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Abstract
Arrays of circuit cavities offer fascinating perspectives for exploring quantum
many-body systems in a driven dissipative regime where excitation losses are
continuously compensated by coherent input drives. Here we investigate a system
consisting of three transmission line resonators, where the two outer ones are driven
by coherent input sources and the central resonator interacts with a superconducting
qubit. Whereas a low excitation number regime of such a device has been considered
previously with a numerical integration, we here specifically address the high
excitation density regime. We present analytical approximations to these regimes in
the form of two methods. The first method is a Bogoliubov or linear expansion in
quantum fluctuations which can be understood as an approximation for weak
nonlinearities. As the second method we introduce a combination of mean-field
decoupling for the photon tunneling with an exact approach to a driven Kerr
nonlinearity which can be understood as an approximation for low tunneling rates. In
contrast to the low excitation regime we find that for high excitation numbers the
anti-bunching of output photons from the central cavity does not monotonously
disappear as the tunnel coupling between the resonators is increased.

1 Introduction
In recent years, a new direction of research in cavity quantum electrodynamics (cavity-
QED) has developed, in which multiple cavities that are coupled via the exchange of pho-
tons are considered. Such setups are particularly intriguing if the cavities are connected to
form regular arrays and if the strong coupling regime is achieved in each cavity of the array.
Such devices would give rise to novel structures where coherent light matter interactions
exceed dissipative processes simultaneously in multiple locations of the array [–].
Whereas it is rather challenging to build mutually resonant high finesse cavities in

the optical regime, it is for microwave photons perfectly feasible to engineer large ar-
rays of mutually resonant cavities on one chip in an architecture known as circuit-QED
[, ]. Here multiple superconducting transmission line resonators with virtually identi-
cal lengths in the centimeter range can be coupled via capacitors or inductive links [].
The individual transmission line resonators can feature strong optical nonlinearities by
coupling them to superconducting qubits such as transmons [, ] or phase qubits [].
Yet in all experiments that involve light-matter interactions, some photons will in-

evitably be lost from the structure due to imperfect light confinement or emitter relax-
ation. To compensate for such losses, cavity arrays are thus most naturally studied in a
regime where an input drive continuously replaces the dissipated excitations. This mode
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of operation eventually gives rise to a driven dissipative regime, where the dynamical bal-
ance of loading and loss processes leads to the emergence of stationary states [–].
The properties of these stationary states may however vary significantly if one changes
system parameters such as the photon tunneling rate between cavities, the light-matter
interaction in a cavity or even the relative phase between a pair of coherent input drives
[, ].
A device that is ideally suited for studying the effect of relative phases between input

drives is the so called quantum optical Josephson interferometer [], which consists of
two coherently driven linear cavities connected through a central cavity with a single-
photon nonlinearity. Here, the interplay between tunneling and interactions in the steady
state of the system has been analyzed for regimes of weak input drives where the number
of excitations in each cavity is rather small by Gerace et al. []. For opposite phases of
the input drives one finds a destructive interference which suppresses population of the
central cavity, whereas for input drives in phase the central cavity is populated with anti-
bunched excitations due to its strong nonlinearity.
For the considered regime of low excitation numbers the approach [] employed a full

numerical analysis relying on an excitation number truncation of the Hilbert spaces. For
high input drives however, the theoretical description of the system poses a challenge as
conventional numerical methods quickly become computationally infeasible. Hence, such
a numerical approach cannot describe regimes with more intense input drives where ex-
citation numbers begin to grow and is therefore unable to explore a possible transition
from a quantum regime with anti-bunched output photons to a classical regime with un-
correlated output photons.
Here we present approaches that are capable of describing this transition. For a param-

eter regime with a weak nonlinearity in the central resonator we expand the intra cav-
ity fields to linear order in the quantum fluctuations around their coherent parts. This
Bogoliubov-type expansion provides a good approximation provided the density of quan-
tum fluctuations around the coherent background is small compared to the excitation
number in the latter. This regime is realized for weak nonlinearities in the central res-
onator.
In turn for strong nonlinearities but moderate photon tunneling rates between the res-

