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Abstract

For a one-dimensional (1D) waveguide coupled to two or three qubits, we show that
the photon-photon correlations have a wide variety of behavior, with structure that
depends sensitively on the frequency and on the qubit-qubit separation L. We study
the correlations by calculating the second-order correlation function g,(t) in which
the interference among the photons multiply scattered from the qubits causes rich
structure. In one case, for example, transmitted and reflected photons are both
bunched initially, but then become strongly anti-bunched for a long time interval. We
first calculate the correlation function g»(t) including non-Markovian effects and then
show that a much simpler Markovian treatment, which can be solved analytically, is
accurate for small qubit separation. As a result, the non-classical properties of
microwaves in a 1D waveguide coupled to many superconducting qubits with
experimentally accessible separation L could be readily explored with our approach.

Keywords: quantum electrodynamics; quantum photonics; circuit QED;
non-classical light

1 Introduction

One-dimensional (1D) waveguide-QED systems are currently generating increasing in-
terest - systems in which photons confined in one-dimension interact with one or several
two-level systems (qubits). Part of the motivation comes from the striking quantum op-
tics effects that can be seen in these strongly coupled systems [1-19]. Another motivat-
ing factor is the promise of waveguide-QED systems for quantum information processing
[20-27]. Finally, a key driver of the interest in waveguide-QED systems is the tremendous
experimental progress that has been made recently in a number of systems [28—41]. Per-
haps the leading system for waveguide-QED investigations and applications is an open
microwave transmission line coupled to superconducting qubits [34—37, 42, 43]. While
much of the work to date has focused on systems in which there is a single qubit, and there
is a growing literature on the case of two qubits [10, 17,19, 41, 44—49], an important future
direction for both fundamental effects and possible applications is to study a waveguide
coupled to multiple (or many) qubits. As a step in this direction, here we compare and
contrast results for one, two, and three qubits coupled to a waveguide [see Figure 1(a)],
focusing in particular on the generation of photon-photon correlations.

Correlations between photons are a key signature of non-classical light. They are of-
ten characterized by the second-order correlation function (photon-photon correlation
function) g,(¢) where ¢ is the observation time between the two photons (see below for
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Figure 1 Quantum beats in three qubit system. (a) Schematic diagram of the 1D waveguide system
coupled to 3 identical qubits with separation L. (b) Comparison between the Markovian approximation (solid
blue curve) and full numerical results (red dashed line) for g,(t) of reflected photons with N =3, koL = 1/2,
T=50%,and I'" =0.

precise definition) [50]. The uncorrelated, classical value is g, = 1 (obtained, for example,
for a coherent state). Bunching of photons, g > 1, often occurs due to the bosonic na-
ture of photons but anti-bunching, g <1, also occurs [50]. In recent experiments, g, (¢) of
microwave photons coupled to superconducting qubits was measured, and both bunch-
ing and anti-bunching were observed [38, 51]. In a multi-qubit situation, one expects to
have interference between the various scattered partial waves; interference effects in the
photon-photon correlations g (¢) are known as ‘quantum beats’ [52].

In this paper, we first present our method of calculation, which exploits a bosonic rep-
resentation of the qubits in the rotating wave approximation. We obtain a complicated
yet analytic result for g»(¢) in the Markovian limit and show, by comparison with the full
numerical result, that it is adequate for small, experimentally accessible separations be-
tween the qubits. In presenting results, we focus on an off-resonant case in which single
photons have equal probability of being transmitted or reflected, and take the separation
between qubits, denoted L, to be either X¢/4 or 1¢/8 where A, is the wavelength of a pho-
ton at the qubit resonant frequency. We find several striking features in gy(¢): First, for
L = 1o/4, the transmitted photons are largely bunched for all times and become more
strongly bunched as the number of qubits increases, while the reflected photons oscillate
between strong bunching and anti-bunching, showing particularly strong quantum beats
in the three qubit case. Second, for L = 1¢/8, we find the surprising situation that both
transmitted and reflected photons are bunched at ¢ = 0 but then become anti-bunched for
a large time interval. This suggests that the photons in this case become organized into

bursts.

