovian). Progress has been made in characteris-
ing non-Markovianity [492] in particular by analysing information backflow and struc-
tured environmental spectral densities [94], and a hierarchy for abundant definitions of
(non)Markovianity has been set up [381]. In contrast to standard Markovian master equa-
tions (of gksl form), non-Markovian master equations come with different types of mem-
ory kernels [142, 143, 188, 225, 576]. Non-Markovian control systems thus depart from
the bilinear setting with its clear correspondence between generators and propagators of
time evolution exploited to assess controllability (respectively accessibility) on the gen-
erator level, which made the Markovian case [192, 366] discussed above so convenient.

1In a pair of Hermitian matrices, A majorizes B if all partial sums over the eigenvalues of A sorted by descending magnitude
are larger or equal than those of B.
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Moving to the level of Kraus maps instead is more involved. To our knowledge, the only
explorations of controllability at the level of Kraus maps [457, 625] have been performed
without comparing the non-Markovian reachable sets to their restrictions under Marko-
vian conditions.

2.2.4 Controllability of closed quantum systems evolving on infinite dimensional Hilbert
spaces

The loss of compactness mentioned in Sect. 2.2.2 already occurs in closed infinite dimen-
sional systems [203, 204, 326, 600]. As a result, if the underlying Hilbert space is infinite
dimensional, one can only expect approximate controllability. This refers to controllability
in the sense that one can reach every state arbitrarily closely but not necessarily exactly [49,
83, 89]. The common assumption that the Hamiltonian drift term has a discrete spectrum
suggests to use finite dimensional (Galerkin-type) approximations [83, 84]. This allows to
employ recurrence arguments similar to the finite-dimensional case [81, 82, 131, 326]. If
the spectrum of the drift is non-resonant, i.e., all energy gaps are different, controllability
analysis is comparatively straightforward [81]. In contrast, many degeneracies make the
controllability analysis harder [82]. Based on [82], the conditions for completely control-
ling the rotational degrees of freedom of molecules, a quantum technology platform of
renewed interest [13], have been identified [85, 371, 473].

Systems with continuous spectrum—no matter whether closed or open—are even more
delicate. The typical scenario is that of a continuous variable without confining poten-
tial and the corresponding controllability analysis has long been considered as particu-
larly difficult [88, 130]. A drift Hamiltonian with continuous spectrum also arises from a
parameter-dependent Schrödinger equation, where the parameters describe some model
uncertainties/inhomogeneities. This scenario, referred to as simultaneous or ensemble
control, is discussed in the next subsection.

2.2.5 Simultaneous controllability
Control of an ensemble of quantum systems is of particular interest for quantum en-
gineering because it allows to gain robustness of control procedures without feedback
techniques. Starting with the seminal paper [378], ensemble control has become an ac-
tive research field in control theory. In the simplest case of finite parameter sets, the
ensemble-control problem reduces to simultaneously controlling a finite number of al-
most identical systems. If the individual subsystems evolve on SU(N), simultaneous con-
trollability was first investigated in [26] and fully characterized in terms of Lie algebraic
conditions [67, 189]. Controllability in the case that the parameters can assume infinitely
many different values, either in a countable set [139] or in a non-trivial compact set, is
much harder. The latter setting with its important applications in robust quantum con-
trol [32, 529] has led to a novel branch in non-linear control theory [7, 134]. Roughly, one
can distinguish two different approaches: (i) infinite dimensional Lie group techniques
and (ii) adiabatic methods [83]. Ensemble controllability has been studied for the infinite-
dimensional case [656] and efficient numerical algorithms have been developed both for
fixed-endpoint and free-endpoint control problems [605, 606].

(i) For casting the simultaneous control problem into the setting of infinite dimensional
Lie groups, one chooses as state space all square integrable functions over the compact
parameter range K ⊂R

m with values in the Hilbert space common to all subsystems, e.g.,
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L2(K ,CN ). The corresponding unitary group contains the infinite dimensional Lie sub-
group which consists of all continuous maps from K to SU(N). This subgroup takes to
role of SU(N) in ensemble control. Ref. [378] showed that one can achieve approximate
controllability (with respect to above Lie subgroup) for a very particular set of parameter-
dependent generators of SU(2). A similar result was obtained for the Bloch equation [64]
while [7] generalized these ideas to the class of control-affine systems including bilinear
systems. Later [134] proved that every semi-simple Lie algebra allows for a special set of
parameter-dependent generators such that the ideas of [378] can be carried over. This is
important from an engineering perspective because it says that one can design the control
Hamiltonians of a finite dimensional system such that approximate simultaneous control-
lability can be achieved—yet the number of necessary control Hamiltonians is in general
quite large. However, it is still an open problem to what extent one of the control fields can
be replaced by the drift term without loosing controllability, see Sect. 2.3.

(ii) Adiabatic control is well known for its properties of robustness against dispersion of
system parameters. Typical pulse designs based on these ideas are chirped pulses [525] and
counter-intuitive pulses for stirap processes [71]. Many more different control protocols
based on adiabatic passage were proposed in the last three decades by physicists [267]. The
mathematical analysis developed in [44] permits to understand and prove rigorously that,
when acting with two controls, robustness results from the presence of conical intersec-
tions between energy levels. Such eigenvalue intersections spread into a curve in presence
of a dispersion parameter that one can “follow” adiabatically and thus obtain population
transfer for every value of the parameter. The price to pay is an adiabatic transfer at the or-
der

√
ε instead of ε meaning that in a time of order ε–1 one obtains a transfer up to errors

of order
√

ε instead of ε. An extension of the adiabatic protocols based on the inertial the-
orem [166] shares the property of “time-dependent” constants of motion. The robustness
property of the protocol has been studied experimentally [296]. Using this idea, simulta-
neous controllability can be realized for a large class of systems. However, how to extend
these ideas to obtain simultaneous operator controllability is an open question.

In many situations, more than one control is necessary for simultaneous controllabil-
ity [7, 64, 378]. For example, a typical scenario involves two controls that are obtained after
a rotating-wave approximation. However, compatibility of the rotating-wave approxima-
tion with adiabatic theory is a problem overlooked for a long time (see the discussion in
Ref. [501]). The compatibility of the two approximations has recently been studied in de-
tail [45, 493]. In particular for a qubit driven by a single control, the range of dispersion
of the Larmor frequency allowing for simultaneous controllability was identified. These
ideas open new perspectives for simultaneous controllability under a single control field.
While all these findings show that simultaneous control can be theoretically accomplished,
reliable error estimates for numerical investigations, which are often based on standard
algorithms applied to a finite parameter sample, are still missing.

2.2.6 Quantum speed limit
The presence of a drift Hamiltonian that does not belong to the Lie algebra generated by
the control Hamiltonians implies the existence of a system intrinsic timescale. As a result,
arbitrarily strong fields are not sufficient to speed up the system dynamics, and it is impos-
sible to prepare a desired state or carry out a desired quantum gate in arbitrarily short time
[330, 331]. The duration of a “time-optimal control sequence” is called the minimum time
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for the control task [330] and is sometimes also referred to as controllability time [8] or the
quantum speed limit (qsl) [181, 465]. A vanishing controllability time or, equivalently, a
diverging quantum speed produces a reduced uncertainty in quantum observables, and it
can be understood as a consequence of emerging classicality for these particular observ-
ables [466]. Beyond two-level and three-level systems, the qsl is most often determined
numerically in a heuristic way, by lowering the control time [114, 332, 514] Recently, an
alternative approach has been introduced where the qsl is determined by transforming
the quantum control problem to a quadratically constrained quadratic program with gen-
eralized probability conservation laws as the constraints and relaxation of the quadratic to
a semidefinite program [652]. Yet another alternative, applicable to Hermitian and non-
Hermitian quantum systems, determines the qsl by the changing rate of phase which rep-
resents the transmission mode of the quantum states over their evolution [548]. A qsl for
relative entropies between the output and the input has been derived for a general unitary
channel [464], and the qsl for pure state entanglement corresponds, not too surprisingly,
to the minimal time necessary to unitarily evolve a given quantum state to a separable
one [503]. For finite dimensional systems, the bound can also be expressed in terms of
rotations on the Bloch sphere [389]. Analysis of the qsl can be extended to a quantum
mechanical treatment of the external control [245]. The qsl has been suggested as a mea-
sure of robustness [339] and as means to characterize the reachable set of states [36, 338].

For open quantum systems, the qsl is most often determined by the dissipative
timescales [574]. More precisely, under the assumption that states with the same purity
can be reached in arbitrarily short time, a speed limit can be derived which only depends
on the relaxation rates [185, 574]. Mixed states are relevant also when estimating the speed
limit bound in the classical limit [78]. While for specific classes of dynamical evolutions
and initial states, a link between non-Markovianity of the dynamics and the qsl exists,
this is not true in general [557, 558]. The qsl has been connected to thermodynamic
quantities such as energy fluctuations or the entropy production rate for Markovian and
non-Markovian dynamics [174, 239]. The usual geometric approach interpreting the qsl
as a consequence of the metric on the state space can be complemented by action quantum
speed limits [441]. These depend on the instantaneous speed with which a path in state
space is traversed and can also be used as an indicator for optimality of the path [441].

Another challenge is the identification of the qsl in many-body systems: When only
local controls are allowed, the controllability time can be exponentially large in the sys-
tem size due to a diverging geodesic length [103]. This is related to an extensively grow-
ing sensitivity of the many-body system to local perturbations which in turn can be fully
characterized by the qsl [231]. For systems undergoing quantum phase transitions, the
qsl is obtained for counterdiabatic driving which turns out to encode the Kibble-Zurek
mechanism [479]. Mixed states of many-body systems require particular care since the
qsl, typically, is dramatically overestimated but for thermal states in a closed many-body
system a meaningful bound can be derived in the thermodynamic limit [300].

The results concerning the quantum speed limit described above concern systems evolv-
ing on finite dimensional Hilbert spaces. For systems evolving on infinite dimensional
Hilbert spaces the problem is more subtle. For example, there exist systems for which the
drift Hamiltonian is not generated by the controlled ones, that have a controllability time
that can be reduced to zero [87]. In contrast for a charged particle in a magnetic field, the
controllability time cannot be arbitrarily reduced [65, 66]. The same conclusion was ob-
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tained in [73] for a large class of systems using semiclassical analysis. More precisly, under
mild hypotheses, in [73] it was proved that for systems which are the quantization of clas-
sical systems with an Hamiltonian containing kinetic and potential energy and controlled
via the amplitude of another potential, the existence of a speed limit passes through the
quantization procedure.

Very recently, it was shown there are systems relevant for applications for which the
controllability time can be reduced to zero between certain states [204]. Such systems
include planar rotating molecules driven by two electric fields. The results of [204] are
remarkable as they also apply to the nonlinear Schrödinger equation.

2.3 Goals and challenges for advancing the controllability of open quantum
systems

An overview over the recent literature reveals that for both infinite-dimensional systems
as well as finite-dimensional open quantum systems, controllability remains an open chal-
lenge [340]. At the level of methods, extending finite-dimensional Lie-group and Lie-
semigroup techniques to infinite dimensions [435] is a challenging desideratum. In par-
ticular, finding controllability [326] and accessibility conditions as powerful as the Lie-
algebra rank condition in finite dimensions would be significant progress.

At the level of specific open challenges, the question how reachability differs for non-
Markovian compared to Markovian dynamics remains largely unexplored. This is of prac-
tical relevance to quantum engineering with non-Markovian experimental setups where
the experiment is only sensitive to correlation effects in finite specified time windows.
A better understanding of reachability under Markovian and non-Markovian dynamics
would allow for estimating the error up to which the non-Markovian dynamics can still
be approximated by a simpler Markovian model.

2.3.1 From reachable sets to resource theory
The characterization of reachable sets [190, 515] has so far been given in terms of con-
vex sets containing them. It is a worthwhile next step to distinguish clearly non-reachable
states from the convex hull embracing the reachable ones which generically form non-
convex sets themselves. This may be possible via the Hahn-Banach separation theo-
rem [485, 502]. In analogy to entanglement witnesses, one seeks for linear functionals
that give negative values for clearly non-reachable states and positive ones for the convex
hull embracing the reachable ones. A further road to specify reachable sets for Markovian
dynamics is by devising efficient algorithms for reachability sets as Lie-semigroup orbits
when the generating Lie wedge can be given [444]. Finally, in analogy to the recent descrip-
tion of a “distance to uncontrollability” [104] in closed systems based on earlier symmetry
results [647, 664], a feasible measure may also be devised for open systems.