onators we combine an exact solution for a driven Kerr nonlinearity by Drummond and
Walls [] with a mean-field decoupling of the photon tunneling between resonators. As
the solution is based on a description of the quantum state in terms of a P-function we will
refer to it as P-function mean-field []. We find that this approach provides an accurate
description in a large parameter range provided the photon tunneling is low enough such
that the fields in the outer resonators do not deviate significantly from coherent ones. An
overview of the discussed approaches and the parameter regimes where they provide an
accurate description is sketched in Figure .
The remainder of the paper is organized as follows, in Section  we describe the setup

and model we consider and in Section  we revisit the numerical approach by Gerace et
al. [] to present results for time resolved correlation functions which so far have not
been considered. In the next Section  we discuss the approach based on a Bogoliubov
expansion and the results it yields. In Section we then introduce ourmean-field approach
based on an exact solution for the central resonator. Finally Section  presents conclusions
and a discussion of the parameter regimes covered by each of the discussed descriptions.
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Figure 1 Sketch of parameter regions where the discussed
approaches provide accurate descriptions. With increasing
driving strength �, the validity range of the numerical
approach shrinks to larger nonlinearities whereas the
validity ranges for the Bogoliubov and P-function
mean-field approaches grow. For definitions of U, J, � and γ

see equation (1). The validity boundaries of the various
approaches are discussed further in Figures 8, 9 and 12.

Figure 2 Schematic of a possible realization of
the quantum-optical Josephson interferometer
with transmission line resonators in circuit QED.
Here only the central conductors of the resonators
are drawn. The three-resonator chip allows for a
coupling J between two neighboring
resonators [17]. A voltage-node in the center is the
reason for an off-center implementation of the
nonlinearity U that is capacitively coupled to the
middle resonator. The two outer transmission line
resonators are driven by coherent input sources
with amplitudes �. Each transmission line
resonator has an individual dissipation-rate, which depends on the resonator’s coupling capacitors at both
ends. We consider the case where the combined decay rate of the central resonator and the transmon is
equal to the decay rate of the two outer resonators γ .

2 Setup
The circuit QED Josephson interferometer we consider is a multicavity driven-dissipative
system consisting of three coupled transmission line resonators where the two outer ones
are coherently driven and the central transmission line resonator interacts with a super-
conducting qubit, see Figure  for a sketch. We consider here a transmon as the qubit and
assume a regime with strong interactions between the central resonator and this qubit
so that polaritons, combined light matter excitations, become a useful description of the
nonlinear central resonator. For large enough qubit-resonator coupling one can focus the
description only on one excitation species in the central resonator []. Employing this
approach, the Hamiltonian for the circuit QED Josephson interferometer can be written
in a frame rotating at the frequency ωin of the input drives as

Ĥ =
∑

k=

�kâ†kâk –
U

â†â

†
ââ – J

(
â† â + â†â + â†â + â†â

)
+

�


[
â† + â + â†e

iϕ + âe–iϕ
]
. ()

Here âk annihilates an excitation in transmission line resonator k. For the two outer res-
onators the excitations are photons whereas for the central resonators they are excitations
of the considered polariton mode. �k = ωk –ωin is the detuning between the input drives
and resonance frequency of excitations in the kth transmission line resonator. For sim-
plicity, we only consider the on-resonance case with �k = . The parameter U describes
the effect of the Kerr nonlinearity due to the transmon in the central resonator and J is the
tunneling rate between neighboring resonator sites, � is the drive amplitude, assumed
to be equal for the two inputs, and ϕ describes the phase difference between them. At
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this point it is important to note that the nonlinearity of a transmon qubit is attractive
(corresponding to U >  in our notation).
The circuit QED Josephson interferometer is an open quantum system due to experi-

mental imperfections such as the finite reflectivity of the coupling capacitors at each end
of the transmission line resonators and relaxation of the transmon. We consider here the
case where excitations in all three transmission line resonators have the same dissipa-
tion rates. As excitations in the second resonator can also decay via transmon relaxation,
equal dissipation rates can be achieved for example by choosing suitable capacitances at
the ends of the transmission lines. Since the couplings to the environments are sufficiently
small [, ] we can make use of the master equation approach []. As a simplification
we assume the reservoir state to be in vacuum, which is justified by the fact that circuit
QED experiments are typically performed at a temperature in the millikelvin range [].
These considerations lead to the master equation