2 Method
The Hamiltonian describing N identical qubits coupled to a 1D waveguide [see Figure 1(a)]

is, in the rotating wave approximation,

al d d
Hy = h(wo —il"/2) Y oo} —ihc / dx [a;(x)d—xaR(x) - a{(x)d—xaL(x)}

i=1

N
+ Z Z hV/ dx8(x — li)[aZ(x)ai_ +aq(x)o; ], 1)

i=1 a=L,R


http://www.epjquantumtechnology.com/content/1/1/3

Fang et al. EPJ Quantum Technology 2014, 1:3 Page3of 13
http://www.epjquantumtechnology.com/content/1/1/3

where 0" are the raising/lowering operators for ith qubit, J; is its position which is fixed by
L = [;;; — I;, wy is the transition frequency of the qubit, and I' is the decay rate to channels
other than the waveguide. The spontaneous decay rate to the waveguide continuum is
given by ' = 2V?/c. In the waveguide QED context, ‘strong coupling’ signifies that the
spontaneous decay rate to the waveguide is much faster than the decay to all other modes,
namely that the Purcell factor is large, P=T"/T" > 1.

To find g,(¢), we first obtain the two-photon eigenstate of Hy. As discussed in Ref. [17],
it is convenient to use a bosonic representation of the qubits that includes an on-site in-

teraction,

ud .o
H=Hy+V, V:EZdi‘di(d}d,»—l). 2)

i=1

The raising/lowering operators o~ in Hy are replaced by the bosonic creation/annihilation
operators d; and d, respectively. One then takes U/ — oo in the end to project out occu-
pations greater than 1. In this bosonic representation, the U = 0 case corresponds to a
non-interacting Hamiltonian and can readily be solved. In terms of the non-interacting
wavefunctions and Green functions, a formal expression for the two-photon ‘interacting’
wavefunction in the &/ — oo limit can be obtained; this then is the solution to the waveg-
uide QED problem in which we are interested. Finally, the two-photon wavefunction to-
gether with the one-photon wavefunction yields g,(¢) for a weak incident coherent state.
More details of this procedure are given in the appendices.

The Markovian approximation allows a considerable simplification of the final re-
sult [17]. In the present context, the Markovian approximation consists of an approximate
treatment of certain interference terms valid for small separation between the qubits. In
the formal expression for the two-photon wavefunction discussed above, there is an inte-
gral over the non-interacting wavefunctions which generally must be performed numer-
ically. The non-interacting wavefunctions naturally involve interference factors e’ that
make this integral difficult. However, if the qubits are close enough, k may be replaced by
ko = wo/c, allowing the integral to be performed analytically using contour integration (the
analytic expression of the final result is lengthy, so we just give the steps of the derivation
in the appendices as well as the N = 2 result as an example). All of the results in this paper
are obtained in the regime where this is valid. An example of the checks we have made
is shown in Figure 1(b): the full numerical result is in good agreement with that from the
small separation approximation.

We compare the one, two, and three qubit cases: N = 1,2, or 3. In order to make a fair
comparison, the typical transmission through the system in the three cases should be the
same; otherwise, the lower probability of finding a photon in one case compared to another
will affect g,. We therefore consider off-resonance cases (i.e. w # wp where w is the in-
coming photon frequency) in which the single-photon transmission probability T is fixed.
Because the single-photon transmission spectrum depends on the number of qubits, the
frequency used is different in the three cases N = 1-3. Due to the asymmetry of the single-
photon transmission spectrum in certain cases, the criterion used throughout this work
is to pick up the frequency closest to wy so that g>(0) is the largest.

In the following results, we consider N = 1,2, or 3; koL = /4 or w/2;and T = 50%. The
single photon transmission curves used to choose the photon frequency w are shown in
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Figure 2 Transmission spectra near the qubit resonant frequency (@ = 100I") for an incident
single-photon Fock state in the five situations studied here.
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Figure 3 Second-order correlation function, g(t), calculated with a weak incident coherent state for
spacing koL = 7 /2. First row is for transmitted photons, second row for reflected photons. The columns
correspond to N= 1,2, or 3 qubits coupled to the waveguide. The photon frequency is chosen so that

T =50%. The result for uncorrelated photons, g, = 1, is marked (dashed line) for comparison. In the three qubit
case, note the strong bunching in transmission [panel (c)] and striking quantum beats in reflection [panel (f)].

Figure 2. We use I" as our unit of frequency, take wy = 100I", and consider the lossless case,
I"=0.