Another obvious goal at the interface between quantum control and resource theory is
to generalize the recent reachability results from toy models with diagonal states (i.e. states
that are diagonal in the eigenbasis of the drift Hamiltonian) to general states. The d-
majorisation techniques then have to be pushed to the more challenging operator lift of
D-majorisation [596, 597]. At the same time, further interconnections to thermal oper-
ations [92, 294, 395] and resource theory [394] will emerge by quantifying benefits and
limits of heat-bath coupling [22] in terms of reachable sets. In particular, further insight
may be inspired by elucidating the connection between thermal operations and Marko-
vianity [167, 346, 396].
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2.3.2 Simultaneous controllability
While simultaneous controllability can be achieved for a large class of systems depending
on one unknown parameter and driven by at least two controls [7, 44, 64, 378], it is not clear
when this can be obtained via one control only, which however is the most common situ-
ation in experimental settings. For a qubit driven by one control with a dispersion in the
Larmor frequency it is possible [493]. Whether this feature is limited to two-level systems
or whether it can be extended to a larger class of systems is an important open problem.
More generally, the role of the drift Hamiltonian in ensemble control is not well under-
stood. While in finite dimensions (almost) periodicity of unitary one parameter groups
allows one to use the forward and backward evolution of the drift Hamiltonian to control
a quantum system, it remains an open problem in infinite dimensions.

Another challenge arises from the number of parameters involved. While systems de-
pending on two or more unknown parameters are in principle simultaneously control-
lable [134] by finitely many independently addressable control Hamiltonians, the minimal
number of controls – important for reasonable technical implementations – is unknown.
Furthermore, effective numerical algorithms and in particular reliable error estimates for
the implemented approximations are also missing.

2.3.3 Quantum speed limit
For practical applications beyond two-level and three-level systems, quantum speed lim-
its have so far been determined numerically in heuristic way [114, 252, 257]. It will be
interesting to see whether recently introduced alternatives for determining the qsl, for
example in terms of semidefinite programs [652] or the changing rate of phase [548], pro-
vide a more systematic and numerically less costly approach. Another promising develop-
ment concerns use of the qsl to assess properties of the system, e.g., reachability of states
in an open quantum system [338], or properties of the controlled dynamics, e.g., robust-
ness [339]. This suggests to exploit the various formulations of the qsl in optimization
functionals in order to guide a numerical search to solutions with desired properties such
as robustness.

While progress on quantum speed limits for open quantum systems in general [181, 465]
and their relation to non-Markovianity in particular [557, 558] has been remarkable, their
identification in many-body systems continues to be an open challenge. Here, the qsl
is intimately connected to controllability. The latter may be lost in the thermodynamic
limit [102]. In fact, to date, for coherently evolving many-body systems, thermal initial
states are the only states for which the controllability time has been shown not to di-
verge [300]. If confirmed, this result implies that driven dissipative evolution [588] will
be the only generally viable route towards many-body quantum control. While it is in line
with physical intuition that controlling a many-body system requires simultaneous cool-
ing, both a thermodynamic and a rigorous mathematical underpinning of this conjecture
would be desirable. Recent insight into symmetry classes of open many-body quantum
systems [27] may provide guiding principles towards a better understanding of many-body
controllability.

Concerning systems evolving in an infinite-dimensional Hilbert space (besides the re-
sults [65, 66, 73, 87, 204] that treat specific situations), it is not yet entirely clear which
properties of a quantum system imply the non-existence of a quantum speed limit.
Whether and how the existence of a speed limit passes through quantization and how
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this is related to the emerging classicality of certain observables in the spirit of [466] are
intimately connected problems, which deserve to be investigated.

2.3.4 Further characterization of Markovian and non-Markovian quantum maps
As outlined in Sect. 2.2.3, Markovian dynamics is particularly amenable to the frame-
work of bilinear control systems. For practical applications, one first has to assess whether
an experiment fits to a Markovian model. Remarkably, given experimental data, the
corresponding decision problem (encompassing both the time-independent and time-
dependent notion via infinitesimal cp-divisibility [622] on all time scales) is np hard
[152, 153]. For a quantum engineer, however, deciding approximate Markovianity on a
quantifiable level in the sense of “sufficiently” separate time scales of system and environ-
ment dynamics would do in many applications.

Recently, it was elucidated that time-independent non-Markovian refocussing effects
may root in correlations on long timescales that appear hidden to observations [106] or in-
terventions [107] on shorter timescales. This, in turn, paves the way to particularly easy fit-
ting noise of models to tomography data [447]. Exploring whether similar properties hold
in the more general case of time-dependent memory effects would be helpful. In that case,
simpler (time-dependent) Markovian models could serve—within certain time frames—
as viable descriptions of dynamics that outside these time windows are time-dependent
non-Markovian. Given the complication in non-Markovian control due to memory ker-
nels (see above), the gain of simplification by a Markovian substitute covering the perti-
nent time-window of the experiment would be most welcome. Compatibility with ther-
modynamics can add an additional aspect to classify the equations of motion in either the
Markovian or non-Markovian case [171], cf. Sect. 5.3.6.

Another route towards approximate descriptions that will ease the control analysis is
motivated by a recent example [573] describing the scenario of a two-qubit system cou-
pled to a fermionic bath. This can be treated beyond the secular approximation, where
on longer time scales the Redfield equation captures the dynamics more precisely than
an adapted gksl-equation (which on short timescales ensures positivity that the Redfield
equation notoriously cannot). So finding quantitative guidelines for a sweet-spot in time
where to switch from the adapted gksl model to the Redfield model such as to merge the
best of the two worlds would allow for obtaining more precise controls in the long-term
part of the open system dynamics.

3 Optimal control methods
Typically one distinguishes open-loop control where no experimental feedback is used for
deriving the control and feedback control. Here, we focus on open-loop control methods
which make up the majority of quantum control protocols to date but point out that a
combination of optimal control and feedback control has recently been proposed [469].
Different approaches have been proposed to optimize control pulses in the open-loop con-
figuration. Optimal control is born in its modern version with the Pontryagin maximum
principle (PMP) in the late 1950s and applied to quantum dynamics since the eighties. We
refer the interest reader to the recent review [86] for an in-depth mathematical introduc-
tion. Quantum optimal control has then undergone rapid development with a wide variety
of methods extending from analytical tools to different numerical algorithms. The analytic
approach allows a complete geometric understanding of the control problem from which
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one can deduce the structure of the optimal solution and, in some cases, a proof of its
global optimality. Physical limits of a given process such as the minimum time to achieve
a state to state transfer can also be derived. We stress that such results can be determined
analytically or at least with a very high numerical precision.

The numerical approach is generally based on algorithms which compute iteratively
control processes that are closer and closer to the optimal solution. This method has key
advantages which are complementary to the ones of analytic computation. They are first
applicable in complex quantum systems, that is not the case of analytic tools which can
be used only for quite simple systems. The flexibility of numerical algorithms makes it
possible to adapt them to specific control problems or to experimental limitations and
uncertainties. This aspect is crucial to fill the gap between theory and experiments.

Note that different families of numerical algorithms have been developed according to
the characteristics of the optimization problem. Among others, we can distinguish the
size of the system, the precision of the optimization process, the type of constraints on
the state or the control or the figure of merit to maximize. Such algorithms can be roughly
divided into two groups, namely the gradient-based numerical methods and the gradient-
free ones [249]. As their names suggest, the update of the control sequence is either based
on the calculation of the gradient of the figure of merit or on a direct search method,
i.e. without gradient. More precisely, when the pulse sequence is parameterized by piece-
wise constant controls in time, there are two well-established gradient-based optimal algo-
rithms, the Krotov-type [487] and the GRAPE-type (Gradient Ascent Pulse Engineering)
methods [332]. The main difference between the two approaches concerns the update of
the control which is sequential in Krotov schemes, while is concurrent in GRAPE pro-
cedures. A systematic comparison and a discussion of the relative advantages of the two
optimization processes can be found in [402].

An alternative route is that to expand the pulse sequence in a functional basis, e.g. a
Fourier basis, and considering only a limited number of basis functions to represent the
control. This approach is justified by the exponential convergence the achievable precision
with the number of basis functions [392], that allows to drastically reduce the optimization
problem complexity. Moreover, a randomization of the basis function improves conver-
gence properties of the optimization. Within this approach, which goes under the name of
CRAB (Chopped random-basis quantum optimization) [113, 199, 481], gradient-free ap-
proaches are an interesting and efficient alternative. In this framework, the optimization
problem can be transformed from a functional one to a multi-variable optimization that
can be solved with a direct-search method. The development and current status of CRAB
has been recently reviewed in [431].

Gradient-based and gradient-free algorithms are two complementary methods with
their relative advantages and limitations. A very interesting aspect of gradient-free ap-
proaches is their simple way of being implemented both numerically and to take into ac-
count experimental constraints. They can also be used for controlling high-dimensional
quantum systems. On the other hand, their precision and the type of controls that can be
generated are limited by construction. Such problems can be overcome by gradient-based
methods, the price to pay being a higher numerical cost and a more technical and math-
ematical implementation. In this direction, the efficiency of an exact-gradient based opti-
mal control methodology [177] has recently also been shown in the control of many-body
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systems [310]. In experimental settings with only a limited number of control amplitudes,
discrete-valued-pulse optimal control algorithms can be useful [200].

Several software packages for QOCT implementing the methods listed above are by
now publicly available. These include software written in python on top of QuTiP [312]
for the Krotov approach for both unitary and open system quantum dynamics [251] and
for quantum circuit optimization [377]. Simulation and control of spin systems have been
developed in Spinach [289] using the environment of matlab. An open-source code specif-
ically designed to solve quantum control problems in large open quantum systems whose
dynamics are governed by the GKLS master equation is described in [270]. Open source
implementations of both GRAPE and Krotov’s method are also available in Julia [253]. A
software framework for simulating qubit dynamics and robust quantum optimal control is
proposed in [559] with a special emphasis on simulating realistic noise characteristics and
experimental constraints. Note that these methods can also be combined with software
for computing quantum dynamics [312]. Software tools are described in [48] to help with
the application and integration of quantum control in the framework of quantum comput-
ing. A description of the different steps going from control, characterization to calibration
of the use of quantum devices applied to superconducting qubits are discussed in [621].

3.1 Recent progress on optimal control methods
We review in the section the recent progress done in the development of optimal control
methods since Ref. [249].

3.1.1 Analytic approach
A series of fundamental and practical issues in quantum technologies have been solved
recently using analytical techniques. These studies consider benchmark control prob-
lems for ideal quantum systems in which some experimental limitations are neglected.
Illustrative recent examples are the optimal synthesis of SU(2) operations on a single
qubit [16, 243], state control in a spin chain [19, 541], or the simultaneous control of two
or more uncoupled spins [17, 41, 159, 311, 494].

Even more difficult control processes such as the design of robust or selective pulses
with respect to parameters of the system Hamiltonian have been explored. The basic idea
consists in simultaneously controlling an ensemble of identical systems, here qubits, that
differ only by the value of an unknown parameter. Robust, respectively selective, optimal
pulses correspond to the case where the target states are the same, or different. In the
simplest case with very few qubits, robust pulses can be derived exactly [201, 577]. More
complex systems require approximations such as linearization of the dynamics [380, 411]
or a perturbative expansion [108, 197, 579, 648–650]. Control protocols to enhance se-
lectivity or discriminative power have been derived for both state-to-state transfers and
unitary transformations [32, 59, 578]. Another example are entangling operations for two
qubits where the control problem can be mapped to geodesics after separating local and
non-local contributions to the evolution [554]. An alternative route to robustness are gen-
eralizations of adiabatic evolutions such as the Derivative Removal by Adiabatic Gates
(DRAG) framework [427] which has recently been extended to �-systems [590].

The analytical approach is not limited to closed quantum system, but can also be applied
to open quantum dynamics. The optimal synthesis of a qubit interacting with a Marko-
vian bath can be completely derived [358, 386]. Relaxation-free subspaces for perfect state
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transfer in N-level systems with finite-power are obtained if and only if each decaying state
is connected to two non-decaying states [644]. The physical limits for fast qubit reset,
where the qubit interacts with a structured environment consisting of a strongly coupled
two-level defect and a thermal bath, have been derived in terms of minimal time and max-
imum purity [56, 58, 230].