ρ̇ =Lρ, ()

where the Liouvillian L is given by

Lρ = i[ρ, Ĥ] +
γ



∑
k=

(
âkρâ†k – â†kâkρ – ρâ†kâk

)
, ()

the dot denotes a time derivative and γ describes the excitation loss rate of an individual
resonator site. Since the excitation losses are continuously compensated by a coherent
input drive, a dynamical equilibrium leading to a steady state will be established. We are
here interested in properties of this steady state, such as the mean excitation number and
its correlation functions, mainly for the central resonator.
In cavity or circuit quantum electrodynamics experiments the output fields of the in-

vestigated resonators are typically accessible by measurements. Hence in our device the
quantity of interest inmeasurements is the output field of the central resonator. It is linked
to the field in the resonator via the input-output relation [],

âout(t) =
√

κ âres(t) + âin(t), ()

where âout and âin are the output and input fields and ares the field in the resonator which
leaks out at a rate κ . In cavity and circuit QED the photons in the cavity usually couple
to the photon modes in the output channel so that one can identify the cavity field âres
with the annihilation operator of photons in the cavity. In the central cavity of our setup
however, two polaritonic excitations build up due to the strong coupling to the qubit and
the photon field in the central resonator can be expressed as a superposition of them, âres =
ηâ + η′ã with coefficients η and η′. (Note that η can always be chosen to be positive and
that |η| + |η′| = .) In the regime of strong coupling we are interested in, the frequencies
of the polaritonmodes â and ã differ strongly enough so that the input drives selectively
only excite â and we can neglect the ã excitations in the input-output relation since
they only contribute vacuum output. Hence for calculating the output fields of the central
resonator we can use the modified input-output relation,

âout(t) =
√

γ â(t) + âin(t), ()
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where γ = ηκ . For vacuum input fields, we thus obtain an out photon flux 〈â†outâout〉 =
γ 〈â†â〉 for the central resonator.
The quantumness or non-classicality of light fields can be characterized by the statis-

tics of their excitations. Here a quantity of central interest is the so-called (time-resolved)
second order correlation function, here for resonator ,

g()(τ ) =
〈â(t)†â†(t + τ )â(t + τ )â(t)〉

|〈â(t)†â(t)〉| . ()

The significance of the physical interpretation is to have a value for the probability tomea-
sure a second particle at time t + τ after a particle has been measured at time t and com-
pare this to a coherent field where g() = . Therefore, if g() <  it is less likely to measure
a second particle. In this case we speak of an anti-bunched light field that is necessarily
non-classical, whereas for g() >  we have bunched lightmeaning a higher probability than
for a coherent field. We note that the g()-function for the output fields is identical to the
g()-function of intra-cavity fields provided the input fields are in vacuum.
Let us finally stress that although we refer to an implementation in circuit electrody-

namics here, our calculations do in most parts not make use of details of this technology
and are therefore applicable to other realizations as well. Yet we prefer to discuss them in
the context of circuit QED as this technology offers excellent perspectives for realizing a
coupling between resonators as we envision it here.

3 The numerical approach in the weak driving regime
In the regime where the laser intensity is rather low, we are able to numerically solve the
master equation directly. Here, an entire regime of rather high nonlinearities U/γ > ,
which lessen the probability of high intra-cavity excitations, can be covered for arbitrary
values of the tunneling rate J . We introduce a cut-off in the excitation number to give a
matrix expression for the excitation ladder operators in a Fock basis of bosonic number
states. This reduces the infinitely high dimensional Hilbert space to a small number of
dimensions and hence allows for the numerical calculation of all operator expectation-
values. To corroborate our results we test their convergence as we increase the excitation
number cut-off.
For the steady states we consider, g()(τ ) as given in equation () is independent of the

time t and only depends on the time delay τ . In the weak driving regime the results for
no delay τ =  have already been covered in [] and we therefore focus for this regime on
the time-resolved second order correlation function for τ �= .
Applying the quantum regression theorem (QRT) [] we find the results presented