3 Results

The results for a single qubit, shown in Figure 3 panels (a) and (d), provide a point of
comparison for the two and three qubit cases discussed below; throughout we consider the
response to an incident weak coherent state. Non-classical light in a waveguide produced
by a single qubit has been extensively investigated theoretically [1, 2, 4—6, 8, 11-13] as
well as experimentally with microwave photons [38]. We see that for our chosen detuning
such that T' = 50%, the transmitted field shows bunching while the reflected field is anti-
bunched. The correlation decays to its classical value (namely, 1) quickly and with little
structure. For this reason the single value g»(0) is a good indication of the nature of the
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Figure 4 Second-order correlation function, g(t), calculated with a weak incident coherent state for
spacing koL = 7 /4. First row is for transmitted photons, second row for reflected photons. The columns
correspond to N= 1,2, or 3 qubits coupled to the waveguide. The photon frequency is chosen so that

T =50%. The result for uncorrelated photons, g, = 1, is marked (dashed line) for comparison. In the three
qubit case, note the strong bunching in reflection [panel (f)] and long anti-bunching interval after the initial
bunching in transmission [panel (c)].

correlations overall. Note that in panel (d), g2(0) = 0 due to the inability of a single excited
qubit to release two photons at the same time.

For N =2 or 3, we start by considering the case koL = /2, in which case the qubits are
separated by Ao/4; the results are shown in Figure 3. The presence of quantum beats com-
ing from interference among the partial waves scattered by the qubits is clear, especially
for three qubits. In the transmitted wave, photon bunching is considerably enhanced in
magnitude and extends for a longer time (compared to a single qubit). In reflection, g»(¢)
develops a striking oscillation between strongly bunched and anti-bunched [panel (f)].
Such behavior in g, suggests that the photons become organized periodically in time and
space.

Turning now to the case koL = 7 /4 (a separation of 1,/8), we see in Figure 4 that the
behavior is completely different. First, the quantum beats largely disappear in both trans-
mission and reflection. Instead, for N = 3 we see that both the reflected and transmitted
photons are initially bunched, in the reflected case quite strongly bunched. The initial
bunching is followed in both cases by anti-bunching. This anti-bunching is dramatic for
the transmitted photons: strong anti-bunching persists for a time interval of several tens of
I'! (the natural unit of time in our problem). Initial bunching followed by a long interval
of anti-bunching suggests that the photons are organized into bursts.

The different behavior for koL = 7 /4 compared to koL = /2 can be traced to a difference
in the structure of the poles of the single photon Green function (see, e.g., the discussion in
Ref. [17]). For instance in the N = 2 cases, for koL = 77/2 there are two dominant poles that
have the same decay rate but different real frequencies, leading to maximum interference
effects between those two processes. In contrast, for koL = /4, the poles have very differ-
ent decay rates; the one decaying most rapidly yields the sharp initial bunching, while the
one with the slowest decay produces the long time anti-bunching.

To study how the correlations depend on the frequency of the photons, we show the ini-
tial correlation, g»(0), in Figures 5 and 6. Because of the oscillating structure in g»(¢£) when
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Figure 5 The initial second-order correlation, g»(0) (on a logarithmic scale), calculated with a weak
incident coherent state as a function of the single-photon transmission probability, T, for different
numbers of qubits. The first (second) row is for koL = 7r/2 (17 /4); the first (second) column is for transmitted
(reflected) photons. For reflected photons with N=1, g»(0) = 0 for all T and hence is not plotted. For a wide
range of parameters, both transmitted and reflected photons are bunched.
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Figure 6 The initial second-order correlation, g,(0) (on a logarithmic scale), calculated with a weak
incident coherent state as a function of the frequency w near the qubit resonant frequency