Analytical techniques and the Pontryagin Maximum Principle may also play a more un-
expected role in quantum computing issues where the goal is not to find a time-dependent
control, but to optimize quantum algorithms or circuits. It has recently been shown that
a standard time-optimal control can be mapped to a Grover’s quantum search prob-
lem [387]. A general connection between optimal control theory and variational quantum
algorithms has been established [639]. Such a link can be used, for example, to precisely
adjust the parameters of a quantum circuit [403]. Optimal protocols have been derived
also for quantum annealing problems [91], attesting to the usefulness of optimal control
theory as a general optimization tool in various areas of application in the quantum tech-
nologies.

3.1.2 Numerical approach
Major progress has been made with optimization algorithms, ranging from their numeri-
cal implementation, adaptations of these algorithms to specific problems that arise in the
quantum technologies all the way to the role of measurement for the pulse design. We
start be reviewing the progress that has been made in the numerical implementation of
optimal control algorithms. It is important for studying increasingly complex systems and
for taking experimental limitations and uncertainties into account.

In terms of better numerical efficiency, time parallelization accelerates the execution
of quantum optimal control algorithms [490]. Memory requirements in GRAPE can be
reduced by exploiting the fact that the inverse of a unitary matrix is its conjugate trans-
pose in combination with automatic differentiation [433]. A modified version of GRAPE,
based on a Krylov approximation of the matrix exponential, allows for dealing with high-
dimensional Hilbert spaces [362]. A global optimization algorithm with quantics tensor
trains has been proposed [530]. Improved convergence is obtained when including second
order derivative information. For example, a Newton-Raphson method with a regularized
Hessian can be applied [263]. This should be used on top of exact, yet efficient calculations
of the gradient [262, 309] since approximations of the gradient also limit convergence of
gradient-based methods. For spin systems in particular, the su(2) algebra can be exploited
to calculate both first and second derivatives exactly [233]. Similarly, faster optimization is
possible by generalizing Krotov’s method to second order in all derivatives [520]. Further
speed-ups are possible by replacing standard time propagation with a product of short-
time propagators [160].

The topology of quantum control problems that governs the convergence of the opti-
mization algorithms, often termed control landscape, has recently been reviewed [244].
Analysis of the quantum control landscape can be exploited to derive the Pontryagin max-
imum principle for robust control [349, 350]. Robustness comes, however, at the expense
of solving partial differential equations for the time evolution of the system [349, 350].
Analytic descent for parameter optimizations can approximate the corresponding control
landscape locally [342]. Optimal control solutions can be reshaped and guided to produce
user-customized solutions by using the geometry of control landscapes [359, 360]. Im-
proved performance of gradient-based quantum control algorithms has also been found
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using push-pull optimization, where a hybrid cost function is used to maximize the over-
lap with the desired target state while minimizing the overlap with orthogonal states [61].
This is closely related to optimizing a target functional while penalizing the population of
undesired states via time-dependent targets [452, 487].

Another difficulty in optimal algorithms is how to initialize the guess field. A recent
study has put forward from a citizen science game the hypothesis that human common
sense could help the algorithm in this first step [308]. Alternatively, one can leverage
gradient-free optimization with a very small number of parameters to provide a tailored
guess field for gradient-based optimization [60, 258].

In open quantum systems, quantum trajectories instead of the density matrix formal-
ism and automatic differentiation have been used [253, 256, 372, 373] to speed up opti-
mization and reduce the computation complexity. Steady states of dissipative dynamics
including non-equilibrium states can be targeted by optimal control via implicit differen-
tiation [585, 586]. Optimal control has been combined with time-convolutionless master
equations [55, 627] which allowed for studying, respectively, qubit reset and instantaneous
tracking under non-Markovian dynamics. Such a combination allows for investigating the
impact of control on dissipators [55, 320], as a means to implement QOCT for quantum
reservoir engineering [293]. The simplest way to treat memory effects consists in em-
ploying structured environments that are partitioned into strongly and weakly coupled
modes [31, 56, 58, 230, 486]. Novel approaches to Non-Markovian dynamics that allow
for a more detailed description of condensed phase environments have also been com-
bined with QOCT [241, 408].

Different approaches have been introduced to better account for experimental limita-
tions. For example, gradient optimization of analytic controls (GOAT) is a new algorithm
that allows to target high fidelities while designing pulses that conform to hardware-
specific constraints [401]. B-splines can be used for pulse parametrization in gradient-
based optimization [271, 450, 463]. A binary relaxed gradient in which the pulse is either
on or off has been introduced [593] for generating unitary gate transformations. Multi-
ple constraints in gradient optimization can be accounted for via auto-differentiation in
Tensorflow [534]. High-efficiency control sequences compatible with experimental con-
straints can also be designed based on the Magnus expansion where the corrections neces-
sary to reach high fidelity are found order by order [498]. Riemannian optimization tech-
niques for solving constrained optimization problems are proposed [397] for quantum
technology applications. GRAPE can be modified to include binary control pulse opti-
mization [221]. Time-correlated multiplicative control noise can be mitigated based on
a circuit-level representation of the control dynamics [572]. Also, gradient-free optimal
control can be formulated such as to yield phase modulated-only driving fields which are
more robust than pulses which are both amplitude and phase modulated [563].

The applicability of existing numerical algorithms to the quantum technologies has been
improved by tailoring to specific tasks such as system identification [34, 43, 95, 100, 434,
608]. Based on a specifically tailored target functional, robust control sequences have been
optimized to measure rates of stochastic processes [438]. A number of target functionals
specifically adapted to quantum technologies have been introduced, for example to max-
imize the quantum Fisher information for quantum metrology [384, 385], to optimize for
mixed target states often encountered in squeezing [57], to design swap operations for en-
coded qubits [60], or to optimize transport [147]. Practically any computable target func-
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tional can be used in conjuction with automatic differentiation, even non-analytic ones
such as gate concurrence [253]. Several target functionals have been tested in quantum
estimation [56, 365]. An algorithm for periodic quantum dynamics has been proposed to
maximize the signal to noise ratio [307]. In order to find optimal control solutions in pres-
ence of large measurement shot noise, use of Bayesian inference has been suggested [506]
and the efficiency of a modified gradient-based approach which allows for feedback to
stochastic quantum measurements has been demonstrated on a Jaynes-Cummings model
[469]. Robustness against specified frequency bands of the noise power spectral density
can be achieved based by including a filter function which can either be derived from re-
verse engineering [148] or parametrized and optimized [637]. The design of robust control
protocols has been explored for different sources of imperfections [52, 367, 478, 512, 551]
and the optimal control of an inhomogeneous spin ensemble coupled to a cavity has been
studied [33].

Numerical optimal control algorithms are based on an open-loop configuration in which
no feedback from the experiment is used during the control process. This type of con-
trol is obviously limited by the precision of the modeling. The next generation of algo-
rithms will have to take measurement data into account in the design of the control pro-
tocol [653]. A first step in this direction is to explore how optimal control and the design
of the corresponding pulses can be assisted by experimental data, such as von Neumann
measurements [458, 526, 547]. These data may modify the characteristics of the optimal
solution and its construction [430]. In this setting, the ability to control and reconstruct
the full state of the system from different measures has been explored [35]. But also single
qubit measurements alone are useful to assist quantum control [468]. A theoretical frame-
work combining a resource-efficient characterization and control of non-Markovian open
quantum systems has been developed [129]. Standard approaches of direct feedback con-
trol in which a function directly proportional to the output signal is applied have been
extended and applied to quantum control problems [132]. A data-driven regression pro-
cedure that leverages time-series measurements to establish quantum system identifica-
tion for quantum optimal control has been proposed [260]. Further proposals to combine
machine learning approaches and QOCT will be reviewed below in Sect. 4.2.

3.2 Goals and challenges for advancing optimal control methods
Controlling quantum systems with high efficiency in minimum time is highly important
for quantum computing and more generally quantum technologies. Control laws are gen-
erally computed analytically or numerically in an open-loop fashion on the basis of a theo-
retical model of the dynamical system. In this setting, a mid-term objective is to continue
the numerical development of both gradient-based and gradient-free algorithms with the
aim of treating increasingly complex quantum systems and accounting for all relevant ex-
perimental details while keeping calculation times feasible.

In spite of recent progress, a main obstruction to the experimental realization of op-
timized control pulses remains their high sensitivity to experimental imperfections and
model uncertainties. This problem has motivated the development of methods address-
ing control robustness since the early days of the field but important limitations remain.
For instance, it is currently not possible to mitigate random fluctuations, and robust con-
trols are very system-dependent. A general protocol for the design of robust pulses against
stochastic variations of system parameters would be a crucial step forward.
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Another key objective is to leverage optimal control techniques for a better characteriza-
tion of quantum systems and thus enhance the accuracy of the used models. One idea is to
use optimally shaped pulses for generating a transformation that maximizes the difference
in system response to different parameter values, in order to facilitate their measurement.
To date, this approach has been tested on small model systems, and a mid-term goal would
be to identify the most scalable version among these approaches. In principle, such meth-
ods allow for a full characterization of both the system and its environment. They are thus
of interest in different quantum technology applications, and possibly offer new directions
in quantum metrology and quantum sensing.

On the other hand, the control of macroscopic systems in robotics or mechanics is very
often carried out in a closed loop scheme with a only basic knowledge of the system dy-
namics. Real-time measurements allow the operator to correct and systematically adjust
the system trajectory in order to reach the desired target or to carry out the expected task.
While this approach to control is the most efficient way to manipulate a system in a way
that is robust against any form of disturbance, it is difficult to transfer it to the quantum
world due to the cost associated with measurements and the short timescales of quantum
dynamics. However, various recent technological advances give hope that this objective
is not out of reach. The main objective of the next generation of quantum optimal algo-
rithms will be to take measurement data into account in the optimization procedure, the
ultimate goal being to achieve a quantum computation controlled in real time.

4 Similarities and differences between QOCT and related approaches
4.1 Closed-loop vs open-loop control
Quantum optimal control as defined in this review is assuming that the time evolution
of the quantum system is not actively observed by the controller during the time span
of the control. It could still be an open system evolution but the information imprinted
in the environment is not being used. This differentiates quantum optimal control from
quantum feedback [620], where information is extracted and used to construct feedback
controls in real time. Both have advantages and disadvantages in their own right.

Still, within the domain of quantum optimal control in this sense, one can discriminate
open-loop and closed-loop approaches, which in the more modern language of inference
and learning can be called offline and online methods respectively. In the open-loop /
offline approach, a model of a physical system (e.g. a Hamiltonian or the ingredients of a
suitable master equation) are used to perform the control calculation and then applied to
an experiment that is described by that model. On the other hand, closed-loop / online
approaches directly use an experimental setup to perform optimal control instead of a
mathematical model, hence in its purest form performing a model-free optimization.

While the former is described in other sections of the review, it is worth highlighting
the ingredients of the latter a bit more. Here, one needs to find an experimentally acces-
sible version of the stopping criterion for the optimization: The cost function needs to
be measured instead of being computed, and a rule for pulse updates needs to be formu-
lated. Depending on the isolation of the system, measuring the gradients might be rather
imprecise and, depending on the level of noise, gradient-free methods may be a better
suited alternative. A simple and robust approach relies on randomized benchmarking for
quantum gates and Nelder-Mead optimization [214, 325] or more advanced optimizers
[228]. Model predictive control has been suggested as a closed-loop optimization frame-
work that inherits a natural degree of disturbance rejection by incorporating measurement
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feedback while utilizing finite-horizon model-based optimizations to control multi-input,
multi-output dynamical systems [261]. Special attention needs to be given to the single-
qubit case as measuring requires single qubit gates at least, but this can be bootstrapped
[193]. An impressive experimental test of this approach has been achieved in quantum
dots [126].

Advanced methods combine both approaches on their merit - using the efficient, fast
and – within the model – precise convergence of open-loop techniques in combinations
with closed-loop controls that contain the complete experimental reality and provide data
for updating the underlying model [161].