in Figure . Here, as expected, the g()(τ )-function converges to  for a long time delay
τ → ∞. The amplitudes of the flucutations around g()(τ ) =  increase with increasing
nonlinearities and increasing tunneling rates J , however at τ =  the system is more exci-
tation anti-bunched if the tunneling strength is weaker and the nonlinearity higher.
With the used approach of directly solving the master-equation numerically in a trun-

cated Hilbert-space one can cover a regime for arbitrary values of J if the nonlinearity ful-
fills U/γ >  in the weak driving regime of |�|/γ < . Nevertheless, this method is unable
to show a clear crossover between anti-bunched and uncorrelated excitations because the
weak drive and high nonlinearity restrict it to low numbers of excitations, implying anti-
bunched statistics. Therefore we will present a method to extend the investigation of this

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 3 The second order correlation function g(2)(τ ) as found from a fully numerical solution. (a) For
ϕ =� = 0, J/γ = 2, U/γ = 2 and �/γ = 1 (green) or �/γ = 2 (blue). (b) For ϕ =� = 0, J/γ = 4, U/γ = 2 and
�/γ = 1 (black) or �/γ = 2 (red).

set-up to the strongly driven regime, motivated by the possibility of high intra-resonator
excitations.

4 The quantum fluctuations approach in the strong driving regime
For higher laser intensities, the number of excitations increases rapidly. Since the twoouter
transmission line resonators do not directly couple to qubits, their only deviation from a
coherent state stems from the coupling to the central resonator, which features a nonlin-
earity due to its coupling to a transmon qubit. Therefore it is for strong inputs no longer
computationally feasible to numerically solve the full master equation. Assuming a weak
nonlinearity, we thus use a generalized Bogoliubov approach to non-equilibrium steady
states [], which linearizes the equations for the quantum fluctuations around the classi-
cal fields and can be understood as an approximation for low nonlinearities. We expand
the creation and annihilation operators around the coherent state by writing

âj = αj + δ̂aj, ()

â†j = α∗
j + δ̂a†j , ()

where the complex number αj = 〈âj〉 represents the coherent background and the opera-
tors δ̂aj and δ̂a†j describe the quantum fluctuations around it. Using equations () and ()
we expand the master equation in powers of the operators δ̂aj and δ̂a†j ,

ρ̇ =
(
L() +L() +L() +L())[ρ], ()

where L(n)[ρ] denotes the nth order of quantum fluctuations δ̂aj in the Liouvillian L.

4.1 Steady state coherent background
To determine the coherent background in terms of the αj, we require that the first order
Liouvillian vanishes for all quantum fluctuations, L() != . The result is equivalent to the
solution for the steady state coherent background. With the above requirement we get
a cubic equation for the steady state mean excitation number n = |α| of the coherent
background in the second cavity

γ Un +
(
γ  + J

)n = J�( + cosϕ) ()

http://www.epjquantumtechnology.com/content/1/1/4
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which has only one physically meaningful solution with n ≥ :

n =
η – /Uγ (γ  + J)

× /Uγ η
, ()

where

η = 

√√√√γ JU�
(
cos(ϕ) + 

)
+

√


√
γ U

(
γ JU� cos

(
ϕ



)
+

(
γ  + J

)).
()

The values of α and α can be determined from the solution () via the additional rela-
tions

α =
i(Jα –�)

γ
, ()

α =
i(Jα –�eiϕ)

γ
. ()

The solution () is plotted in Figure . One can clearly see that the coherent background
decreases for increasing nonlinearities. This feature appears since the frequencies of the
input drives are resonant with the transition between zero- and single-excitation states in
the resonators. Hence with increasing nonlinearity it becomes less probable that higher
excitation states become populated as well. Moreover the population of the coherent part
of the intra-resonator fields shows a maximum for specific values of J ≥ . These maxima
can be understood when writing the Hamiltonian () in terms of Bloch modes [], which
have frequencies that depend on the tunneling rate J . Thus with increasing J a balance
establishes between the higher detuning between Bloch modes and input drives leading
to less excitations and an increased tunneling leading to more excitations in the central
cavity. Here, it can already be seen that the number of polaritons in the second resonator
exceeds the computational feasibility of conventional numerical methods to calculate the
-site system.
Figure  shows the effects of varying the phase-difference ϕ of the two coherent input