(@wo = 100T) for different numbers of qubits. The first (second) row is for koL = 77/2 (17/4); the first (second)
column is for transmitted (reflected) photons. The black, dashed line indicates the classical value (ie, g, = 1).
For reflected photons with N =1, g>(0) = 0 for all @ and hence is not plotted. Note that as for the
single-photon transmission in Fig. 2, g>(0) is symmetric about @y for koL = 7r/2 but asymmetric in the

koL = 1 /4 case. For a wide range of parameters, both transmitted and reflected photons are bunched.
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there are multiple qubits, g,(0) is not necessarily a good indication of the behavior at later
times; nevertheless, the degree of initial bunching or anti-bunching is a physically impor-
tant and measurable quantity. For a fair comparison between the N = 1,2, and 3 cases, we
first plot g,(0) as a function of the single photon transmission, T’; see Figure 5. To match
the desired T with an off-resonant photon frequency we follow the following procedure:
Starting near the resonant frequency wo (where T' = 0.1%), we scan toward smaller fre-
quencies until 7' = 99.9% is reached. We then use frequencies within the scanned range
to calculate g»(0) for both transmission and reflection as a function of T at koL = 7 /2
and 77 /4. Another way of presenting the data is to simply plot g»(0) directly as a function
of frequency, as in Figure 6. By comparing with Figure 2, we see that the method above for
selecting the range of frequencies to use in making Figure 5 selects the range with largest
22(0) for a given value of T Finally, note that for reflection from one qubit, g>(0) = 0 in all
cases, as mentioned above, and so is not plotted in panels (b) and (d) of both figures.

Several general trends are clear from Figure 5. Bunching is favored over anti-bunching
for both N = 2 and 3. As the single photon transmission increases, g»(0) decreases for
transmission but generally increases for reflection. Opposite trends for transmission and
reflection are natural based on the simple argument that incoming uncorrelated pho-
tons divide between transmitted and reflected ones so that bunching in one implies anti-
bunching in the other. Clearly, this simple argument does not apply here; indeed, it is
striking and surprising that for a broad range of parameters both transmitted and reflected
photons are bunched.

Trends as the number of qubits increases from 1 to 3 are also evident in Figure 5.
In panels (a) and (d) the trend is monotonic: For koL = 7 /4, the reflected photons be-
come tremendously bunched [panel (d)], whereas for koL = /2 and transmitted photons
[panel (a)], the curves cross at the same point indicating that the trend changes sign-
increasing bunching as N increases for T' > 0.25 but decreasing bunching for smaller T
In the other two cases, panels (b) and (c), the trend as N increases from 1 to 3 is not mono-
tonic. For koL =7 /2 and T < 0.65, the reflected photons switch from being anti-bunched
to bunched to anti-bunched as N changes from 1 to 3, but show increasing bunching for
larger T [panel (b)]. Finally, in panel (c) [koL = /4 and transmitted photons], there is
a monotonic trend toward less bunching for 7" < 0.25 but non-monotonic behavior for
larger transmission.

From the explicit dependence on frequency shown in Figure 6, we see that bunching
is generally favored even outside the frequency range chosen in Figure 5 (which in the
koL = 7 /4 case is quite small (<I")). Comparing to the single photon transmission spec-
trum (see Figure 2), we point out two features: First, in the koL = 7 /4 case, g>(0) shows the
asymmetry with respect to wy [panel (c) and (d)] seen in T'(w); this again can be traced to
the asymmetric pole structure of the Green functions mentioned above. g,(0) is larger (for
reflection) and varies more rapidly on the red-detuned side (w < wy), which explains why
we chose the frequency range use in Figure 5. In fact, on the blue-detuned side (v > wy)
the structure in g (t) is less dramatic, and it returns to 1 faster (data not shown). Second, as
also shown in Figure 5, the peaks of g,(0) for transmission are located where T = 0, while
the peaks of reflected g,(0) are located where T = 1. Note that the leftmost peak of N = 3
in Figure 6(d) is completely due to the small denominator (R =1 - T & 0) at that point.
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4 Conclusion
In this work, we have calculated the second-order correlation function, g,(t), for photons
in a one-dimensional waveguide interacting with one, two or three qubits. By taking the
separation between the qubits small, we are able to make a Markovian approximation
which then allows an analytic solution. The small separation and small N on which we fo-
cus means that these systems are within the range of current experimental capability [19].
The interference among the partial waves scattered from the qubits leads to a variety
of behavior in g, that is sensitive to both the separation between the qubits (L) and the
frequency of the incoming photons. As examples of the rich variety accessible in these
waveguide QED structures, we mention three here in conclusion: (i) For a wide range of
parameters, both transmitted and reflected photons are initially bunched. (ii) For reflected
photons with N = 3 and koL = 77/2, g,(t) oscillates between bunching and anti-bunching
[Figure 3(f)]. (iii) For transmitted photons with N = 3 and koL = 7 /4, initial strong bunch-
ing is followed by a long (i.e. ~ 30I'!) interval of antibunching [Figure 4(c)]. These last
two observations suggest that some nascent organization of the photons may be occur-
ring, providing an interesting direction for future research.