Another related approach appears in the area of variational quantum algorithms [125],
believed to be advantageous for noisy NISQ quantum computers [474], that is rather simi-
lar to closed-loop optimal control. In these approaches, a quantum algorithm that contains
parameterized gates (i.e., gates that contain, e.g., a rotation angle as a free parameter) is
considered with the goal of moving a fiducial initial state into a desired final state. In the
language of quantum optimal control, it is a state-transfer problem. In order to find the
parameters from an initial ansatz, the desired figure of merit or cost function is mea-
sured in the end of the algorithm and according to its outcome, a classical optimization
algorithm updates these parameters. There are two classes of such algorithms: (i) The
state preparation consists of a set of sufficiently general operations and does not involve a
quantum representation of the cost function - this is, e.g., the case in the variational quan-
tum eigensolver (VQE) [462] for theoretical chemistry [354], high energy physics [343] or
computationally hard problems in graph theory [211]. It requires a careful determination
of the reachable set of states and a sufficiently large number of controls in order to be able
to reach a sufficient approximation of the desired final state. A popular choice is, e.g., the
set of unitary coupled cluster states [495]. (ii) A so-called “cost Hamiltonian”, encoding
the desired solution to the optimization problem, and a fairly simple driver Hamiltonian,
also referred to as mixer Hamiltonian which does not commute with the cost Hamilto-
nian are alternated for adjustable durations, as is the case for the QAOA algorithm [220]
(Quantum Alternating Operator Ansatz or Quantum Approximate Optimization Algo-
rithm). While this has been proven to be universal, clear proofs of quantum acceleration
are difficult [163, 280]. In both of these cases, the controls are written as parameterized
gates in a quantum circuit, which can be interpreted as a very simple parameterization
of a long control pulse. Recently, this has been taken to the domain of more continuous
pulse parameterizations [91, 141, 178, 414]. In both cases, insights of optimal control the-
ory around reachability, speed limits, and required number of parameters apply. Further
examples for cross-fertilization between QOCT and variational quantum circuits are re-
viewed below in Sect. 5.3.3.

In more practical terms, successful VQEs require fast and reliable classical optimization
algorithms. A recent comparison of four different gradient-free optimization methods re-
vealed superior performance of stochastic methods, in particular when used with default
parameters [79].

4.2 Quantum optimal control vs machine learning approaches
Machine learning is a field of computer science which has been attracting much attention
in many areas in physics [115, 313, 417]. The algorithms are built to emulate human intel-
ligence by learning the best way to proceed from a large data set [423]. The power of this



Koch et al. EPJ Quantum Technology            (2022) 9:19 Page 20 of 60

tool gives hope that long outstanding problems can be solved. For example, in quantum
physics [299] it has been applied with success in many-body physics [116, 119] and quan-
tum computing [115, 205]. We review in this section recent studies investigating quantum
optimal control problems.

A specific branch of machine learning, namely reinforcement learning (RL), is generally
used to solve such problems. This approach is intimately related to optimal control theory
even if the way to describe the optimization process might look different at first glance. In
RL, an agent takes actions in order to maximize a current or a final reward. The learning
process is based on observing the effect of the action on the dynamical system and on the
reward. From this information, the agent decides to modify (or not) the action. Replacing
in the previous description, agent by control, action by control law and reward by fidelity,
the parallel between RL and QOCT becomes immediate. The connection holds also in
terms of the underlying mathematical structure since RL can be viewed as a dynamic pro-
gramming approach which in turn is based on the Hamilton-Jacobi Bellman formulation
of optimal control [99]. Finally, the main difference between the two formalisms is the way
to determine the new control from the previous ones in an iterative optimization process.
In particular, RL is expected to add value to optimal control techniques in the case of a
complex control landscape with many local maxima. Indeed, the procedure for designing
control law can escape local traps through random changes in control. A short introduc-
tion to the different learning control methods in quantum physics is given in Ref. [196]
and Ref. [248] provides a tutorial-style introduction into both optimal control and rein-
forcement learning.

These ideas have recently been explored in benchmark quantum control problems in
order to show the efficiency of this RL approach. In a system of coupled spins with bang-
bang controls, RL has been shown to lead to a quasi-optimal fidelity [102]. Drawing a
parallel with statistical mechanics, this study also interprets the change of structure of
the control landscape as a phase transition, highlighting the specific role played by time-
optimal control process [176]. Quantum speed limits can be found in a spin chain [657].
Basic questions such as the implementation of quantum gates [30], the transport of quan-
tum states [470] and robust control against leakage or control errors [439, 626] have been
answered. The efficiency of learning algorithms with experimental feedback has been ex-
plored [638] and the quantum analogue to the classical cartpole balancing problem has
been analyzed [609], showing that RL matches or outperforms other methods in this ex-
ample. A standard limitation of open-loop control protocol is model bias. This limitation
can be overcome by RL in which the agent learns the system parameters through a series
of interaction, corresponding here to measurements, with the quantum system [528].

Another difficulty in numerical optimal control is the choice of a good guess field to initi-
ate the optimization process. This obstacle can be overcome by a learning approach [161].
A very good modeling of the cost functional landscape can be achieved from deep learn-
ing. The efficiency of this approach has been shown for the control of spin chains [162].
RL has been combined with analytical control pulses for spin manipulation in order to
account for robustness constraints [186]. Another promising example is given by a hybrid
algorithm using a quantum computer as an active part of the optimization process, devis-
ing the control of a molecule by a laser field [121]: The time evolution of the wave packet
is determined from a quantum computer, while the iterative procedure is realized by a
machine learning algorithm. A model-based RL is investigated in Ref. [510] for different
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control problems. The authors show that gradient-based approaches can be combined
with learning processes to speed up the optimization procedure [511]. This approach
named differentiable programming is expected to be much more efficient than model-
free RL. It has been applied for state preparation and stabilization of a qubit subjected to
homodyne detection, in which the qubit dynamics are governed by stochastic Schrödinger
equation, which is very difficult to deal with using standard optimization methods. A re-
cent systematic comparison has shown for qubit manipulation that RL outperforms stan-
dard optimization procedures when the problem is discretized and the space of the action
is sufficiently small [658]. RL can be also efficiently combined with gradient-based opti-
mization procedures for the robust control of spin 1/2 networks against different noise
sources [328].

Finally, there has been a lot of cross-fertilization between QOCT and machine learning
recently [206]. In particular, QOCT can directly be exploited in the design of quantum
algorithms and the synthesis of quantum circuits. The corresponding work is reviewed
below in Sects. 5.3.3 and 5.3.4. In turn, the quantum variational agent of a variational
quantum circuit can learn to solve the quantum control problem [516]. Similarly, machine
learning methods such as the recommender system can be used to expedite both GRAPE
and a hybrid method combining GRAPE and simulated annealing [62]. As already men-
tioned, another recent development is to combine GRAPE with feedback making use of re-
inforcement learning [469]. These results, as well as those covered in Sects. 5.3.3 and 5.3.4,
highlight that QOCT as a general optimization tool is not only interesting for the com-
putation of time-dependent control pulses, but also in other optimization problems of
interest in quantum technologies. In this framework, geometric control has been com-
bined with machine learning techniques in order to improve the synthesis of quantum
circuits [461].

4.3 Quantum optimal control vs shortcuts to adiabaticity
Shortcuts to adiabaticity (STA) is nowadays a well-established set of control protocols
which have recently been reviewed in depth [182, 269, 568]. In short, STA exploit the al-
gebraic structure of quantum mechanics and correspond to fast routes between initial and
final states that are connected through a slow (adiabatic) time evolution when a control
parameter is changed in time. They also aim to preserve as much as possible the robust-
ness of adiabatic dynamics. STA solutions are generally different from optimal ones and
provide a complementary strategy which has peculiar advantages and limitations as dis-
cussed below. Optimal control pulses are built on a global constraint, the minimization of
a cost functional, while STA techniques are primarily built to account for local constraints,
in particular at time interval boundaries. These two different ways of attacking a control
problem show that the two formalisms can mutually benefit from each other.

Recent work has shown the flexibility of STA which can be applied to a wide spectrum
of quantum systems. Such studies focus on the fast and robust transfer in a Su-Schrieffer-
Heeger chain of quantum systems [164], fast and accurate adiabatic quantum comput-
ing [284, 285], the control of Bose-Einstein condensates [135, 663], applications in quan-
tum thermodynamics [1, 240, 278], the generation of quantum gates [323, 453, 607, 634],
the experimental initialization of spin dressed states [344] for optimal control procedures.
In view of the development of quantum technologies, this also includes, among others, the
robust preparation of non-classical states [3, 138] as well as many-body states [117], the
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slowing down of particles by laser fields [54], the propagation of matter waves in curved
geometry [301], the manipulation of two coupled Harmonic oscillators [566], the con-
trol of multi-level quantum systems [164, 382, 592] and the displacement of a trapped
ion [29]. STA has been combined with machine learning techniques in [50] to speed up
the quantum perceptron, a fundamental building block for quantum machine learning.
Enhanced shortcuts to adiabaticity have been recently proposed to broaden the scope of
the approach [618] and STA protocols robust with respect to different sources of noise
have been derived [156, 375, 561, 648–650]. Similarly to QOCT, the trade-off between
speed and energy cost of the control process is a key property [112, 569].

A key aspect of STA comes from the fact that the control law can be expressed in most
cases analytically which makes it possible to highlight the physical mechanisms on which
the control process is based. In comparison to QOCT, this approach requires the system
to satisfy specific algebraic properties [269] and therefore does not have the full generality
of QOCT. In particular, STA cannot be applied directly to any type of dynamical systems
or experimental constraints. This obstacle can be overcome by combining STA protocols
with optimal control techniques in a hybrid strategy to benefit from the advantages of
both approaches. Indeed, the search for the optimal solution and in particular the choice
of the cost functional can be guided by the STA solution. This idea is illustrated by recent
studies. It has been applied for deriving and implementing experimentally a one-qubit
quantum gate [583], to generate specific states in a chain of coupled spins [47, 541] and in
a three-level quantum system [425], for the control of entanglement in bosonic Josephson
junctions [540], but also in many-body physics [111]. The connection between STA and
QOCT has been discussed in [654] for standard quantum control examples. By using the
optimal trajectory as a guide, the authors show that very precise STA protocols can be
achieved. Bang-bang control protocols have been derived from the atomic transport in a
moving Harmonic trap by using both STA and the Pontryagin Maximum Principle [187].
QOCT may be combined with STA to mitigate errors, for example those that result from
imperfect implementation of an STA trajectory in the fast shuttling of an ion [218], or
improve effectiveness of counterdiabatic local driving of cold atoms in an optical lattice
for annealing, state preparation and population transfer [124].

Conversely, STA can be used to extract information from numerical optimal trajecto-
ries [650], which further illustrates the link and complementarity between these two for-
malisms. Similarly, STA can be leveraged to determine one qubit filter functions which
can then be used in the cost functional for optimal control to improve robustness with
respect to noise [148]. Under certain circumstances such as the excitation of a two-level
quantum system, quantum dynamics can be well approximated by a linear system. In this
framework, very strong similarities exist between STA and QOCT protocols, which differ
only by the basis of functions on which the two control laws are expanded [268, 411, 412].
In the case of the robust control of a two-state quantum system against different sources
of error, a systematic comparison of several methods extending from adiabatic and STA
processes to composite and resonant pulses has been performed in [567]. They can be
combined with dynamical decoupling in order to generate quantum gates in presence of
decoherence effects [617]. Robust composite pulses mitigating systematic errors have also
recently been developed [355]. Finally, it should be pointed out that the DRAG technique
invented for superconducting qubits [427, 560] is based on counter-diabatic driving and
thus closely related to STA.
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5 Applications of quantum optimal control theory
When a first version of this roadmap [249] was drafted, QOCT had evolved from a largely
theory-driven field to one where theory and experiment started to cross-fertilize. This de-
velopment has since continued with a steady growth in the number of examples demon-
strating significant performance gains thanks to QOCT. We start in Sect. 5.1 by high-
lighting successful implementations of QOCT in the laboratory and pointing out issues
that needed to be addressed when integrating QOCT into experiment. The following two
subsections are then dedicated to a more comprehensive overview over applications of
QOCT, organized according to hardware platforms in Sect. 5.2 and according to control
tasks in Sect. 5.3. Note that some redundancy is intentional to ease locating relevant ref-
erences.