laser sources. One immediately notices the emptying of the central cavity for a phase-
difference ϕ = (m + )π with integer m. The oscillation of the excitation number in the
central cavity is a result of the interference between the two coherent input drives. On
the other hand, changing the tunneling-rate does not affect the minimum, but changes
the severeness of the interference effect in agreement with the previously visualized re-
sults in Figure . We further find (not plotted) that for an increase in driving strength
the oscillation due to the phase-difference ϕ is steeper, changes the value of J for which
the background occupation number has a maximum and decreases the incline around it.
Also the sharpness of the peak of maximal background occupation is less pronounced for
higher nonlinearities.

4.2 Steady state quantum fluctuations
We are mainly interested in the statistics of output photons from the central resonator.
These are described by themean excitation number 〈n̂〉 and the second-order correlation

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 4 The coherent excitation number n2 = |α2|2 in the second transmission line resonator as a
function of the nonlinearity U/γ and the tunneling rate J/γ for in-phase laser input ϕ = 0 and
�/γ = 5. Stronger drives lead to even higher excitation numbers n2.

Figure 5 Background excitation number n2 as a function of the phase difference ϕ and tunneling J/γ .
Due to a destructive interference, excitations are suppressed for ϕ = (2m + 1)π with integerm. The plot
shows the effect for a low nonlinearity U/γ = 0.2 and a strong drive �/γ = 10.

function g() . To calculate the mean excitation number in the steady state, we can write in
the expansion approach,

〈
â†â

〉
= |α| + 〈

δ̂a†δ̂a
〉
, ()

where we have dropped the site index as we are only focusing on resonator . The second
order correlation function has been introduced in Eq. (). The case with zero time-delay
τ =  is important in order to determine whether the output light field exhibits Poissonian
or sub-Poissonian statistics. We expand the g()-function to get

g()(τ = ) =
|α| + |α|〈δ̂a†δ̂a〉 + (α∗)〈δ̂aδ̂a〉 + (α)〈δ̂a†δ̂a†〉

|α| + |α|〈δ̂a†δ̂a〉
. ()

http://www.epjquantumtechnology.com/content/1/1/4
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Therefore, in order to calculate the important statistical properties of our system we need
to combine the previously derived results of the coherent background with the mean cor-
relation values of the quantum fluctuations. We thus solve the master equation () to sec-
ond order in the quantum fluctuations for ρ ,

L()[ρ] = , ()

using L()[ρ] =  and plugging the solution () into L()[ρ]. For the considered case of
� = , the eigenvalues of L()[ρ] all have real parts –γ / so that the solutions are sta-
ble. Neglecting higher order terms in the master equation, i.e. L(),()[ρ] ≈ , is a good
approximation provided that quantum fluctuations are small compared to the coherent
background,

〈
δ̂a†j δ̂aj

〉 � |αj| for j = , , . ()

To analyze the validity of the solutions we find, we thus check whether they fulfill this
property.
For the central transmission line resonator, the solution for the mean quantum fluctua-

tion number reads

〈
δ̂a†δ̂a

〉
=

nU(γ  + J + γ (J + nU))
(γ  + nU)(γ  + J + γ (J + nU))

. ()

Considering the fact that we neglected the terms of third and fourth order in quantum
fluctuations, which contain additional pre-factors of the nonlinearity U , we come to the
conclusion that our approach can also be considered an expansion inU . As a consequence,
we can deduce the results represent a good approximation in a regime of weak nonlinear-
ities U . Moreover, the approach becomes much better for higher laser-input intensities
because the coherent background excitation number in Eq. () scales much stronger with
the laser input amplitude � than the number of quantum fluctuations in Eq. ().
In contrast to the mean excitation number in the second resonator, the quantum fluc-

tuations do play a significant role for the g()-function, see Eq. (). The second order
correlation function of the central resonator in the strong driving regime is plotted in Fig-
ure . Depending on the tunneling rate J we observe smooth transitions from a coherent
to an anti-bunched excitation field as the nonlinearity is increased beyond specific values.
Figure  shows that the oscillations in the excitation number due to interference effects
can be observed in the g()-function as well.