Appendix 1: Two-photon interacting scattering eigenstate
The single photon eigenstate |¢;(k)), with & = L, R is by definition the eigenstate of Hy,
i.e., Hol$1(k))o = hck|¢1(k))e, where

N
| (K)), = [ / dx (¢ (k, x)ag (x) + ¢f (k,x)a] (%)) + ) e (k)glf:| 0), 3)
i=1
eikx N-1
g (k,x) = N <9(11 —x)+ 21: ti(k)0 (x = 10 (Lis1 = x) + tn (k)0 (x — lN)>, )

—ikx N
o (k,x) = £ _ <71(/<)9(11 —x) + Z ri(k)6 (x = 1;-1)0 (1; — x)), (5)

i=2

N

ikx N
g (k,x) = jﬁ (h (O (In —x) + ; ri(K)0 (% = In-141)0 (In-i42 — x))» (6)

—ikx N-1
o1 (k,x) = ;ﬁ (9(96 —IN)+ ; £(Kk)6 (x — In_)O (In—iv1 — %) + tn(K)O (I — x)), (7)

and the incoming photon travels in the a-direction with wavevector k. The single photon
transmission amplitude is given by ty(k) and the reflection amplitude by r; (k). Note that
the positions of the qubits are chosen to be symmetric with respect to the origin, i.e.,
IN-is1 = =1, in order to take advantage of parity symmetry. Setting & = ¢ = 1 from now on,
we have for N = 2 [17]

4(k — wo)*
(k) = —, 8
2(K) (il + 2k — 2wq)? + D22k @®

(I — ¥ (T + 2ik — 2iwy) — 2ik + 2iwg)
r(k) = 2,3ikL o ikL(; ; 2 o4 ©)
[2e3kL 4 @ikL(iT" 4 2k — 2wp)
1. .
ivTe ikL (-1 2ikL 2ik — 2i

e{{(k):—lfe 2T (-1 + e*™*) + 2§ iwg) (10)

V(T + 2k — 2w0)? + T'2e2kL)
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2T (k - wy)

R
ey (k) = —, 11
2(0) VT ((iT + 2k — 2w)? + ['2e2kL) 1)
The corresponding result for N = 3 is
X 8(k — ap)?
t3(k) = 13 + 202, €2kl 4 ['2y)_eikL’ (12)
g _
) - (52 + 2e* (T2 + 2(k — w)?) + n?e*L) 13)
k)= 202y, 4L 1 ([2_eSKL + 3 2kl
R0) VTe® (in? + 2T (il + k — wo) + T'n_e*L) 14)
e = - ; ’
! VT (in3 + 2002, Xkl 4 iT"2y)_e4ikL)
eR(k) _ 2\/F(k - (1)()) (15)
2 (0% + iTn_ekL)’
4+/T ikL k — 2
eX(k) = VI k = o0) (16)

ﬁ(ni + 21"2n+62ikL + FZT],eMkL)’

with 74 = 2k — 2w % il". Note that we do not need the other amplitudes for the rest of
this section. For N =1 results see, e.g., Ref. [8].

We can now construct the two-photon ‘non-interacting’ eigenstate

|2 (K1, k2)) kl))al ® |¢1(k2))a2- 17)

1
oy = E’dﬁ(

As described in the Supplementary Material of Ref. [17], starting from the Lippmann-

Schwinger equation

[Valki, ko)), = |da(ki, ko)), + GRE)V [Pk, ko)) (18)

) %) aray’

GR(E) = (19)

E—Hy +i€’

where V is given in Eq. (2) and E is the two photon energy, one can derive the two-photon

interacting eigenstate in the coordinate representation in the U/ — oo limit:
o]0 (xlr ) | () (kl: k2)>a1,a2 = o <x1r ) |¢2 (kl: 1(2))0[1’“2

N
— Z G?ﬁaz (xl’xz)(G—l)lj<djdj|¢2(k1,kz))

.y’ (20)
ij-1
G?tlﬂtz (xlrx2) = al,az(xl,x2|GR(E)|didi>
_ Z /dkl e, (xlrx2|¢2(k1;kZ))a{,aé<?2(/<1rk2)|didi), 1)
v, E — (ki + ky) + ie
a0
1
Gun Gi - G
Gn Gn -+ Gy