5.1 QOCT in experiment
Quantum technology has proven to be an ideal testbed for QOCT. First and foremost,
quantum technology’s precision requirements require an exquisite understanding – even
in the presence of uncertainties and fluctuations – of the physical systems that serve as
hardware platforms. This is an excellent starting point for quantum optimal control when
compared to other fields where QOCT has been explored, such as chemical reaction dy-
namics [249]. Early scepticism towards QOCT has given way to ready adoption of its tool-
box all across the field of quantum technology. Concerns about feasibility, robustness, or
intelligibility, due to often somewhat peculiar pulse shapes obtained with QOCT, have
been dispelled by proofs to the contrary. We start by highlighting the key experiments at
the core of this development, focussing on examples where QOCT results have been taken
straight to the experiment or where QOCT has been interfaced with an experiment. For
each experimental platform, a more detailed overview will be provided in Sect. 5.2.

Starting with superconducting circuit platforms, QOCT has been used to prepare log-
ical qubits encoded in bosonic modes [442] and to implement quantum gates [283, 413,
616, 628, 665]. Moreover, STA methods have been used to demonstrate a reduction in the
operation time scale [642], and chirped pulses to encode qubits in donor spins in silicon
coupled to a superconducting cavity have been utilized to implement a random access
quantum memory [449].

Moving to AMO platforms, optimal control has been used to prepare non-classical
states in Rydberg atoms [363, 445] and electric dipole spin waves in an atomic ensem-
ble [281]. Quantum brachistochrones between distant states of an atom have been demon-
strated [357], and a source of double twin-atom beams with splitting ramp has been de-
signed using QOCT [80]. Optimal control has been a key resource for the simultaneous
execution of entangling gates in an ion-trap quantum computer [229]. Robust two-qubit
gates have been implemented in an ion chain [322] and using microwave near fields [646].
A gate-optimizing principle trading small amounts of gate fidelity for substantial savings
in power, which, in turn, can be traded for increases in gate speed and/or qubit connectiv-
ity have also been demonstrated on a trapped ion quantum computer [76]. A closed-loop
optimization procedure has been used for fast trapped-ion shuttling [543], and sideband
cooling of ions has been optimized [484]. The Heisenberg limit in terms of evolution time
has been reached in quantum metrology with a photonic platform [295]. Optimal control
of the quantum trajectory of an optically trapped nanoparticle combined with Kalman
filtering has allowed for real-time tracking of the particle motion in phase space [405].
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Successful application of the QOCT toolkit to color centers in diamond has been con-
tinued, for example, to sense temperature [345] or to study dynamical symmetries that
can arise in topological phases of strongly-driven Floquet systems [273]. Concatenated
pulses have been applied for an easier observation of the Mollow triplet [603]. Fast and
high-fidelity geometric control of a quantum system on hybrid spin registers in diamond
has been realized [198]. Robust pulse sequences and optimized pulse pairs have been used
to sense temperature and weak AC magnetic fields while decoupling from environmen-
tal noise [589], and optimal control of a nitrogen-vacancy spin ensemble in diamond has
resulted in an improved detection of temperature and magnetic field [472]. Provably noise-
resilient single-qubit gates have been designed with robust optimal control [659].

A further experimental platform where QOCT methods have been employed are spin
qubits in a GaAs double quantum dot where single-qubit and two-qubit gates with opti-
mized pulses have been implemented [126, 127, 635].

The successful application of QOCT in the lab has been made possible by advances in
the integration of pulse shaping techniques with the respective experimental platforms.
The development of hardware and interfaces [63, 72, 232, 615, 633] in particular has been
crucial. Pulse shaping can also compensate for experimental imperfections. This has been
demonstrated for signal distortion in electron spin resonance spectroscopy [477].

5.2 QOCT tailored to specific quantum hardware
Applications of QOCT can be classified according to the different hardware platforms
for quantum technologies or according to different tasks for control. The latter are typi-
cally reflected in the choice of optimization method whereas the former are addressed at
the level of the underlying dynamical model for system, controls, and decoherence. We
cover both classifications, starting with the hardware platforms and allowing for some re-
dundancy between platforms and control tasks, so that readers might quickly identify the
literature relevant to their specific concern.

5.2.1 Superconducting circuit based architectures
Superconducting circuits containing Josephson junctions [406] are one of the currently
leading platforms to implement quantum computing. They are using the collective elec-
tromagnetic variables of superconducting circuits [335, 352], building on the character of
superconductivity as a robust macroscopic quantum phenomenon in its own right [144].
Hence, they are completely human-made which offers wide options for engineering but
also opens the door for parameter uncertainty. Superconducting qubits have strongly im-
proved in coherence of the last decade based on specific design choices as well as material
improvements. The theoretical description of superconducting ciruits resembles that of
cavity quantum electrodynamics at optical frequencies [75].

QOCT has also emerged as immensely important toolbox for the control of supercon-
ducting qubit based quantum systems to reach error levels low enough for error correction
and NISQ-type quantum computing applications. However, a direct adaption of numer-
ical open-loop optimization concepts suffers mainly from only partial knowledge of the
system parameters and consequent requirement of closed-loop protocols with long la-
tency and measurement times.

In a few situations, analytic pulses can be constructed without resorting to numerical
strategies. A well known example is the DRAG-pulse for weakly-anharmonic transmon-
type qubits [427] and recently developed tools based on shortcut-to-adiabaticity methods
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for fluxonium-type superconducting qubits [517]. Beyond analytical calculations, numeri-
cal optimization schemes have been investigated to prepare entangled states in a minimum
amount of time [51] and to find fast pulses for controlled-Z gates of frequency-tunable
transmon qubits [242]. It has been found that the larger coupling strength between higher-
lying energy levels of weakly anharmonic systems, such as the transmon, can be utilized to
shorten quantum gate operations [39]. Moreover, with the flexibility in the design param-
eters of superconducting qubits not only pulse parameters but even system parameters
can be optimised to realize a fast universal set of gates with high efficiency [257]. A rather
common source of error for superconducting qubits is crosstalk, and one option to allow
for scalability may be to mitigate ZZ-crosstalk via co-optimization of pulses and schedul-
ing [630].

Open-loop control methods have been successfully applied to simple systems com-
prising only a single well-characterized an-harmonic systems to realize gates in higher-
dimensional Hilbert spaces [628] and to prepare logical qubits encoded in bosonic modes,
so called cat-states [442]. Optimal control methods have been used to implement a univer-
sal gate set on a logical qubit encoded in a bosonic mode [283] and are used in combina-
tion with STA methods to control a circuit QED system consisting of two coupled bosonic
oscillators and a transmon qubit [642]. For bosonic qubits also, a hybrid approach combin-
ing gradient-free and gradient-based optimization has successfully been used to enhance
the entangling operation via an effective beamsplitter interaction [60]. Moreover, local (or
Lyapunov) control methods which only require a single forward time propagation of the
system wave function to shape an external pulse – as used for example to steer chemi-
cal reactions – have been proposed to construct modulated coupler pulses to swap exci-
tations between fixed-frequency qubits [407]. A fast nonadiabatic controlled phase gate
between two transmon qubits with tuneable coupling has been designed using dynamical
invariants of motion [219], and pulse shapes implementing controlled-phase gates based
on drive-amplitude and drive-frequency modulation have been derived with a theoretical
framework based on Floquet theory [184].

However, in many designed quantum systems such as superconducting quantum cir-
cuits or defined quantum-dot systems, the information about the underlying Hamilto-
nian is typically not complete. For instance, the coupling to spurious modes may cause
level shifts that are not included in a genuine qubit description. Moreover, parameters
may fluctuate on timescales that are comparable or slower than the typical run-time of an
algorithm. Pre-determined pulses found in open-loop schemes may therefore not work
and one has to resort to closed-loop schemes that optimize a cost function based on ex-
perimental data. To go beyond gradient-based algorithms and open-loop control is there-
fore to rapidly measure the cost function for each pulse parametrization. Moreover, the
optimization algorithm has to make best use of the available hardware by reducing time-
consuming pulse reparametrizations and uploads of wave functions from the control PC
to the electronics to a minimum.

To minimize the number of measurements required to completely characterize the
quantum operation, typically a fixed-length randomized benchmarking sequence is used
for single and two-qubit gates with a few parameters pulses [325]. It has been demon-
strated that this method can be used to achieve fast 4 ns-long single-qubit pulses using
piecewise-constant basis functions. Via a closed-loop protocol both coherent gate errors
and leakage can be reduced in a transmon-type qubit [616]. Numerical studie show that
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single qubit gate durations can be reduced even further into the 100 ps regime, provided
that the an-harmonicity can be made large enough [662]. A ‘data-driven’ version of the
GRAPE algorithm that updates the cost function based on experimentally measured state
and process tomography data has been used to experimentally realize a controlled-Z gate
with 99%- fidelity [665].

Ideally, control, calibration and characterization of a system is performed within a gen-
eral framework that allows for the efficient characterization of the system, the calibration
of pulse parameters and the subsequent control of the system [621]. For simple pulse cal-
ibration, typically only a few pulse parameters, such as amplitude or duration, are opti-
mized. The response of the system to specific measurement sequences is used to itera-
tively find optimal parameter values for single-qubit [522] or two-qubit gate operations
[523, 549] involving automatic protocols [633]. Based on these methods, gates can be cal-
ibrated across a complete quantum processor to reach high quantum volumes [314, 549].
Of particular interest is the mitigation of errors caused by coherent ZZ-type crosstalk,
which can be reduced via optimal control pulses also on large scale systems to guaran-
tee high-fidelity parallel gates [619]. While the aim is typically to avoid such longitudi-
nal couplings, by robust control of the unitary evolution, large scale quantum computing
on an array of qubits can be envisaged even with fixed longitudinal qubit-qubit interac-
tions [368]. Similar techniques can be applied to robustly create GHZ-states of transmons
for quantum sensing [369].

While transmon-type qubits are the current workhorse of superconducting qubit quan-
tum processors, protected superconducting qubits with exponentially suppressed sensi-
tivity to external noise are heavily investigated. The reduced sensitivity comes at the ex-
pense of reduced control possibilities and the need for complex pulses for the implemen-
tation of quantum gates. For so-called 0–π qubits [98, 275] control pulses have been op-
timized that involve higher qubit levels during gate operation to circumvent the intrinsic
protection qubit states given by the disjoint support of the low-lying wavefunctions [4].
Moreover, robust control techniques have been applied in numerical simulations to flux-
onium qubits to mitigate parameter-uncertainty errors [478].

On the other hand, ultrastrong coupling may allow for faster operations at the expense
of increased sensitivity to noise in superconducting circuit QED platforms. Optimal con-
trol is a tool ideally suited to identify noise-resilient protocols in this setting, for example
to realize fast state transfer with noise protection due to an interplay of the dynamical
Casimir effect with cavity losses [246]. Further applications of optimal control methods
include the concatenation of pulse sequences into a single pulse [259] to realize efficient
NISQ-type algorithms or to control hidden qubits that are controlled and read-out via
neighbouring qubits [105, 456].

5.2.2 Color centers in diamond
Color centers in diamonds are one of the most successful candidates for implementing
different quantum technologies, in particular quantum sensors [46, 436]. Color centers
are defects in the regular crystalline structure of diamonds, where one carbon atom is re-
placed by a different atomic species or a vacancy. This change in the crystalline structure
is reflected in the diamond spectral properties that, as a consequence, might gain a colour
– thus the name coloured centers [194, 623]. More importantly for the quantum tech-
nology perspective, these point-like defects have very important and useful properties for
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quantum information processing. In particular, they satisfy – to some extent – the DiVin-
cenzo criteria for quantum computation: it is possible to individuate well defined energy
levels to encode qubits states that can be initialized and manipulated via laser excitation
and microwaves; the system state can be measured via fluorescence; and different centers
can be coupled and entangled, enabling – in principle – universal computation and sim-
ulation [109, 120, 195]. Despite these exciting properties, the scalability of the system is
still a challenging aspect that, to date, partly limits the applications of this architecture
for quantum computation. However, other unique properties make this system ideal to
accomplish quantum sensing tasks [53, 482, 489]. Indeed, the defect quantum levels are
magnetically sensitive exhibiting Zeeman splitting, the quantum properties are stable in
a wide range of temperatures, from cryogenic to room temperature and diamonds are
biologically inert [53]. Thus, in the last years, a very fast development of diamond-based
magnetometers for nanoscale sensing also in biological and living cells have been explored
and achieved [128, 237, 286, 345, 353, 410, 552, 617]. Moreover, the sensitivity of the de-
fect properties to strain, electric fields and temperature open the way to a complete new
set of sensors of pressure, fields and temperature at the nanoscale [489].