4.3 Limitations of the Bogoliubov approach
The major limitation of the Bogoliubov approach is obviously the validity of the as-
sumption (). In order to determine the regime where this is fulfilled, we plot the ratio
〈δ̂a†i δ̂ai〉/|αi| (i = , , ). For parameters where this ratio is sufficiently small, the approx-
imation works fairly well. The ratio 〈δ̂a†δ̂a〉/|α| is plotted in Figure , whereas Figure 
depicts the same ratio for the two outer resonator sites, i.e. 〈δ̂a† δ̂a〉/|α| = 〈δ̂a†δ̂a〉/|α|.
As a conclusion, we can safely assume that our approximation works well in a regime

for strong input drives �/γ >  and low nonlinearities U/γ < . for arbitrary values of
the tunneling rate. For larger drives, such as �/γ >  the range of validity extends to

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 6 The g(2)-function as given by equation (16) as a function of J/γ and U/γ in the in-phase
strong driving regime for �/γ = 5. The red color indicates a coherent field, where g(2) ≈ 1, whereas the
blue area marks excitation-antibunching with g(2) < 1.

Figure 7 The g(2)-function as given by equation (16) as a function of ϕ and U/γ for J/γ = 1 and
�/γ = 5. The red color indicates a coherent field, where g(2) ≈ 1, whereas the blue area marks
excitation-antibunching with g(2) < 1.

larger U/γ . Thus we are motivated to find access to the regime of larger nonlinearities
U/γ because, as is evident from Figure , the assumption 〈δ̂a†i δ̂ai〉 � |αi| breaks down in
that regime, primarily in the second resonator. We present an approach to this parameter
regime in the next section.

5 P-Functionmean-field approach to the low tunnelling regime
As one can see from Figures  and , themain limitation of a Bogoliubov approximation is
the ratio of the mean quantum fluctuation number to the mean excitation number in the
second cavity which significantly increases for large nonlinearities U and weak drives �.
Hence if we are able to take higher quantum fluctuations in resonator  into account the
results should become more exact and be applicable to a larger parameter range. On the
other hand the deviation from a coherent state for the first and third transmission line

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 8 Ratio of quantum fluctuations to the coherent background excitation number for the

mid-resonator, 〈 ̂δa
†
2
̂δa2〉/|α2|2 as a function of J/γ and U/γ in the strong driving regime with

�/γ = 5. For higher drives � the ratio becomes smaller and also stays small up to larger nonlinearities U.

Figure 9 Ratio of quantum fluctuations to the coherent background excitation number for the two

outer resonators, 〈 ̂δa
†
1
̂δa1〉/|α1|2 = 〈 ̂δa

†
3
̂δa3〉/|α3|2 as a function of J/γ and U/γ , (a) �/γ = 5,

(b) �/γ = 10.

resonator is extremely small because they do not contain any nonlinearity themselves and
the nonlinearity of the center cavity only slightly affects the two outer cavities. Thus, if we
are able to find away to solve the second transmission line resonator’smean values exactly,
our results should become better. This will be the ansatz of ourmean-field approachwhere
we ignore quantum fluctuations in the two outer resonators and substitute â, → α,.
With this substitution, the Hamiltonian for resonator  takes the form

ĤMF = �ωâ†â –
U

â†â

†
ââ – J(α + α)â† – J

(
α∗
 + α∗


)
â ()

which can be written in the form of a coherently driven Kerr nonlinearity [],

ĤMF = �ωâ†â –
U

â†â

†
ââ +

�̃


â† +

�̃∗


â ()
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by introducing the drive �̃ = –J(α +α). To determine α and α self consistently, we use
equations () and () to obtain,