G'=| . . . , (22)

Gni G2 - Gan
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(didi| P2 (ki k2)) ey e (@2 (ks ko) |djdd;)
E— (ki + ky) + ie ’

Gy = (didi| G*(B)| ) = ) f dkadky 23

1,02

Note that x; and x, here refer to the positions of the photons.
By observing the structure of these Green functions, one would realize that given the

following two pieces

(didi|¢2(ki, k), = € (ke (Ka), (24)
1
ai,aé(x1x2{¢2(k1yk2))al_a2 = E(fﬁgil (k1,x1)¢gi (K, x2) + ¢:iz (kz,x1)¢gi (ki,%2)), (25)

the whole prescription is complete and in principle one may numerically compute the
two-photon interacting eigenstate Eq. (20) for any N.

Finally, to proceed with the Markovian approximation, we explicitly write down the inte-
grands in Egs. (21) and (23), replace the factors exp(2ikL) by exp(2ikoL) therein, and do the
double integral by standard contour integral techniques enclosing the poles in the upper
half complex plane (for the N = 3 case, for example, the denominator of each transmission
amplitude is a cubic polynomial in &, so there are three roots). The N = 2 case [17] could
serve as an illustrative example owing to its relatively simple polynomial structure: For
koL = A with 0 < A <1/2, we have

eZiﬂAr‘Z + 2’72

G = AT e (26)
2iTA2

N S (EPEE 4iri)0 +l;€2 + 26E(T + 2iwo) + 42)’ @7)
GRR(x1,7) = —{F[,B+(—iﬁ_I‘ +E = 2w0)(2E — 2wp + iy)

+ B TH=iB_T + 2E — dawo)(E + iy)]

X exp(iE(t +x1) — %yt) }/S(eZi”Aan + 173), (28)
Gy (21, %) = i{ T[B+(=iB-T + E — 2w0)((=2 + €™) B, T + 2iE — 4iawy)

+ ﬁ_eemA”(—(e"”A + €™ —2)T" = 2iE + 4iwy) (E + iy)]

X exp(—%yt —imA +iE(t + xl)) }/8(e2i”AF217 +1°), (29)

where n = E —2wg +il", y = (€™ + 1)I" + 2iw,, and B1 = ™ £ 1. During the two contour
integrations, x; > [, and x, = x; + ¢ (with £ > 0) are used. Due to parity symmetry, Gy = Gia,
G2 = G, GyM (=1, —x2) = G?’R(xl,xz) and Gy"(=x1, —xy) = GFYR(xl;xZ)-

Appendix 2: Two-photon correlation function g,(t)
For a non-dispersive photonic field operator in the Heisenberg picture which satisfies

a’(x,t) = a' (x — ct), the two-photon correlation function g(t) can be rewritten in the
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Schrédinger picture as

(Wlal(®)al, (x + ct)ay (x + ct)a, (x)|¥)
(Wlad(®)ae®)|¥) (Ylal, (x + ct)ag (x + ct)| )

law (%, % + ct| P2 (kn, ko)) R >

T e &l (k)R Pl (x + ctlh (ko) x|

() =

(30)

where |/) is the asymptotic output state and o = &’ = R for transmitted photons or « =
o’ = L for reflected photons. The second equality holds if a weak incident coherent state
(mean photon number 7 < 1) with right-going photons is assumed - as is appropriate for
comparison with an eventual experiment - such that we consider only two-photon states
in the numerator and one-photon states in the denominator. The justification for the latter
is twofold: (i) In the numerator, the 0- and 1-photon states are eliminated by the annihi-
lation operators, leaving the 2-photon sector untouched which, then, can be described by
ae (% x+ct|Ya(ki, k) g r- (ii) In the denominator, the probability of having only one photon
is much larger then having two, so that the factors | g (Y2 (k1, ka)|a], (x)aq (x) |2 (k1, k2)) R ]2
can be replaced by the single photon eigenstate |, {(x|¢;(k;))r|? given that k; = ky = E/2
(i.e. two identical incident photons). We are thus lead to an explicit expression for the
photon-photon correlations in terms of the 1- and 2-photon states found using the method
outlined in Appendix 1.
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