Despite the aforementioned desirable properties of color centers in diamonds, the very
same characteristics make them naturally prone to static and dynamical errors, calibra-
tion problems, and highly sensitive to drifts of the environmental conditions when im-
plementing, e.g., a spin echo experiment to measure an external magnetic field. Thus,
color centers are a natural playground for quantum optimal control, needed to improve
the sensing protocols, their stability or final fidelity [467, 489]. Indeed, a number of the-
oretical and experimental results have been achieved by exploiting the successful inter-
play between optimal control and color centers in diamonds that span a number of such
possible applications. Among others, the effectiveness of shaped pulses for temperature
sensing [345], for initialization [128], and for the single-qubit rotations of the electron
spin qubit in silicon-vacancy and tin-vacancy defects in diamond [552] have been demon-
strated. On similar ground, experiments have succesfully probed Floquet states for robust
control of nuclear spins in NV centers [617], and an optimal two-step approach has been
used to improve spin manipulation processes for robust magnetometry with single NV
centers [448]. Building on these and other demonstrations of optimally controlled quan-
tum sensing protocols, more complex and challenging protocols have been proposed such
as the autonomous calibration of single NV center operations [235] and the enhancement
of the macroscopic hyperpolarization [410]. Finally, interesting links with many-body the-
ory have been unveiled, such as the determination that for a spin sensor of time-varying
fields with dephasing noise, the optimal control problem of finding the optimal driving
can be mapped to the search of the ground state of a spin chain [286].

5.2.3 Trapped atoms, ions, and molecules
Quantum computing with trapped ions is a most promising architecture on par with su-
perconducting qubits and operating according to the gate model of quantum computing.
Quantum optimal control has been applied to this platform early on, as summarized in
our earlier review [249]. More recent advances include individual addressability of qubits
thanks to pulse optimization [140, 229] and robust control, i.e., control pulses that per-
form well in the presence of parameter fluctuations as well as decoherence. Robustness
can be achieved numerically, for example for entangling gates [68, 451], or using para-
metric control, i.e. applying sinusoidal modulations to the amplitude, frequency, or phase
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of the pulses [37, 265, 373, 421, 646]. Moreover, a pulse-shaping technique trading small
amounts of fidelity for power savings or trading power savings for gate speed has been
used to demonstrate a speed-up of two-qubit gates for a given power budget for trapped
ions [76, 77]. Optimal control theory has been employed to improve the dissipative prepa-
ration of entangled states of trapped ions [293], and the optimized pumping scheme thus
identified has recently been implemented in an experiment [146].

Trapped atoms excited to Rydberg states have emerged as a competitive quantum tech-
nological platform, most notably for quantum simulation, with key operations demon-
strated for hundreds of qubits [424]. Quantum optimal control has been used, first the-
oretically [154] and later experimentally [445], to prepare many-body quantum states of
Rydberg atoms in optical lattices. In a similar sequence of theoretical prediction [455] and
experimental demonstration [363], quantum optimal control has been used to prepare
non-classical states in single Rydberg atoms. These can serve as highly sensitive probes
of external fields. The accurate preparation of non-classical states of trapped Rydberg
atoms relevant in quantum sensing has also been suggested using Bayesian optimization
techniques [429]. Single and entangling gates for Rydberg quantum computing have been
optimized for enhanced robustness with respect to parameter fluctuations and decoher-
ence [255, 272, 306, 451, 460].

Quantum optimal control of neutral atoms is not limited to the Rydberg platform, it
can also be applied to atoms forming a Bose-Einstein condensate (BEC), see [249] for
early work. In this setting, theoretical studies have shown how to control BEC through
a variation of the magnetic confinement potential. This study can be performed in a
one [288, 290, 305, 535] and in a three-dimensional case [418]. Another degree of control
can be achieved by trapping a BEC in an optical lattice where the system can be controlled
by a phase modulation of the lattice. A shaken-lattice interferometer can be obtained by se-
lecting specific atom momentum states [471, 612, 613]. Transport of BEC with atom chips
has been optimized [28, 136, 150, 655] and robust optimized pulses for cold-atom inter-
ferometry have been designed [508]. Different experimental evidence for the efficiency of
optimal control schemes has been provided. It extends from the loading of an atomic gas in
an optical array [499, 661] and the manipulation of motional states [580], in particular for
interferometry applications [581], to the crossing of a quantum phase transition [499, 580]
and the transfer to the first vibrational excited states [101]. Also, a shaken-lattice interfer-
ometer has been experimentally realized through a specific phase modulation of the lat-
tice [611]. Recent extensions include remote control of a BEC [282, 364] and state prepa-
ration of a BEC in an optical lattice [209] as highlighted in Fig. 1 in Sect. 1. In the opposite
limit of single atoms, a quantum brachistochrone has been utilized for time-optimal trans-
port between distant sites of an optical lattice [357].

While trapped neutral and ionic atoms continue to be at the forefront of experimental
quantum technologies, trapped molecules may eventually emerge as a platform offering
more versatility. An example testifying to their versatility is the use of trap-induced res-
onances to implement two-qubit gates with shaped electric fields for ultracold molecules
trapped in optical tweezers [539].

5.2.4 Other platforms
Finally, we briefly summarize recent progress in further physical platforms for implement-
ing quantum technologies. Spin states in molecules studied by nuclear magnetic resonance
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(NMR) have been an early proposed platform for quantum computing, and optimal con-
trol applied to this platform has been extensively reviewed in [249]. Recent advances in-
clude optimized state preparation in a seven-qubit nuclear magnetic resonance system
using hybrid quantum-classical approach to quantum optimal control [379] and the near
time-optimal preparation of a Bell state where modeling and experiments were operat-
ing in tandem [133]. Using optimal control, also a novel class of refocusing pulses for
“delayed spin echoes” was developed [42, 43], with potential applications in the general
field of quantum technology. The concept of optimal-control-based cooperative pulses
[93], which are able to compensate each others imperfections, has been introduced for
the case of two 90◦ pulses (separated by an arbitrary delay) as used in Ramsey experi-
ments. The outstanding robustness of cooperative 90◦ pulses was recently experimentally
demonstrated in ultra-broadband multidimensional NMR experiments [38]. The idea of
optimal-control-based cooperative pulses was extended to spin echo experiments con-
sisting of a cooperative 90◦ and 180◦ pulse pair with excellent robustness with respect
to detuning and scaling of the control amplitudes [318]. Furthermore, the physical lim-
its of the time-optimal excitation of maximum-quantum coherence was explored for spin
systems consisting of up to five coupled spins [341]. Another development motivated by
solid-state NMR experiments with potential applications in quantum technologies was the
demonstration that it is possible to design control sequences that are robust to periodic
modulations of the control amplitude with known modulation frequency but unknown
amplitude and phase of the modulation [570, 571]. The optimal-control-based tracking of
desired spin trajectories has been used to create highly robust heteronuclear decoupling
experiments [437] and more recently to tailor the detuning-dependent scaling of the spec-
tral splitting caused by spin-spin couplings to reduce the dimensionality of heteronuclear
correlation experiments [651]. In addition to the control of nuclear spin systems in NMR,
optimal control pulses have been developed for the robust control of electron spins in the
field of electron paramagnetic resonance (EPR) spectroscopy, see [538] for a review. In sys-
tems consisting of both nuclear and electron spins, the time-optimal polarization transfer
from an electron spin to a nuclear spin was explored using optimal control techniques
[645].

The ideas developed for atoms and ions that are trapped by external fields, cf. Sect. 5.2.3,
are easily carried over to ions that are hosted in a molecule or crystal. For example, triply
charged lanthanide ions are a popular quantum platform. Pulses to carry out all quantum
gate operations have recently been calculated for the example of gadolinium ions [122].
Microwave coherent control of the initialization, operation, and readout of the electronic
spin state in erbium dopants has been demonstrated [151]. Closely related to donor-based
solid state platforms are quantum dots, where shaped pulses have been derived for single
and two-qubit control [277, 321, 554, 635]. And while Majorana-based topological quan-
tum computation is still elusive, their optimal transport has already been studied theoret-
ically [149].

A large variety of experimental systems exists that realize the coupling of nanomechani-
cal or micromechanical motion to a quantized electromagnetic field mode [40]. Coherent
control of cooling such mechanical oscillators and coherent control of energy transfer be-
tween mechanical modes has been demonstrated experimentally [236]. Theoretical pro-
posals for an optimized preparation of non-classical states [57, 69] and optimized feedback
for cooling [226] have been brought forward.
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5.3 Applications to key tasks in the operation of quantum devices
We now review applications of QOCT according to control targets, respectively tasks,
with the exception of quantum sensing and metrology for which we refer the reader to
two recently published excellent reviews [391, 489]. We will start by covering progress
in QOCT for state preparation, including transport and storage of quantum informa-
tion, and measurement in Sect. 5.3.1, followed by QOCT implementing desired dynamics
in Sect. 5.3.2. New fields of application of QOCT are quantum algorithms (Sect. 5.3.3),
system identification (Sect. 5.3.5), and quantum compilation (Sect. 5.3.4). We will con-
clude this overview with reviewing the role of QOCT for quantum thermodynamics in
Sect. 5.3.6.

5.3.1 State preparation and measurement
Tasks for state preparation are ubiquitous in quantum technologies: In quantum sensing
and communication, there are numerous tasks around preparing squeezed, cat and GHZ
states vs. photons respectively. In quantum simulation, preparation of a complex state is
often the very objective of the simulation task. In quantum computing, there is some fo-
cus on unitary gates, i.e., rotations of a full (or computational subspace) basis. Methods
for state preparation also pertain to measurements. We review below recent examples in
which QOCT is applied for the preparation of a specific state, whereas implementing a de-
sired dynamics that concerns more than a single state will be reviewed below in Sect. 5.3.2.

QOCT has been used in experiments with Rydberg atoms to increase the fidelity in
the preparation highly entangled states [445] and long-lived states [363]. It has also al-
lowed to accurately prepare non-classical superposition states that cannot be prepared
with reasonable fidelity using standard techniques [363]. Shaped laser pulses applied to
shift a spin wave in momentum space of atomic ensemble with state-dependent geometric
phase patterning, in an error-resilient fashion and on timescales much faster than sponta-
neous emission [281]. Starting from a Bose-Einstein condensate, correlated pairs of atoms
forming a Bell state involving their external degrees of freedom have been created upon
excitation of the condensate with shaped RF pulses [80].

Another example for quantum technologically useful states are squeezed states which
allow for quantum enhancement of sensing protocols. In cavity optomechanics, for exam-
ple, where a mechanical resonator is coupled to a microwave or optical cavity, significant
squeezing can be obtained without the need of ground state cooling. In this setting, QOCT
allows to speed up the preparation of squeezed thermal states by more than two orders of
magnitude compared to a protocol with constant drives, requiring only simple pulse mod-
ulations that are fully compatible with current experimental technology [57]. When fur-
ther coupling the optomechanical system to a qubit, QOCT can exploit the non-linearity
thereby introduced to prepare the mechanical oscillator in non-classical states [69]. In
harmonic potentials, squeezed thermal states can be generated by a reverse engineering
approach [207]. Time-dependent controls for spin squeezing in quantum metrology have
been designed with reinforcement learning [553]. Large spin squeezing for Ramsey inter-
ferometry based on an alternating series of one-axis twisting pulses and rotations has also
been designed with QOCT [118]. Coherent-state transfer in the ground-state manifold
of an NV center spin using a laser can be accelerated with optimal control [562]. Opti-
mal control of the harmonic potential which confines a levitated nano-particle leads to a
strong delocalization of its center-of-mass motional state which is expected to enhance
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force sensing [614]. In a many-body setting, QOCT allows for preparing non-Abelian
anyons, important for topological quantum computation, on timescales many orders of
magnitude faster than adiabatic adiabatic dynamics [483].