�̃ =
iJ
γ

(
� +�eiϕ – J〈â〉

)
()

in the � =  case. Our approach can thus be understood as a mean-field decoupling of the
three cavities.With the consistency condition (), the Hamiltonian () becomes a single
site model which can be solved exactly using a P-function based method introduced by
Drummond and Walls [].
What we have done is basically a trade-off: We allow for a more crude approximation

of the quantum tunneling effects in the two outer cavities by completely neglecting their
quantum fluctuations. The latter are however expected to be very small, see Figure . In
turn we gain an exact solution for the resulting one-site problem, giving a better approx-
imation of the nonlinear effects in the second transmission line resonator. In contrast to
the Bogoliubov expansion that has been performed in Section , we here do not expand
in U but in the tunneling rate J []. With the approach introduced here we thus cover a
regime with arbitrary values for the nonlinearity U but only for moderate values of J . The
solution for the normal-ordered mean values of the middle transmission line resonator in
the � =  case reads

〈(
â†

)k(â)l〉 = (
�̃∗

U

)k(
�̃

U

)l �(–i γ

U )�(i
γ

U )
�(k – i γ

U )�(l + i γ

U )
F(k – i γ

U , l + i γ

U , | �̃
U |)

F(–i γ

U , i
γ

U , | �̃
U |)

, ()

where

F(c,d, z) =
∞∑
n=

(
zn�(c)�(d)

�(c + n)�(d + n)n!

)
()

is the generalized Gauss hypergeometric series, defined in terms of the �-function. Note
that �̃ is a function of 〈â〉, see Eq. (). The starting point of our approach is thus to find
the solution of the expectation value 〈â〉 from Eq. () which, after inserting equation
(), becomes a nonlinear algebraic equation for 〈â〉,

〈â〉 = J
γ 

(
�

(
 + eiϕ

)
– J〈â〉

)
× F(– iγ

U ,  + iγ
U , | iJ

γU (�( + eiϕ) – J〈â〉)|)
F(– iγ

U , iγU , | iJ
γU (�( + eiϕ) – J〈â〉)|)

. ()

The result for 〈â〉 can be put into Eq. () allowing for an expression of the ‘new’ drive �̃.
Based on this solution the correlation values for all higher normal-ordered momenta in
Eq. () can be subsequently derived in a self-consistent manner.
Figure  shows the behaviour of the second order correlation function for excitations

in the second cavity depending on the external experimental parameters. As expected,
for low nonlinearities the state in the middle transmission line resonator is close to a co-
herent state. An increase of the nonlinearity leads to a state becoming more and more
anti-bunched. In contrast to the low excitation regime [], we here find that g()() does

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 10 Themean polariton number (a) and g(2)2 -function (b) of the central resonator in the strong
driving regime, �/γ = 5, as a function of J/γ and U/γ . The plots show the results gained from
equation (23). Due to the previously explained nature of our approach being a good approximation for lower
tunneling strength, we are able to cover an additional regime compared to the Bogoliubov expansion, which
broke down for higher values of the nonlinearity. (Compare with Fig. 8.)

Figure 11 Dependence of the second resonator’s excitation statistics on the phase difference ϕ of the
input laser drives for �/γ = 5, U/γ = 0.5 and J/γ = 0.1 (blue) or �/γ = 10, U/γ = 2 and J/γ = 0.5
(black) as obtained from equation (23). (a) Mean excitation number and (b) Second order correlation
function. The oscillation in the mean excitation number can be attributed to the interference of the two input
laser fields.

not monotonously approach unity as the tunneling J is increased. Instead anti-bunching
can also become more pronounced. We attribute this non-monotonous behavior to the
competition of two effects. On the one hand, an increased tunneling rate means that more
photons from the coherent fields in the outer resonators flow into the central resonator
and weaken the anti-bunching. On the other hand, an increased tunneling rate detunes
the normal modes of the three-cavity system from the laser drives so that the outer cavi-
ties are less populated. If this second effect starts to dominate over the previous one, the
photon flow into the central resonator decreases and its excitations show more tendency
to anti-bunch. This signature is also visible, albeit less pronounced, in Figure .
In Figure  we investigate the influence of the phase-difference ϕ on the excitation