In contrast to state preparation that can be achieved with coherent dynamics, tasks such
as qubit reset or measurement are intrinsically non-unitary. Optimizing them requires ei-
ther the use of open system QOCT [55, 59, 230, 271] or a focus on unitary steps that are
part of the overall protocol [58, 212, 213]. A challenge of qubit reset is that the proto-
col should work irrespective of the initial state. A naive optimization strategy would seek
a control that works for a complete basis of Hilbert space but it turns out that a single,
specifically chosen density matrix is sufficient to optimize qubit reset [271]. Fundamental
bounds on qubit reset in terms of maximum fidelity and minimum time have been de-
termined using the paradigm of resetting via an ancillary quantum system [58, 59, 230],
assuming control over the qubit and no control over the ancilla. A practical implementa-
tion of ground state reset in a superconducting circuit pumps the excited-state population
to a higher excited state with a first pulse and then dumps it into a low-Q transmission-line
resonator, serving as lossy environment, which is also used for qubit read-out [212]. When
the coupling with the thermal environment is tunable, QOCT can be used to determine
the optimal tuning protocol [55].

State preparation is also at the core of storing quantum information, and QOCT has
recently been used to derive protocols for the optimal storage of a single photon by a sin-
gle intra-cavity atom, achieving the maximal efficiency by partially compensating parasitic
losses [247]. Broadband operation of the quantum memory allows for simultaneously re-
alizing high efficiency and high speed which only requires Gaussian pulses with optimally
tuned parameters [524]. QOCT combined with a coherent spin-exchange interaction aris-
ing from random collisions has been used to derive strategies for high-efficiency storage
and retrieval of non-classical light, in order to realize quantum memories with noble-gas
spins [324]. A gradient-based optimization strategy has been used to design the temporal
shape of the laser field driving a quantum transducer for photons between microwave and
optical frequencies to mitigate the effects of inhomogeneous broadening [422].

5.3.2 Implementing desired dynamics
We refer to desired dynamics as a control target that concerns more than a single state in
the target functional. A most prominent example are quantum gates. Optimal control can
be used to steer a quantum system toward a target state in a time-minimum way, reaching
thus the quantum speed limit. For the example of superconducting qubits interacting via
a transmission line cavity, QOCT has been used to identify the quantum speed limit not
only for a single gate but for a complete universal set, i.e., several local plus one entan-
gling gate, and not only for a single choice of system parameters (qubit frequencies and
anharmonicities and cavity frequency) but for the complete design landscape [257]. This
comprehensive numerical study was made possible by combining several advances in the
method development of QOCT, including an optimization functional targeting an arbi-
trary perfect entangler [254, 610] and a hybrid two-step optimization approach where the
result of a gradient-free optimization becomes the initial guess for a gradient-based op-
timization [258]. Optimization towards an arbitrary perfect entangler has also allowed
to identify the natural entangling gate for two qubits coupled via a cavity [257], while
two-step optimization combining gradient-free and gradient-based methods has more re-
cently been employed to enhance the beamsplitter interaction between qubits encoded in
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bosonic modes [60]. QOCT has been used to derive gates that are robust to secular ampli-
tude drifts [546]. Robustness of two-qubit gates can also be achieved by interleaving with
optimized single-qubit rotations which suppress logical and leakage errors [518, 519]. An-
other route towards robust gates are composite pulses. For example, it is possible to derive
composite pulses that implement single-qubit gates, such as NOT, designed analytically
or numerically [202], that are robust against both detuning and scaling of the control field.
The design of broadband or narrowband excitation pulses was also studied, for example
using polychromatic pulse trains [303]. The generation of NOT and CNOT gates with dif-
ferent optimization methods has been compared [491]. Optimization of gate operation is
also useful in the context of entanglement purification [476].

Specific gate transformations have also been optimized for qudits, for example encoded
in atomic [443] or molecular spins [122]. Another generalization beyond targeting specific
gates is to optimize for a continuous family of gates [475, 507], for example as a function
of continuous system or gate parameters. The control landscape for phase shift gates has
been found to be free of traps [594, 595].

Optimization of quantum channels is formally closely related to gate optimization, and
the cheapest channel that produces prescribed output states for a given set of input states
has been determined [210]. Quantum secure data transfer has been optimized [604], in
which the transmitted data is encoded in the pulse shape of a single optical qubit and high
fidelity of the encoding and the receiving processes is implemented with appropriate driv-
ing pulses. A unitary transformation of an extended receiver as a tool for quantum state
restoring has been studied via optimal transfer of quantum states via spin chains [222].

5.3.3 Quantum algorithms
Quantum algorithms benefit from QOCT in a generic way - gates optimized by quantum
control have superior fidelity and thus bring real algorithmic performance closer to the
ideal one. Application of QOCT can go a lot further, however. On the extreme end, adi-
abatic quantum computing and quantum annealing forgo the notion of gates completely
and focus on the preparation of complex ground states using a slow annealing schedule.
QOCT has been shown to be able to find optimal annealing schedules [91, 414, 415]. In
some cases, these are based on the Pontryagin Maximum Principle [91, 587] and may in-
clude two independent controls [227].

Related to quantum annealing is the Quantum Approximate Optimization Algorithm
(QAOA) [220] which has already been touched upon in Sect. 4.2. For gate based quan-
tum computers, QAOA takes the Trotterized version of adiabatic quantum computing
and then uses a classical optimizer in order to improve the Trotter parameters. The cor-
responding crossover between adiabatic quantum computing to QAOA has been consid-
ered [91, 587].

The relation of QAOA and other variational algorithms [125] to QOCT is a lot closer,
though [141, 276, 639]. These algorithms employ parametrized quantum circuits, i.e.,
quantum algorithms whose gates depend on continuous parameters that then are opti-
mized by an external classical algorithm in order to extremalize the variational cost func-
tion [403, 544, 639, 660]. In other words, these algorithms use classical closed loop op-
timal control, choosing the decomposition of a unitary evolution into a set of quantum
gates as their waveform parameterization [403]. Note that this argument holds in two ver-
sions: In the case of variational algorithms for many-body physics, one aims at a set of
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controls that suffices to match the desired reachable set of states to then sample from.
In QAOA, one is interested in maximizing the overlap with computational basis states
of minimum cost function and includes the unitary generated by cost function itself into
the control set. It is thus a natural idea to replace the gate parameterization of these algo-
rithms by continuous parameterizations. Specific structures of quantum algorithms can
be identified for quantum optimization which is a key aspect in the development of new
algorithms [416]. A novel class of variational quantum eigensolvers is obtained by combin-
ing optimization and measurement processes, leading to advantages in terms of resources
and times [224]. Insight from QOCT on overcoming barren plateaus may help overcome
convergence problems in quantum machine learning [97, 292] or in variational quantum
algorithms [361]. A QOCT landscape analysis has been applied to the combinatorial opti-
mization problem MaxCut [370]. Quantum combinatorial optimization without classical
optimization can be based on another class of strategies well-known from QOCT, those
inspired by Lyapunov control [404]. Grover’s quantum search problem can be mapped to
a time-optimal control problem, and then described through the Pontryagin Maximum
Principle [387]. Furthermore, QOCT has been used to optimize drives in quantum algo-
rithms such as QAOA [440] and quantum simulation, for example of a chiral effective-field
theory [291] and of an extended Bose-Hubbard model [317].

5.3.4 Quantum compilation and circuit synthesis
A first example for the usefulness of QOCT to quantum compilation is given by the
Deutsch-Jozsa algorithm which has been compiled on both a superconducting-qubit-
based and a spin-chain-based processor using control optimization algorithms together
with QuTiP [377]. Application of QOCT to quantum compilation and circuit synthesis
follows similar lines as that for quantum algorithms outlined above. Indeed, the two ques-
tions are closely related since variational optimization is often implemented via Trotteri-
zation of a desired unitary, thus representing an important example for quantum compi-
lation. The corresponding gate sequences can be subjected to optimization, for example
to minimize the depth of the circuit on noisy quantum processors [333] or to reduce the
approximation error [409]. Use of variational quantum algorithms, instead of more tra-
ditional optimization tools, in order to learn pulse parameters of a quantum circuit, has
recently been termed variational quantum pulse learning [383]. In order to scale to large
circuits, a block-by-block optimization framework has been suggested [629]. QOCT and
trajectory learning can be combined to map the space of potential parameter values of
a quantum circuit to the control space and thus obtain continuous classes of gates [475].
The same idea can be applied to Hamiltonian simulation [317]. When the gates in a circuit
are parametrized by continuous parameters, optimization may be hampered by the non-
Euclidean nature of the parameter space and proper evaluation of the gradient becomes
important, for example via natural gradients [640]. This problem is reminiscent of the best
way to approximate the gradient in QOCT discussed in Sect. 3.1.2 or the observation that
estimating the expectation values in hybrid classical-quantum optimization determines
the convergences properties of the latter [550], highlighting the importance of knowledge
transfer between different subfields.

5.3.5 System identification and calibration
The identification of parameters that characterize the dynamics of a quantum system is
a fundamental prerequisite for controlling its evolution and realizing concrete tasks in
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quantum technologies with sufficient precision. It is of particular importance for open-
loop configurations in which the control protocols are designed only based on the sys-
tem model, without any experimental feedback. System identification aims to estimate
the value of one or several parameters of the system Hamiltonian. One option consists in
building a database from the time evolution of an ensemble of dynamical systems driven
by a specific field, which is designed by optimal control theory to maximize the efficiency
of the recognition process [34]. Alternatively, one can use the shape of the driving field to
maximize the distinguishability of two states that evolve under slightly different Hamil-
tonians [59, 480]. System identification is possible even in the presence of large control
perturbations [238]. When using the quantum Fisher information as figure of merit for es-
timating the value of an unknown parameter of the Hamiltonian [384], upper bounds for
time-dependent Hamiltonians have been established [454]. A variational approach com-
bined with shortcuts to adiabaticity has been used to determine the initial states and the
optimal controls that maximize the quantum Fisher information [636]. Multiple parame-
ters in noisy quantum circuits can be estimated based on optimal control and reinforce-
ment learning [631], avoiding separate optimizations for each parameter.

When the environment of the system changes, the parameters of the Hamiltonian must
be recalibrated experimentally as quickly as possible. Different protocols have been sug-
gested to this end. Leveraging concepts from machine learning and optimization, the
control parameters of a 53 qubit quantum processor can be calibrated much faster than
the system drift [337]. Automated tune-up is possible for any arrangement of coupled
qubits [426]. Ultimately, for practical device operation, system calibration and control
should be unified [621].

5.3.6 Quantum thermodynamics
Control has been an inherent part of thermodynamics. Optimization of the efficiency and
power of heat engines has shaped the field. Originally applied to steam engines, quan-
tum thermodynamics addresses the issue of miniaturising thermal devices. How small
can a quantum heat engine be? What is the optimal performance? Is there a quantum
advantage? See [74, 432, 459, 591] for a recent overview. Quantum control and quantum
thermodynamics are closely interlinked:

(a) Thermodynamical consistency restricts the structure of the open system control
GKLS master equation [23, 167, 168, 171, 602].

(b) Certain control task require a change of entropy, such as reset or
thermalization [56, 58, 172, 173, 230, 564, 565]. Tasks that do not require a change of
entropy may still benefit from it, for example by reaching the target while actively
cooling [320, 419].

(c) Quantum control can be used to optimize the operation cycle of heat engines and
refrigerators [173, 216, 327, 632].

(d) Experimental realizations of quantum information control and quantum heat
devices share common platforms [274, 336, 374, 446, 500, 601].

(e) Quantum thermodynamics supplies a resource theory framework addressing the
issue of the cost of the control [394].

Optimal control theory requires a dynamical equation of motion connecting the input
and the target state. For open quantum systems the theory is based on the GKLS master
equation, cf. Sect. 2. For realistic quantum devices it is almost impossible to derive from
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first principle these equations. As a result, an empirical approach for developing quan-
tum simulations prevails, employing the GKLS structure and fitting the Lindblad jump
operators and kinetic coefficients to the scenario. Quantum thermodynamics imposes ad-
ditional conditions on the admissible dynamical equations. An underlying assumption is
that the dynamics of the system and its surrounding environment is unitary. This assump-
tion is shared with the theory of open quantum systems [348, 388]. Thermodynamics then
imposes additional restrictions on the reduced dynamical map of the controlled system �.
The fixed point of this map should be a thermal equilibrium state with the temperature
dictated by the environment. Another idealization is imposed by requiring an isothermal
partition between system and environment. In this partition no energy is accumulated
on the interface. This assumption reflects the intuition that the quantum device is rela-
tively isolated from the environment allowing local measurement of its observables. It is
also consistent with a derivation of the master equation based on the weak coupling limit
and the secular approximation [123, 175, 509, 573]. In addition, strict energy conservation
implies a dynamical time-translation symmetry: The dynamical map of the system com-
mutes with the free unitary map U , i.e., [�,U ] = 0 [167, 304]. Time-translation symmetry
implies that the environment cannot serve as a clock for the system [171]. From a control
prospective, thermodynamics restricts the admissible dynamical equations of motion; the
dissipative and unitary parts are linked. For slow external driving in the adiabatic limit, the
free evolution generator composed from the commutator of the instantaneous Hamilto-
nian and the dissipative generators commute [10, 23, 167]. This implies that coherence in
the energy frame and population evolve independently.

Rapid control typically described by a time-dependent Hamiltonian requires a non-
adiabatic treatment of the dissipative map [168]. Time translation symmetry imposes the
condition that the free unitary map and the dissipative map commute. A procedure to ob-
tain the generators of the GKLS master equation has been developed based on the inertial
theorem [166]. To date, this procedure has been obtained only for closed form solution of
the free dynamics [172, 173].

Controlling the Hamiltonian directly influences the unitary evolution accompanied by
an indirect control of the dissipation. This dependency influences the rules for open sys-
tem controllability presented in Sect. 2. Under these conditions, it can be inferred that
systems that are unitary controllable are state to state controllable [173, 190]. An open
problem are the controllability criteria for dynamical maps �f under thermodynamically
consistent dissipation.

Entropy-changing transformations are a hallmark of quantum thermodynamical con-
trol tasks. An elementary and universal task is the reset transformation. The control ob-
jective is a fast reset to a desired state with high fidelity [56, 58, 230, 564, 565]. The fi-
delity is restricted by the third law of thermodynamics: Very high fidelity requires infi-
nite resources [555]. The speed of the reset dynamical map is related to the rate of trans-
fer of entropy to the environment. Reset and cooling are similar tasks for optimization
of entropy-changing transformations. Cooling via a delta kick protocol has been pro-
posed [208] where the control is achieved by switching on and off a noise source. These
reset and cooling mechanisms are in line with the reachable set when the interaction with
the environment is controllable, cf. Sect. 2.2.2. A related control task is to speed up equili-
bration. A control strategy based on the inertial theorem was developed [172, 173]. Speed-
up is obtained by maintaining the controlled system as far from equilibrium as possible
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by generating significant coherence. The final step is to rotate this coherence back to pop-
ulation. The speedup comes with a cost, extra work is required which is dissipated to the
environment producing entropy [169].

Preserving entropy or, minimizing decoherence is another legitimate control task. When
considering protecting quantum gates from dissipation, active cooling is possible while
performing the quantum operation [320]. An alternative strategy is to formulate the con-
trol in a decoherence free subspace [298, 428, 624], or in a path independent control
[398, 399].

A favored subject of QOCT in quantum thermodynamics are heat engines—devices
that convert heat to work or operate in reverse as refrigerators [432]. These engines can be
classified as autonomous, continuously driven, and discrete [74]. QOCT for heat engines
has been almost exclusively applied to the discrete Carnot and Otto four stroke cycles.
Typical optimization targets are maximum efficiency, maximum power, or minimal fluc-
tuations [217, 582, 641]. A trade-off has been identified between these tasks. Optimizing
power requires reducing the engine’s cycle period. Typically, this protocol is accompanied
by an increase in dissipation and therefore reduced efficiency.

In small quantum engines fluctuations become important [90, 279, 351, 390, 420], di-
verging fluctuations make the device useless. Actively controlling fluctuations comes at
the expense of either efficiency or power. In view of miniaturizing quantum devices the
issue of fluctuation will become more important. Active control to reduce fluctuations will
become a legitimate goal [521].

The Otto cycle has been a popular target for optimization. The cycle is composed of
two unitary branches and two thermalization branches, thus separating the controlled
segment from the dissipation. The unitary branches are characterized by rescaling the
Hamiltonian. Whenever the drift Hamiltonian does not commute with the control opera-
tors rapid protocols will generate coherence. Generating coherence from an initial thermal
state has a cost in additional work [319]. If coherence is present at the terminus of the uni-
tary stroke, the extra work will be dissipated in the thermalization strokes reducing the
engine’s efficiency. This phenomena is termed quantum friction [110, 223, 302, 347, 420,
488]. The friction loss has been the motivation for optimizing the protocol for the uni-
tary branches [302, 504, 527, 542]. Some protocols employ shortcuts to adiabaticity, cf.
Sect. 4.3, since at the terminus of the stroke no coherence is present [1, 24, 183, 208]. Ex-
amining these protocols, coherence is generated but is transient. There is a dispute if to
associate a cost to this coherence [2, 334, 569]. To overcome this cost, control methods
were applied, for example a combination of dynamic programming, machine learning and
STA [216, 327].

Optimizing the Carnot cycle requires control of the isothermal strokes of the en-
gine [165, 169]. In this stroke, the Hamiltonian is varying while the working medium is
in contact with the thermal bath. The introduction of the non-adiabatic Master equa-
tion [170] enabled to study the cycle and its optimization. The optimized quantum Carnot
cycle was found to possess the typical trade-off between power and efficiency [169]. Speed-
ing up the thermalization resulted in an increase in dissipation. These studies were based
on the inertial approach allowing a quasi-analytic solution [166]. In the weak dissipation
limit for slow driving, a geometric optimization approach was employed for a general en-
gine cycle [5, 400]. The basic idea is to minimize a distance metric of the cycle from the
equilibrium state. This approach has also been employed to minimize dissipation [180].
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Experimental realizations of quantum heat engines employ the typical setups developed
for quantum information processing, such as ion traps [297, 500, 601], cold atoms [90], NV
centers [336], and Josephson devices [274, 446, 531], including a realization of an absorp-
tion refrigerator [266]. These studies demonstrate that quantum thermodynamic princi-
ples are able to address devices ranging from macroscopic bulk engines to single qubit
operated devices.

In quantum devices accounting for the physical resources required to achieve the control
task is a fundamental issue. Thermodynamics as a theory has been constructed to address
this issue. Quantum thermodynamics is a confluence of quantum information, quantum
statistical mechanics and quantum dynamics. The theory therefore has the capability to
assess the requirements for quantum control. In optimal control theory the energetic cost
is typically incorporated by employing a Lagrange parameter. The invested energy in the
control is closely associated with the quantum speed limit, cf. Sect. 2.2.6. The energetic
cost in quantum thermodynamics is reflected by the first law [536]; and the cost of quan-
tum gates has been analyzed [9, 179]. A different viewpoint is accounting for irreversible
entropy generation required for control [320, 334]. The real resource for control is co-
herence. Under a unitary map coherence is preserved. If we incorporate the system and
controller in a super-quantum system, coherence is transferred from the controller to the
system. In the semiclassical limit the controller is described by a time-dependent field.
This framework supports the viewpoint that coherence is a resource [545]. A quantum
signature in heat engines is the conversion of coherence to useful work [234, 575].

5.4 Goals and challenges for advancing the application of QOCT
The impressive progress in the application of QOCT to the various hardware platforms
and control tasks paves the way to further extending the versatility of the QOCT toolbox.
This requires, at the same time, significant advances from control hardware all the way to
new conceptual solutions. A key challenge is hardware development of a scalable control
architecture; a microarchitecture for efficient instruction-driven pulse synthesis has just
been brought forward [329]. Another key challenge is a better integration of control and
calibration. For example, a requirement on future control electronics is a powerful internal
optimization logic that allows for fast pulse calibration. At the same time, better quantum
engineering in the sense of isolating and protecting quantum systems from external noise
will continue to be an active field for control and optimization.

Further progress is also required in basic control tasks, in particular those that cannot be
achieved with purely coherent control. For example, a prerequisite for a quantum device
is cooling or reset to a purified initial state. Control and optimization of these processes
carries a substantial benefit and this subject will continue to be a major research topic in
the near future. Similarly, a quantum refrigerator removing entropy from the sensing or
computation part supplying cold ancillas is likely part of future technology [145, 250, 532,
556].

At the more conceptual level, QOCT in open quantum systems has so far largely
been based on a Markovian framework to supply the dynamical equations of motion,
cf. Sect. 2.2.3. An open problem is a thermodynamically consistent theory for non-
Markovian, driven dynamical systems [171] that can be combined with QOCT, i.e., with
arbitrarily fast drives.
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6 Long-term vision for quantum optimal control in quantum technologies
The vision for the future of quantum technologies is for quantum devices to provide ad-
vantages with respect to classical devices in a broad range of applications. In this context,
the mission of quantum optimal control methods is to make it possible for quantum tech-
nological devices to reach and maintain their best performance outside of the lab, under
real-world conditions.

This concerns the operation of quantum devices at many levels. Resource management
is a crucial element in quantum engineering. In the case of quantum computing, for in-
stance, the aims of future QOCT encompass almost the whole software stack underneath
high-level programming languages. This ranges from expanding the library of variational
and optimisation-based algorithms such as QAOA and VQE to orchestrating the distri-
bution of computational tasks between classical and quantum co-processors, and from
compiling quantum circuits for reduced complexity of the required gate sequences to en-
hancing the effectiveness of standard quantum control tasks such as pulse shaping for
hardware optimisation.

Several of these goals are essential also for the deployment of protocols for quantum
communication and quantum sensing. To fulfil the needs and realise the potential of all
QT application areas, future QOCT will aim at providing calibration of the control se-
quences to the specific parameters of individual devices, as well as recalibration for adapt-
ing to parameter drifts and other systematic disturbances, in a fully automated manner
not requiring constant specialist intervention.

To this end, QOCT aims not only at building on efficient and reliable modelling and
system identification, but also at consistently improving the models it relies on based on
the gathered data. This will require to intensify the already increasingly pervasive use of
machine learning techniques. The final goal will be the achievement of general-purpose,
specifically adaptable tools — a universal toolbox ideally to be automatically tailored to
the particular physical configuration of any given quantum device to enable attainment
of the best possible performance. Along the process, this will include the ability to pre-
scribe the most suitable requirements for the underlying quantum hardware, leading to a
systematisation of co-design, and ultimately to a true quantum systems theory.

Finally, another key aspect in the development of quantum technologies through the
large-scale application of quantum control techniques will be the training of engineers,
researchers, and students in this rapidly evolving field both from the experimental and
theoretical points of view. Many initiatives are currently proposed, in Europe and else-
where, to improve the quantum workforce education. For the quantum control part of
that education, our roadmap provides an overview from which essential components of
the future common knowledge framework can be drawn.

Novel challenges will keep the field alive and vibrant. At the same time, it is an important
task for the quantum control community to make its tools accessible to a wide audience
with different levels of technical skills. This is key to ensuring the long-term impact of
quantum optimal control, which is to become the underlying basis for any quantum tech-
nology application naturally embedded into each and every quantum device.

7 Conclusions
We have reviewed the current state of the art in quantum optimal control as relevant to
the fast evolving field of quantum technologies and summarized the most pressing open
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questions, updating an earlier roadmap [249]. When inspecting the global perspective that
our overview provides, two observations are striking:

(i) QOCT has significantly matured over the past few years and is about to become
a routine tool for laboratory quantum technologies. The next step will be to push this
development towards even more versatility and user-friendliness, to allow for integration
in practical quantum devices at the application-ready level. The need for this development
has already been realized, and more traditional academic research settings are now being
complemented by industrial development.

(ii) There has been a lot of cross-fertilization with neighbouring fields, with machine
learning in both their classical and quantum versions as prominent example, but there
is plenty of room for more. As the quantum technologies spread out towards engineer-
ing and computer science, there is, at the same time, a further need to unify the various
languages, or rather dialects, that capture the very same foundational concepts. Take the
example of the figure of merit — it is the target functional in QOCT, the fidelity in system
and process characterization, and the cost in machine learning and the question about
the resources needed for their estimation. A global overview like the one we are present-
ing here will hopefully serve to identify commonalities and thus prepare the ground for
further cross-fertilization.

Such cross-fertilization suggests that the long-term future of quantum optimal control
is to be an integral part of the larger technical foundations of the quantum technologies.
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