statistics of the central transmission line resonator. The mean excitation number fluc-
tuates with the phase-difference ϕ, exhibiting maxima at ϕ = nπ and minima at ϕ =
(n+ )π , where n is an integer, due to constructive and destructive interference of the in-
put laser drives respectively. An increase in the tunneling rate from J/γ = . to J/γ = .
enables a higher number of excitations to tunnel into, and therefore excite, the central

http://www.epjquantumtechnology.com/content/1/1/4
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Figure 12 Comparison of the results for mean polariton number in the central cavity obtained by the
P-function mean-field method, red line, and by the conventional numerical method, dashed lines,
with cut-offs at three (black), four (blue) and five (green) excitations. (a) Deviation due to an increase in
the tunneling rate for �/γ = 1.5 and U/γ = 2. (b) Deviations due to an increase in driving strength for
J/γ = 0.2 and U/γ = 0.5.

transmission line resonator, leading to a higher number of excitations altogether. The g()-
function also shows oscillations, however, their behavior is very different for different
tunneling rates. Whereas maxima appear for both tunneling rates at a phase-difference
ϕ = nπ , the second order correlation function for J/γ = . shows additional local max-
ima at ϕ = (n+)π . These may be attributed to the low excitation number at these points
which induce a tendency for g()-functions to increase.

5.1 Comparison to the numerical solution
Finally we quantify the parameter range where the P-function based mean-field approach
we introduce here is in good agreement with a full numerical solution for regimes where
the latter can be obtained. Figure (a) compares the mean-field solution (red) and full
numerical solutions (dashed lines) for �/γ = . and U/γ =  as the tunneling rate J is
increased. Whereas the numerical solutions for cut-offs at four (blue) and five (green)
excitations agree very well indicating that the cut-offs are high enough, one can see devi-
ations between the numerical and the mean-field solutions as J increases. These should
be interpreted as a failure of the mean-field approach for larger J . Figure (b) in turn
compares the mean-field solution (red) and full numerical solutions (dashed lines) for
J/γ = . andU/γ = . as the drive strength� is increased. Here the numerical solutions
converge to the mean-field solution as the cut-off number is increased, indicating that
the mean-field approach is a very accurate approximation throughout. The agreements
and disagreements displayed in Figures (a) and (b) are in agreement with the intuition
that enhancing the coherent drives at the outer cavities should make the fields in those
cavities more coherent and hence the mean-field approximation more accurate whereas
an increase in the tunneling rate enhances the influence of the nonlinearity on the outer
cavities and hence drives them away from a coherent state which renders the mean-field
approach inaccurate.

6 Conclusion and discussion of accessible regimes
In summary we have complemented the discussion of a quantum optical Josephson inter-
ferometer with two methods. One is a linearization or Bogoliubov expansion of the intra-
cavity fields around their coherent parts. The second method, which we have introduced
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here, combines an exact solution for the central resonator with a mean-field decoupling
of the tunneling terms to the outer resonators.
With the proposedmethods the circuit QED Josephson interferometer can be described

for a significant range of all experimentally adjustable parameters, such as the input
drive �, the nonlinearity U and the tunneling strength J for a given dissipation rate γ .
If one is faced with low laser intensities and thus low intra-cavity excitations, the solution
can be obtained by solving the master-equation numerically via an excitation cut-off in
the matrix representation of the ladder operators as has been shown in Section . In a
strong driving regime with intermediate to high tunneling rates but low nonlinearities a
good approximation to the excitation output statistics can be given by a Bogoliubov expan-
sion in the quantumfluctuations around the coherent background parts of the intra-cavity
fields, which we presented in Section . However, for a strong input drive, low tunneling
rates and intermediate to high values of the nonlinearity the Bogoliubov expansion breaks
down. Here we derived a method in Section , which we termed P-function mean-field
approach, that works extremely well in said regime. The only regime for which a good ap-
proximation could not be gainedwas onewhere the drive is strong enough to produce high
intra-cavity excitations, but the tunneling rate and nonlinearity are still relatively high. As
a result they are responsible for non-neglectible quantum effects in comparison to the
drive or to each other and therefore neither an expansion in U nor in J would be valid.
A summary of the validity ranges for each of the presented methods is sketched in Fig-
ure .
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